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Chapter I

Overview

We introduce the classical Black & Scholes model, the need of studying fractional

Brownian motion and the approximate approach. Secondly, we study the literature re-

view of the Black & Sholes models with jumps. Finally we discuss the goals and objectives

of this thesis.

1.1 Background

In their classic paper on the theory of option pricing, Black and Scholes (1973) present

a mode of analysis that revolutionized the theory of corporate liability pricing. Their

approach led to pricing formulas using, for the most part, only observable variables.

In particular, their formulas do not require knowledge of either investors’ tastes or

their beliefs about expected returns on the underlying common stock. Moreover, under

specific posed conditions, their formula was found to hold to avoid the creation of

arbitrage possibilities.

To derive the option pricing formula, Black and Scholes assume “ideal conditions”

in the market for stocks and options. These conditions are as follows.

1. “Frictionless” markets: there are no transactions costs or differential taxes. Trad-

ing takes place continuously in time. Borrowing and short selling are allowed

without restriction and with full proceeds available. The borrowing and lending

rates are equal.

2. The short-term interest rate is known and constant through time.

3. The stock pays no dividends or other distributions during the life of the option.

4. The option is “European” in that it can only be exercised at the expiration date.
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5. The stock price follows a “geometric” Brownian motion through time which pro-

duces a log-normal distribution for the stock price between any two points in

time.(Merton, 1990)

Following condition 5, we assume that the price (S(t), t ≥ 0) of a risky asset at time

t is given by geometric Brownian motion of the form

S(t) = S(0) exp

(
(

µ − 1

2
σ2
)

t + σZ(t)

)

, ∀ t ∈ [0, T ], (1.1)

where (Z(t), t ≥ 0) is the Brownian motion. S(0) is a given random variable such that

ES2(0) < ∞, and µ and σ are constants. Equation (1.1) is called the classical Black &

Scholes pricing model. The motivation for this assumption on S(t) comes from the fact

that S(t) is the unique strong solution of the linear stochastic differential equation

S(t) = S(0) +

∫ t

0
µS(s) ds +

∫ t

0
σS(s) dZ(s), ∀ t ∈ [0, T ],

which can be formally written as

dS(t) = µS(t) dt + σS(t) dZ(t),

S(t)
∣
∣
t=0

= S(0),

(1.2)

where µ is also known as the drift rate or rate of return of the price S(t) and σ as the

volatility (which measures the standard deviation of the return dS(t)/S(t)). Let us note

that the Brownian motion Z(t) is called the driving process of the stochastic differential

equation (1.2) or, in other words, the stochastic differential equation (1.2) is driven by

the Brownian motion Z(t).

Recall that a Brownian motion (B(t)) is a stochastic process with the following

properties:

1. Normal increments: B(t) − B(s) has a normal distribution with mean 0 and

variance t− s. This with s = 0 implies that B(t)−B(0) is a N (0, t) distribution.

2. Independence of increments: B(t) − B(s) is independent of the past, that is, of

B(u), 0 ≤ u ≤ s.

3. Continuity of paths: B(t), t ≥ 0 are continuous functions of t.
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If σ = 0, the equation (1.2) becomes an ordinary differential equation which de-

scribes an investment on a non-risky asset (e.g., a bank account). The initial capital

S(0) grows, from t = 0, continuously compounded with the interest rate µ as

S(t) = S(0) eµt

at time t. If µ is a function of t, S(0) grows from the initial time t = 0 according to:

S(t) = S(0) exp

(
∫ t

0
µ(s) ds

)

at time t. On the other hand, if one knows the amount, say, S(t) to be obtained at

future time t, its present value can be also found by discounting it at the same rate of

growth. That is, if it grows to become S(t) and continuously compounded with the rate

µ then its present value at t = 0 is

e−µtS(t).

The value e−µtS(t) is called the discounted value or the present value of S(t) at the rate

µ.

Let us observe that the drift rate µ and the volatility σ could be some adapted

stochastic processes so that the equation (1.2) could be in the form:

dS(t) = µ(S(t), t) ds + σ(S(t), t) dZ(t),

S(t)
∣
∣
t=0

= S(0).

(1.3)

The strong solution (1.3) possesses the Markov property: its future behaviour depends

only on its immediate previous values and not on values long time before. Thus, strong

solutions of (1.3) have no memory. However in practice, the stock price S(t) at t may

have a long-range consequence: S(t) may be a long memory process in the sense that,

if X = (X(t), t ≥ 0) is a stochastic process on (Ω,F , P) and ρ(k) = E[X1(Xk+1 − Xk)]

then
∞∑

k=0

ρ(k) = ∞.

Such a process X is said to have long memory or long-range dependence or strong

after effect. This means that the process today may influence the process at some time

in the future. In other words, the process long time ago may influence the process today.
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We note that S(t) is a strong solution to the Itô stochastic differential equation (1.3)

such that, if for all t > 0, S(t) is a function F (t, (B(s), s ≤ t)) of the given Brownian

motion B(t), integrals
∫ t

0 µ(S(s), s)ds and
∫ t

0 σ(S(s), s)dB(s) exist, and the following

integral equation is satisfied:

P a.s. ∀ t ≥ 0, S(t) = S(t) +

∫ t

0
µ(S(s), s) ds +

∫ t

0
σ(S(s), s) dZ(s). (1.4)

1.2 The Need to Study Fractional Brownian Motion and

the Approximate Approach

It is well-known that the Black & Scholes model is complete and free of arbitrage in

the class of admissible strategies. This means that claims can be priced fairly and (in

principle) one can even calculate the corresponding hedging portfolios. Hence, the Black

& Scholes pricing model is very satisfactory from the theoretical point of view.

However, there is a problem with this model. It stipulates that the log-returns

R(tk) := log
S(tk)

S(tk−1)

=

(

µ − σ2

2

)

(tk − tk−1) + σ
(
Z(tk) − Z(tk−1)

)

are normal and independent random variables.

The dependence structure of such log-returns have been studied using the so called

Hurst parameter H. In the uncorrelated case one should have H = 1
2 . However, many

studies have indicated that the Hurst indices were such that H > 1
2 . For example, Peter

(1994) and Shiryaev (1998) found that the estimated Hurst index is H = 0.642 for the

daily exchange rate between US Dollar and Japanese Yen between January 1972 and

December 1990.

To overcome the independence assumption of the log-returns, it has been proposed

to replace the Brownian motion by a fractional Brownian motion which captures the

long-range dependency property measured by H. The first one to suggest this was

Mandelbrot (1997).

In order to be able to apply fractional Brownian motion to study the market situa-

tions, we need a stochastic calculus for such a fractional Brownian motion (fBm), since
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for H 6= 1
2 , the fBm ZH(t) is neither a semimartingale nor a Markov process, meaning

that the well developed stochastic calculus is not applicable. In particular, for H > 1
2 ,

it is a long memory process. In other words, the behavior of a real process after a given

time t does not only depend on the situation at t but also of the whole history of the

process up to time t.

Many authors have studied what a stochastic integral of a function with respect to

fractional Brownian motion should mean. The most common constructions of such a

stochastic integral are in two ways: the pathwise integral and the Skorohod (Wich-Ito)

integral. Unfortunately, these two types of definitions do not allow economical interpre-

tation and are difficult for numerics.

In 2002, Thao developed a theory for fractional Brownian motion which both allowed

for economical interpretation and was convenient for numerics. He proposed another

definition of fractional stochastic integrals motivated by the formula of integration by

parts and an approximate approach to fractional Brownian motion. We will study this

in more detail in chapter II.

1.3 Black & Scholes Models with Jumps

There are also empirical studies indicating that the log-returns are not normal. This is

more evident, if the observation intervals tk − tk−1 are short.

The empirical literature has extensively reported on the non-normality of the log-

returns especially on two features, which indeed are closely linked. First, it has been

shown that the log-returns show excess kurtosis and skewness, inconsistent with the

normality assumptions (see Mandelbrot (1963) and Fama (1965) for the early works.

For more recent works, one can see Kon (1984), Jorion (1998) and Bate (1996)). Sec-

ond, research has concentrated on the implied volatility smile or skewness (See Dumas

et al. (1996) for a survey). Interestingly, this second fact is just another hint of the

non-normality of the log-returns.

To overcome this critical point, namely the normality assumption of the log-returns,

it has been proposed to replace Brownian motion by suitably chosen alternative Lévy

processes, for instance, the hyperbolic Lévy motion, and more generally, one of the

generalized hyperbolic Lévy motions (Prause (1999) and Eberlein (2001)).
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Runggaldier (2002) has stated that most of the standard literature in Finance, in

particular for pricing and hedging of contingent claims, is based on the assumption

that the prices of the underlying assets follow a diffusion-type process, in particular a

geometric Brownian motion (GBM) (see equation (1.1)). Documentation from various

empirical studies shows that such models are inadequate, both in relation to their de-

scriptive power, as well as for the mispricing that they might induce.

The contribution of this thesis concerns various generalizations of the basic GBM.

We concentrate on the fact that returns of various asset prices and interest rates may

exhibit jumping behavior and study possible superpositions of jump and diffusion pro-

cesses, namely those called jump-diffusion processes. Jump-diffusion processes form a

particular class of Levy processes. Our purpose here is not to study the general case of

Levy driving processes, but rather to concentrate on the specific aspects of the subclass

of jump-diffusions. Jump-diffusion models have also some intuitive appeal in that they

let prices and interest rates change continuously most of the time, but take into account

the fact that from time to time larger jumps may occur that cannot be adequately

modeled by pure diffusion-type processes.

Among the earlier empirical studies documenting a jumping behavior in price and

interest rates were Ball and Torous (1985) and Jorion (1988). There were also studies,

such as Babbs and Webber (1997), putting forward specific sources of jumps in interest

rates such as moves by central banks. On the other hand, a first approach developing

further the basic Black and Scholes model with the inclusion of jumps appears to be

that of Merton (1976).

1.4 Goals and Objectives of Thesis

The goal of this thesis to introduce a fractional Black-Scholes model with jumps us-

ing an approximate approach. We will compare the fractional Black-Scholes model

with jumps with the classical Black-Scholes models and the Black-Scholes models with

jumps, and conclude that in some cases, this model is superior in describing empirical

observations and in its modeling flexibility. Moreover, we introduce the term structure,

in this case, interest rates, for models with jumps as fractional Vasicek models with
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jumps. Finally, the sample paths of Thai Petrochemical (TPI) stock prices simulated

by approcimate solution of classical Black-Scholes models, Black-Scholes models with

jumps and fractional Black-Scholes models with jumps will be illustrated and compared

to the empirical data.

The outline of this thesis is as follows. In Chapter II we introduce fractional stochas-

tic calculus. Next, in Chapter III we recall some preliminary notions form stochastic

analysis for jump-diffusion processes, such as a basic tools of the Poisson Process, count-

ing processes, Poisson random measure, stock price models with jumps, and stochastic

calculus for jump processes. We limit ourselves to those notions that be used in the

sequel. In Chapter IV we then describe fractional Black-Scholes models with jumps

using an approximate approach. Moreover, we describe fractional Vasicek models with

jumps with using the same method. Finally, in Chapter V we describe simulation prices

and results.



Chapter II

An Approach to Fractional Stochastic Calculus

In this chapter, we prepare mathematical tools for defining the stochastic integral

with respect to fractional Brownian motion via integration by parts, since we will use

the approximate approach: L2-convergence of semimartingales to the fractional process.

We recall the definition of a martingale and semimartingale. Let (Ω,F , P) be a prob-

ability space. A filtration or information flow on (Ω,F , P) is a increasing family of

σ-algebras (Ft, t ∈ [0, T ]), that is, ∀t ≥ s ≥ 0, Fs ⊆ Ft ⊆ F .

DEFINITION 2.1. Martingale A stochastic process (X(t), t ≥ 0) is a martin-

gale if it is integrable for any t, E|X(t)| < ∞, for any s > 0:

E(X(t + s)|Ft) = X(t), a.s.,

where Ft is the information about the process up to time t, and the equality holds almost

surely.

Note: if X and Y are two random variables, we write “X = Y a.s.” (almost surely)

if P(ω ∈ Ω, X(ω) = Y (ω)) = 1.

DEFINITION 2.2. Semimartingale A stochastic process (S(t), t ≥ 0) is called

a semimartingale if it can be represented as the following sum:

S(t) = S(0) + M(t) + A(t),

where (A(t), t ≥ 0) is a process of bounded variation and (M(t), t ≥ 0) is a martingale,

both defined on some filtered probability space (Ω,F , (Ft, t ≥ 0), P).
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We consider the stochastic fractional integral

B(t) =

∫ t

0
(t − s)α dZ(s), α = H − 1

2
, 0 < α <

1

2
.

One can prove that B(t) is not a semimartingale (see Shiryaev (1999)) but approximated

by semimartingales as shown in Theorem 2.1.

2.1 An Approximation of Fractional Brownian Motion

The following theorem was proved by Thao (2002). The result of this theorem will be

frequently refered to throughout the text.

For every ε > 0 we define

Bε(t) =

∫ t

0
(t − s + ε)H− 1

2 dZ(s),

0 < H < 1H 6= 1
2 .

THEOREM 2.1. The process (Bε(t), t ≥ 0) is a semimartingale.

PROOF: Consider the stochastic process ϕε(t) defined as

ϕε(t) =

∫ t

0
(t − u + ε)α−1 dZ(u),

where α = H − 1
2 (then − 1

2 < α < 1
2 , since 0 < H < 1).

An application of the stochastic theorem of Fubini (Wade, 1999, p.395) give us:
∫ t

0
ϕε(s) ds =

∫ t

0

∫ u

0
(s − u + ε)α−1 dZ(u)ds

=

∫ t

0

(
∫ t

u

(s − u + ε)α−1 ds

)

dZ(u)

=

∫ t

0

(

(t − u + ε)α

α
− εα

α

)

dZ(u)

=
1

α

[
∫ t

0
(t − u + ε)α dZ(u) −

∫ t

0
εα dZ(u)

]

=
1

α

(

Bε(t) − εαZ(t)

)

.

Hence

Bε(t) = α

∫ t

0
ϕε(s) ds + εαZ(t).

Since α
∫ t

0 ϕε(s)ds is bounded variation and Z(t) is a martingale so Bε(t) is a

semimartingale. �
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THEOREM 2.2. Bε(t) converges to B(t) in L2(Ω) when ε tends to 0. This conver-

gence is uniform with respect to t ∈ [0, T ].

PROOF: Consider the function f(x) = (t − s + εx)α, direct calculation shows that,

f(1) = (t − s + ε)α, f(0) = (t − s)α, and f ′(x) = αε(t − s + εx)α−1

By the Mean Value Theorem,

(t − s + ε)α − (t − s)α = αε(t − s + εθ)α−1

for some 0 ≤ θ ≤ 1. Thus

|(t − s + ε)α − (t − s)α| ≤ |α| ε sup
0≤θ≤1

|(t − s + εθ)α−1|

= |α| ε (t − s)α−1,

(2.1)

where α = H − 1
2 , (0 < s < t). By virtue of Itô integration isometry we see that

E|Bε(t) − B(t)|2 = E

∣
∣
∣
∣
∣

∫ t

0

[
(t − s + ε)α − (t − s)α

]
dZ(s)

∣
∣
∣
∣
∣

2

=

∫ t

0

∣
∣(t − s + ε)α − (t − s)α

∣
∣2 ds. (2.2)

(i) (Thao, 2003) If 1
2 < H < 1, that is, 0 < α < 1

2 we have from (2.1)

∫ t

0
|(t − s + ε)α − (t − s)α|2ds ≤ α2ε2

∫ t

0
|t − s|2α−2 ds

= α2ε2

(
∫ t−ε

0
|t − s|2α−2 ds +

∫ t

t−ε

|t − s|2α−2 ds

)

≤ α2ε2 ε2α−1

1 − 2α
+ α2ε2 ε2α−1

1 − 2α

= C1(α) ε2α+1 → 0 (2.3)

as ε → 0, where C1(α) = 2α2

1−2α
> 0.

(ii) (Thao and Nquyen, 2002) If 0 < H < 1
2 , that is, − 1

2 < α < 0, we put α = −β, so

0 < β < 1
2 and we have

|(t − s + ε)−β − (t − s)−β| ≤ βε sup
0≤θ≤1

|(t − s + θε)−β−1|

= βε(t − s)−β−1, (2.4)
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From (2.2) we have

E|Bε(t) − B(t)|2 = E

∣
∣
∣
∣
∣

∫ t

0

[
(t − s + ε)−β − (t − s)−β

]
dZ(s)

∣
∣
∣
∣
∣

2

=

∫ t

0

∣
∣
∣(t − s + ε)−β − (t − s)−β

∣
∣
∣

2
ds

=

∫ t−ε

0
|(t − s + ε)−β − (t − s)−β|2 ds

+

∫ t

t−ε

|(t − s + ε)−β − (t − s)−β|2 ds, (2.5)

The evaluation of (2.4) applied to the first term of (2.5) gives us

∫ t−ε

0

∣
∣(t − s + ε)−β − (t − s)−β

∣
∣2 ds2 ≤ β2ε2

∫ t−ε

0
(t − s)−2β−2 ds. (2.6)

For the second term of the right hand side of (2.5) we have

∫ t

t−ε

∣
∣(t − s + ε)−β − (t − s)−β

∣
∣2 ds2 ≤

∫ t

t−ε

(t − s)−2β ds. (2.7)

It follows from (2.5), (2.6) and (2.7) that

E|Bε(t) − B(t)|2 ≤ β2ε2

∫ t−ε

0
(t − s)−2β−2 ds +

∫ t

t−ε

(t − s)−2β ds. (2.8)

After some calculations we get:

E|Bε(t) − B(t)|2 ≤ C2(β) ε1−2β → 0, as ε → 0, (2.9)

where C2(β) is a positive constant depending only on β.

From (2.3) and (2.9) we see that in both cases (H > 1
2 and H < 1

2), there is an

estimation for ||Zε(t) − Z(t)||2 = E
[
|Zε(t) − Z(t)|2

]
as follows:

||Bε(t) − B(t)||2 ≤ C3(α) ε1+2α, (2.10)

where 0 < α < 1
2 for 1

2 < H < 1 and − 1
2 < α < 0, for 0 < H < 1

2 , and C3(α) =

max
{
C1(α), C2(β)

}
depending only on α (= −β).

The relation (2.10) is valid for every t ≥ 0, so

sup
0≤t≤T

||Bε(t) − B(t)|| ≤ C(α) ε
1

2
+α → 0, as ε → 0,

where C(α) =
√

C3(α) which proves that Bε(t) → B(t) in L2(Ω) uniformly with

respect to t ∈ [0, T ]. �



12

2.2 An Approach to Fractional Stochastic Calculus

Let us consider a fractional stochastic dynamical system (X(t), 0 ≤ t ≤ T ) expressed

by the following fractional stochastic differential equation:

dX(t) = b(X(t), t) dt + σ(X(t), t) dZH(t),

X(t)|t=0 = X(0), t ∈ [0, T ],

(2.11)

where X(0) is a given random variable, and

ZH(t) =
1

Γ(1 + α)

[

W (t) +

∫ t

0
(t − s)α dZ(s)

]

. (2.12)

In order to give (2.11) meaning, we have to define the fractional stochastic integral

∫ t

0
f(s, ω) dZH(s).

However, in 2000 Alos et al have proposed to use

B(t) =

∫ t

0
(t − s)H− 1

2 dZ(s), (2.13)

instead of ZH(t) in fractional stochastic calculus, since W (t) (in equation(2.12)) has ab-

solutely continuous trajectories and it is the term B(t) that has long memory. Therefore,

instead of (2.11), we consider the fractional stochastic differential equation

dX(t) = b(X(t), t) dt + σ(X(t), t) dB(t),

X(t)|t=0 = X(0), t ∈ [0, T ].

To define the fractional stochastic integral

∫ t

0
f(s, ω) dB(s),

where B(t) is given by (2.13) and H ∈ (0, 1), we follow the work by Thao (2002).

2.3 Fractional Stochastic Integration

Let a filtered probability space (Ω,F , (FZ
t , t ≥ 0), P) be given where FZ

t is a σ-algebra

generated by standard Brownian motion (Z(t), t ≥ 0). Suppose that f(t) is a determin-

istic function of bounded variation on [0, T ] and the fractional process B(t) is given as

in (2.13):
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B(t) =

∫ t

0
(t − s)α dZ(s), α = H − 1

2
, 0 < H < 1.

Then the integral
∫ t

0 B(s) df(s) is well defined in the sense of Riemann-Stieltjes for

almost all ω.

DEFINITION 2.3. The fractional stochastic integral of f(t) is a stochastic process

I(t) defined as

I(t) :=

∫ t

0
f(s) dB(s) = f(t) B(t) −

∫ t

0
B(s) df(s).

Now suppose (f(t, ω), t ≥ 0) is a stochastic process on (Ω,F , P) whose sample paths

are of bounded variation on [0, T ] for almost every ω ∈ Ω.

DEFINITION 2.4. The fractional stochastic integral of f(t, ω) is a stochastic process

I(t) defined as

I(t) =

∫ t

0
f(s, ω) dB(s) = f(t, ω) B(t) −

∫ t

0
B(s) df(s, ω) − [f,B]t, (2.14)

where the notation [., .] stands for the quadratic variation of two processes given by a

limit in probability:

[f,B]t = P − lim
max |tk+1−tk |→0

n−1∑

k=0

[
f(tk+1) − f(tk)

][
B(tk+1) − B(tk)

]
,

for all partitions {0 = t0 < t1 < . . . < tk < tk+1 < . . . < tn = T} of [0, T ].

REMARK 2.5. (i) The pathwise integral in the right hand side of (2.14) exists in the

sense of Riemann-Stieltjes for almost all ω.

(ii) If the function f(t, ω) has absolutely continuous sample paths (for instance, if it

is Lipschitzian with respect to t) then it is of bounded variation and so its integral

I(t) =
∫ t

0 f(s, ω) dB(s) exists.
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THEOREM 2.3.

Suppose that the process f(t, ω) has continuous sample paths and of bounded variation

on [0, T ] such that E
∫ t

0 f2(s, ω) ds < ∞. Then the stochastic integral

Iε(t) =

∫ t

0
f(s, ω) dBε(s),

where Bε(t) =
∫ t

0 (t − s + ε)α dZ(s), α = H − 1
2 , 0 < H < 1, converges in L2(Ω) as

ε → 0 to I(t) =
∫ t

0 f(s, ω) dB(s) defined as in (2.14). This convergence is uniform

with respect to t ∈ [0, T ].

PROOF: see Thao (2002). �

REMARK 2.6. Theorem 2.3 is proved for the L2- convergence of I(t) → Iε(t) in the

case that f is of bounded variation. This motivates us to define the fractional stochastic

integral for any stochastic process f(t, ω) as follows.

DEFINITION 2.7. Let f(t, ω) be a stochastic process with continuous path. Then the

fractional stochastic integral of f(t, ω) is defined by

∫ t

0
f(s, ω) dB(s) := L2 − lim

ε→0

∫ t

0
f(s, ω) dBε(s),

whenever the limit exists in L2(Ω,F , P), where B(t) =
∫ t

0 (t− s)H− 1

2 dZ(s) and Bε(t) =
∫ t

0 (t − s + ε)H− 1

2 dZ(s) for 0 < H < 1.



Chapter III

Diffusion Models with Jumps

In this chapter we begin by recalling basic definitions and results needed for the study

of jump-diffusion models, limiting ourselves to the notions of the Poisson processes,

counting processes, and Poisson random measures. Next, we study a stock-price model

with jumps to understand the stochastic calculus for jump processes, assuming that we

are familiar with the corresponding notions concerning diffusion processes. Moreover,

we discuss the existence and uniqueness of a solution to the stochastic differential equa-

tion with jumps. Finally, in the last section we derive Itô’s formula for jump-diffusion

processes, one of the main tools in this thesis.

3.1 The Poisson Process: Definition and Properties

If the Brownian motion process is a basic model for cumulative small noise present

continuously, the Poisson process is a basic model for the cumulative noise that occurs

as a stock. It models phenomena where changes rarely occur, but when they do occur

are large.

Recall that a random variable X has a Poisson distribution with parameter λ if it

takes on nonnegative integer values k ≥ 0 with probabilities

P(X = k) = e−λ λk

k!
, k = 0, 1, 2, . . .

A Poisson process N(t), t ≥ 0 is a stochastic process defined as follows:

DEFINITION 3.1. Poisson process Let τ1, τ2, . . . be a sequence of independent,

identically distributed exponentially random variables (defined on some probability space

(Ω,F ,P)) with parameter λ, that is, P(τ1 > t) = e−λt.
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Let

Tn =

n∑

i=1

τi,

and

N(t) =
∑

n≥1

1{Tn≤t}

= #{n ≥ 1, Tn ≤ t}

Then the process (N(t), t ≥ 0) is called a Poisson process with intensity λ.

This process serves as a model for occurrence of independent rare events. The rate, the

average number of events per unit of time, is denoted by λ. N(t) counts the number

of events that occurred up to time t, and N(t) − N(s) gives the number of events that

occurred in the time interval (s, t].

DEFINITION 3.2. (i) X(t−, ω) = lims→t X(s, ω), s < t, for each ω ∈ Ω.

(ii) X(t−) = lims→t X(s) P almost surely.

(iii) A stochastic process X(t) is cadlag if it P almost surely has sample paths which

are right continuous, with left limits.

We list the following properties of Poisson process:

PROPOSITION 3.1. Properties of Poisson processes

Let (N(t), t ≥ 0) be a Poisson process.

1. For any t > 0, N(t) is almost surely finite.

2. For any ω, the sample path t → N(t, ω) is piecewise constant and increases by

jumps of size 1.

3. The sample paths t 7→ N(t) are right continuous with left limit (cadlag).

4. For any t > 0, N(t−) = N(t) with probability 1.

5. (N(t), t ≥ 0) is continuous in probability:

N(s)
P−−→

s→t
N(t) ∀t > 0.
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6. For any t > 0, N(t) follows a Poisson distribution with parameter λt :

P
(
N(t) = n

)
= e−λt (λt)n

n!
∀n ∈ N.

7. The characteristic function of N(t) is given by

E
[

eiuN(t)
]

= exp
{
λt(eiu − 1)

}
, ∀u ∈ R.

8. (N(t), t ≥ 0) has independent increments: for any t1 < t2 < . . . < tn, N(tn) −

N(tn−1), . . . , N(t2) − N(t1), N(t1) are independent random variables.

9. The increments of (N(t), t ≥ 0) are homogeneous: for any t > s, N(t)−N(s) has

the same distribution as N(t − s).

10. (N(t), t ≥ 0) has the Markov property:

∀t > s, E
[
f(N(t))|N(u), u ≤ s

]
= E

[
f(N(t))|N(s)

]
.

11. N(t) is a semimartingale.

PROOF: The proof of 1-10 can be found in (Cont and Tankov, 2004, p.48). The

following is a proof of 11.

Let us consider the process M(t) = N(t)− λt, Since N(t + s)−N(t) is independent

of Ft, then

E
[

N(t + s) − N(t)
∣
∣
∣Ft

]

= E
[

N(t + s) − N(t)
]

. (3.1)

Moreover, since σ(N(t)) ⊂ Ft then

E
[

N(t)
∣
∣
∣Ft

]

= N(t). (3.2)

Therefore,

E
[

N(t + s)−λ(t + s)
∣
∣
∣Ft

]

= E
[

N(t + s) − N(t) + N(t) − λ(t + s)
∣
∣
∣Ft

]

= E
[

N(t + s) − N(t)
∣
∣
∣Ft

]

+ E
[

N(t)
∣
∣
∣Ft

]

− λ(t + s)

(since conditional expectation is linear).
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From (3.1) and (3.2),

E
[

N(t + s) − N(t)
∣
∣
∣Ft

]

+ E
[

N(t)
∣
∣
∣Ft

]

− λ(t + s)

= E
[

N(t + s) − N(t)
]

+ N(t) − λ(t + s)

= λ(t + s) − λt + N(t) − λ(t + s)

= N(t) − λt.

Thus M(t) is a martinagale and since λt is of bounded variation so N(t) = M(t)+λt

is a semimartingale by difinition. �

3.2 Counting Processes

The counting process is a generalization of the Poisson process. We first introduce the

idea of the point process.

DEFINITION 3.3. Point processes A point process is a sequence of random

variables (Tn, n ≥ 1) over time [0, t] such that

0 = T0 < T1 < T2 < . . .

with P(Tn → ∞) = 1.

DEFINITION 3.4. Counting process Let (Tn, n ≥ 0) be a point process. The

associated counting process (X(t), t ≥ 0) is given by

X(t) =
∑

n≥1

1{Tn≤t} = #{n ≥ 1, Tn ≤ t}.

X(t) is simply the number of random times (or jumps) (Tn, n ≥ 1) occurring in [0, t].

The condition P(Tn → ∞) = 1 guarantees that, with probability 1, X(t) is finite

for any t ≥ 0. Like the Poisson process, (X(t), t ≥ 0) is a cadlag process with piecewise

constant trajectories: its sample paths move by jumps of size +1.

If the random times (Tn) are constructed as partial sums of a sequence of inde-

pendent identically distributed exponential random variables, then X(t) is a Poisson

process. For a general counting process, the sequence of random times (Tn) can have

any distribution and dependence structure. The following proposition shows that the

only counting processes with independent stationary increments are Poisson process:
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PROPOSITION 3.2.

Let (X(t), t ≥ 0) be a counting process with stationary independent increments. Then

(X(t), t ≥ 0) is a poisson process.

PROOF: see Cont and Tankov (2004). �

3.3 Definition of the Poisson Random Measure

The poisson process (N(t), t ≥ 0) was defined in section (3.1) as a counting process: if

T1, T2, . . . is the sequence of jump times of N , then N(t) is simply the number of jumps

between 0 and t:

N(t) = #{n ≥ 1, Tn ∈ [0, T ]}.

Similarly, if t > s then

N(t) − N(s) = #{n ≥ 1, Tn ∈ [s, t]}.

The jump times T1, T2, . . . form a random configuration of points on [0,∞) and the

Poisson process N(t) counts the number of such points in the interval [0, t]. This

counting procedure defines a measure N on [0,∞): for any Borel measurable set A ⊂

R
+,

N(ω,A) = #{n ≥ 1, Tn(ω) ∈ A}.

N(ω, ·) is a positive, integer valued measure on the Borel subsets of R
+. We note that

N(·, A) is finite with probability 1 for any bounded set A ⊂ R
+. Note that the measure

N(ω, ·) depends on ω: it is thus a random measure. The intensity λ of the Poisson

process determines the average value of the random measure N(·, A), that is,

E[N(·, A)] = λ|A|

where |A| is the Lebesgue measure of A.

N(ω, ·) is called Poisson random measure associated to the Poisson process N(t).

The Poisson process N(t) may be expressed in terms of the random measure N in the

following way:

N(ω, t) = N(ω, [0, t]) =

∫

[0,t]
N(ω,ds).
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Conversely, the Poisson random measure N can also be viewed as the “derivative” of

the Poisson process. Recall that each trajectory t 7→ N(ω, t) of a Poisson process is an

increasing step function. Hence its derivative (in the sense of distributions) is a positive

measure on the Borel set of R
+. In fact, it is simply the superposition of Dirac masses

located at the jump times:

d

dt
N(ω, t) =

∑

n≥1

δTn(ω)(·) =: N(ω, ·).

Hence for any predictable process f(ω, s), the stochastic integral with respect to the

Poisson random measure N admits, for any t ∈ R
+, the form

∫ t

0
f(·, s) N(·,ds) =

∑

n≥1

f(Tn)1{Tn≤t}(·) =

N(·,t)
∑

n=1

f(Tn),

or in compact form as follows:

∫ t

0
f(s) dN(s) =

N(t)
∑

n=1

f(Tn). (3.3)

Note that if a filtration (Ft, t ≥ 0) is given, a process ft is called predictable (with

respect to this filtration) if for each t, ft is Ft−1-measurable, that is, the value of the

process f at time t is determined by the information up to and including time t − 1.

We will assume that the Tn’s correspond to the jump times of a Poisson process

N(t) and that Yn is a sequence of indentically distributed random variables with values

in (−1,∞). Let a process S(t) be a predictable. At time Tn, the jump of the dynamics

of S(t) is given by

S(Tn) − S(Tn−) = S(Tn−)Yn, (3.4)

which, by the assumption Yn > −1, leads always to positive values of the prices.

If F (S, t) is a C2,1-function 1 , then it follows from (3.3) that

∫ t

0
[F (S(s−)(1 + Ys), s) − F (S(s−), s)] dN(s) =

N(t)
∑

n=1

[F (S(Tn), Tn) − F (S(Tn−), Tn)].

(3.5)

where Yt is obtained from Yn by a piecewise constant and left continuous time interpo-

lation. An application of equation (3.5) to the function F (S, t) = S for S ≥ 0 yields

1This means that F is C2 in the variable s, and C1 in the variable t.
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∫ t

0
[S(s−)(1 + Ys) − S(s−)] dN(s) =

N(t)
∑

n=1

[S(Tn) − S(Tn−)],

or
∫ t

0
S(s−)Ys dN(s) =

N(t)
∑

n=1

[S(Tn) − S(Tn−)]. (3.6)

Applying (3.4) to the right side of equation (3.6), we have

∫ t

0
S(s−)Ys dN(s) =

N(t)
∑

n=1

S(Tn−)Yn. (3.7)

3.4 The Stock-Price Model with Jumps

The objective of this section is to model a financial market in which there is one riskless

asset (with price S(t) = ert, at time t) and one risky asset whose price jumps at the pro-

portions Y1, . . . , Yn, . . . , at some times T1, . . . , Tn, . . . and which, between any two jumps,

follows the Black-Scholes model. Moreover, we will assume that the Tn’s correspond to

the jump times of a Poisson process. To be more rigorous, let us consider a probability

space (Ω,F ,P) on which we define a standard Brownian motion (Z(t), t ≥ 0), a Poisson

process (N(t), t ≥ 0) with intensity λ and a sequence (Yn, n ≥ 1) of independent, iden-

tically distributed random variables taking values in (−1,+∞). We will assume that

the σ-algebras generated respectively by (Z(t), t ≥ 0), (N(t), t ≥ 0) and (Yn, n ≥ 1) are

independent.

For all t ≥ 0, let us denote by Ft the σ-algebra generated by the random variables

Z(s), N(s) for s ≤ t and Yn1{n≤N(t)} for n ≥ 1 where 1{n≤N(t)} is the indicator function

defined as: if N(t) ≥ n, then 1{n≤N(t)} = 1 and if N(t) > n, then 1{n>N(t)} = 0. It can

be shown that (Z(t), t ≥ 0) is a standard Brownian motion with respect to the filtration

(Ft, t ≥ 0), that (N(t), t ≥ 0) is a process adapted to this filtration and that, for all

t > s, N(t) − N(s) is independent of the σ-algebra Fs. Because the random variables

Yn1{n≤N(t)} are Ft-measurable, we deduce that, at time t, the relative amplitudes of the

jumps taking place before t are known. Note as well that the Tn’s are stopping times

of (Ft, t ≥ 0), since (Tn ≤ t) = (N(t) ≥ n) ∈ Ft.
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The dynamics of S(t), the price of the risky asset at time t, can now be described.

The process (S(t), t ≥ 0) is an adapted, right-continuous process such that on the time

intervals [Tn, Tn+1),

dS(t) = S(t)
(

µ dt + σ dZ(t)
)

, (3.8)

while at t = Tn the jump of S(t) is given by

∆Sn = S(Tn) − S(Tn−) = S(Tn−)Yn.

Thus

S(Tn) = S(Tn−)(1 + Yn),

which, by the assumption of Yn > −1, leads always to positive values of the prices.

By using the standard Itô formula, the solution of (3.8) on the interval [0, T1) is

S(t) = S(0) exp

(
(

µ − σ2

2

)

t + σZ(t)

)

.

Consequently, the left-hand limit at T1 is given by

S(T1−) := lim
u→T1

S(u) = S(0) exp

(
(

µ − σ2

2

)

T1 + σZ(T1)

)

and

S(T1) = S(0)(1 + Y1) exp

(
(

µ − σ2

2

)

T1 + σZ(T1)

)

.

Then, for t ∈ [T1, T2),

S(t) = S(T1) exp

(
(

µ − σ2

2

)

(t − T1) + σ(Z(t) − Z(T1))

)

= S(0)(1 + Y1) exp

(
(

µ − σ2

2

)

t + σZ(t)

)

.

Repeating this scheme, we obtain

S(t) = S(0)

[
N(t)
∏

n=1

(1 + Yn)

]

exp

(
(

µ − σ2

2

)

t + σZ(t)

)

, (3.9)

with the convention

0∏

n=1

= 1.
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Using the formula (3.7), S(t) can be given in the following equivalent representations

S(t) = S(0) exp

[
(

µ − σ2

2

)

t + σZ(t)

] [
N(t)
∏

n=1

(1 + Yn)

]

= S(0) exp

[
(

µ − 1

2
σ2
)

t + σZ(t) + log

(
N(t)
∏

n=1

(1 + Yn)

)]

= S(0) exp

[
(

µ − 1

2
σ2
)

t + σZ(t) +

N(t)
∑

n=1

log(1 + Yn)

]

= S(0) exp

[
(

µ − 1

2
σ2
)

t + σZ(t) +

∫ t

0
log(1 + Ys) dN(s)

]

,

where Yt is obtained from Yn by a piecewise constant and left continuous time interpo-

lation.

The process (S(t), t ≥ 0) in equation (3.9) is right-continuous, adapted and has only

finitely many discontinuities on each interval [0, t]. We also prove the following.

THEOREM 3.3. For all t ≥ 0, (S(t), t ≥ 0) in equation (3.9) satisfies:

P a.s. S(t) = S(0) +

∫ t

0
S(s)

(

µds + σdZ(s)

)

+

N(t)
∑

n=1

S(Tn−)Yn, (3.10)

or, in differential from

P a.s. dS(t) = S(t)(µdt + σdZ(t)) + S(t−)Yt dN(t). (3.11)

PROOF: Let ∆Sn = S(Tn)−S(Tn−) = S(Tn−)Yn. Then (3.10) can be written in the

following form:

P a.s. S(t) = S(0) +

∫ t

0
S(s)

(

µds + σdZ(s)

)

+

N(t)
∑

n=1

∆Sn, (3.12)

We choose the function f(x, s) = log x. Direct calculation shows that

fx =
1

x
, fxx = − 1

x2
, and fs = 0.

We note that f(x, t) is a C2,1 function if x > 0. Assume that S(t) in (3.10) is nonnega-

tive. Applying the Itô formula for jump-diffusion processes (see Theorem 3.5 in section

3.6) to f(x, t) = log x, we obtain

log S(t) = log S(0)

(

µ − 1

2
σ2

)

t + σZ(t) +

N(t)
∑

n=1

log(1 + Yn).
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Thus,

S(t) = S(0))

[
N(t)
∏

n=1

(1 + Yn)

]

exp

(
(

µ − 1

2
σ2
)

+ σZ(t)

)

.

Hence, (3.9) holds as asserted. �

3.5 Jump-diffusion Stochastic Differential Equations

The model (3.12) discussed in the last section contains the basic features of financial

models including jump effects that have been investigated since the pioneering work of

Merton (1976). It is often more convenient, theoretically at least, to include the jump

mechanism in the differential equation itself. For models like those in the last section,

this idea gives rise to a jump-diffusion stochastic differential equation. In the scalar

case, the general form of a jump-diffusion stochastic differential equation reads

dX(t) = a(X(t), t) dt + b(X(t), t) dZ(t) + c(X(t−), t) dN(t), (3.13)

where a(x, t) is the drift coefficient, b(x, t) the diffusion coefficient, and c(x, t) the jump

magnitude coefficient. As before Z(t) is a Brownian motion and N(t) is a Poisson pro-

cess.

The jump-diffusion stochastic differential equation (3.13) is interpreted as a stochas-

tic integral equation

X(t) = X(t0) +

∫ t

t0

a(X(s), s) ds +

∫ t

t0

b(X(s), s) dZ(s)

+

∫ t

t0

c(X(s−), s) dN(s),

where the first integral is a deterministic Riemann integral, the second is a stochastic Ito

integral and the third is a stochastic integral with respect to a Poisson process or, more

generally, Poisson random measure. The existence and uniqueness of a solution process

X(t) of equation (3.13) follows under the usual growth restriction, uniform Lipschitz,

and smoothness conditions on the coefficient functions a, b and c, leading to the next

theorem.
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Let the filtered probability space (ω,Ft, (FZ
t , t ≥ 0), P) satisfy the usual conditions.

As usual, (Z(t), t ≥ 0) is a standard Brownian motion. To ensure the existence of

the stochastic integrals and the existence and uniqueness of a solution of (3.13), the

following conditions are required refer need to as the standard assumptions in the sequel.

We assume the standard assumptions as follows:

(i)

∫ t

0

∣
∣
∣a(X(s, ω), s)

∣
∣
∣

2
ds < ∞, ω ∈ Ω

(ii)

∫ t

0

∣
∣
∣c(X(s, ω), s)

∣
∣
∣

2
ds < ∞, ω ∈ Ω

(iii) |a(x, s)|2 + |b(x, s)|2 ≤ C
(

1 + |x|2
)

(iv) |a(x1, s) − a(x2, s)| ≤ L|x1 − x2|

(v) |b(x1, s) − b(x2, s)|2 ≤ L2|x1 − x2|2

where C and L are some constant.

THEOREM 3.4. Existence and Uniqueness of a solution to the stochastic

differential equation If the functions a(x, s), b(x, s) and c(x, s) satisfy the standard

assumptions, then the stochastic differential eqatuion (3.13) has a unique solution X(t)

which is a cadlag process and adapted to the filtration (Ft, t ≥ 0).

PROOF: See Gihman and Skorohod (1979), Theorem 3.4 p.138 and p.156. �

We recall the definition of compound Poisson processes to use in next section.

DEFINITION 3.5. Compound Poisson process A compound Poisson process

with intensity λ > 0 and jump size distribution f is a stochastic process X(t) defined as

X(t) =

N(t)
∑

n=1

Yn

where jumps sizes Yn are independent, identically distributed with distribution f and

(N(t)) is a Poisson process with intensity λ, independent from (Yn, n ≥ 1).
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3.6 Itô’s Formula for Diffusions with Jumps

THEOREM 3.5. Itô’s formula for jump-diffusion processes

Let X be a diffusion process with jumps, defined as the sum of drift term, a Brownian

stochastic integral and a compound Poisson process:

X(t) = X(0) +

∫ t

0
b(s) ds +

∫ t

0
σ(s) dZ(s) +

N(t)
∑

n=1

∆Xn.

Here b(t) and σ(t) are continuous nonanticipating processes with

E

[
∫ τ

0
σ2(t) dt

]

< ∞.

∆Xn = X(Tn) − X(Tn−) are the jump sizes and N(t) is the number of jumps that can

be represented as the value at t of a counting process.

Then, for any C2,1 function, f : R × [0, T ] → R, the process Y (t) = f(X(t), t) can be

represented as:

f(X(t), t) − f(X(0), 0)

=

∫ t

0

[

∂f

∂s
(X(s), s) +

∂f

∂x
(X(s), s) b(s)

]

ds

+
1

2

∫ t

0
σ2(s)

∂2f

∂x2
(X(s), s) ds +

∫ t

0

∂f

∂x
(X(s), s) σ(s) dZ(s)

+

N(t)
∑

n=1

[
f
(
X(Tn), Tn) + f(X(Tn−), Tn)

]
.

In differential notation:

dY (t) =
∂f

∂t
(X(t), t) dt + b(t)

∂f

∂x
(X(t), t) dt

+
σ2(t)

2

∂2f

∂x2
(X(t), t) dt +

∂f

∂x
(X(t), t) σ(t) dZ(t)

+
[
f
(
X(Tn), Tn)) + f(X(Tn−), Tn)

]
dN(t).
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PROOF:

Define Y (t) = f(X(t), t) where f ∈ C2,1(R) and denote by Tn, n = 1, 2, . . . , N(T ) the

jump times of X. On (Tn, Tn+1), X evolves according to

dX(t) = b(t) dt + σ(t) dZ(t).

Applying the Itô formula in the Brownian case, we obtain:

Y (Tn+1−) − Y (Tn)

=

∫ Tn+1−

Tn

∂f

∂s
(X(s), s) ds +

∫ Tn+1−

Tn

∂f

∂x
(X(s), s) dX(s)

+
1

2

∫ Tn+1−

Tn

σ2(s)
∂2f

∂x2
(X(s), s) ds

=

∫ Tn+1−

Tn

∂f

∂s
(X(s), s) ds

+

∫ Tn+1−

Tn

∂f

∂x
(X(s), s)

(

b(s) ds + σ(s) dZ(s)
)

+
1

2

∫ Tn+1−

Tn

σ2(s)
∂2f

∂x2
(X(s), s) ds

=

∫ Tn+1−

Tn

[

∂f

∂s
(X(s), s) +

∂f

∂x
(X(s), s) b(s)

]

ds

+

∫ Tn+1−

Tn

∂f

∂x
(X(s), s) σ(s) dZ(s)

+
1

2

∫ Tn+1−

Tn

σ2(s)
∂2f

∂x2
(X(s), s) ds.

If a jump of size ∆X(t) occurs, the resulting change in Y (t) is given by f(X(t−) +

∆X(t), t) − f(X(t−), t). The total change in Y (t) can therefore be written as the sum

of these two contributions:

f(X(t), t) − f(X(0), 0)

=

∫ t

0

[∂f

∂s
(X(s), s) +

∂f

∂x
(X(s), s) b(s)

]

ds

+
1

2

∫ t

0
σ2(s)

∂2f

∂x2
(X(s), s) ds +

∫ t

0

∂f

∂x
(X(s), s) σ(s) dZ(s)

+
∑

0≤s≤t,∆X(s)6=0

[

f(X(s−) + ∆X(s), s) − f(X(s−), s)
]

.
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Since f(X(t−) + ∆X(t)) − f(X(t−), t) = f(X(t), t) − f(X(t−), t) and the number of

jumps is finite in a finite time interval [0, t], one obtain an equivalent expression:

f(X(t), t) − f(X(0), 0)

=

∫ t

0

[∂f

∂s
(X(s), s) +

∂f

∂x
(X(s), s) b(s)

]

ds

+
1

2

∫ t

0
σ2(s)

∂2f

∂x2
(X(s), s) ds +

∫ t

0

∂f

∂x
(X(s), s) σ(s) dZ(s)

+
∑

{n≥1, Tn≤t}

[

f(X(Tn), Tn) − f(X(Tn−), Tn)
]

.

For the last term on the right we have equivalent representations

f(X(t), t) − f(X(0), 0)

=

∫ t

0

[∂f

∂s
(X(s), s) +

∂f

∂x
(X(s), s) b(s)

]

ds

+
1

2

∫ t

0
σ2(s)

∂2f

∂x2
(X(s), s) ds +

∫ t

0

∂f

∂x
(X(s), s) σ(s) dZ(s)

+

N(t)
∑

n=1

[

f(X(Tn), Tn) − f(X(Tn−), Tn)
]

.

This completes the proof. �



Chapter IV

A Fractional Model with Jumps

In this chapter, a fractional Black-Scholes model with jumps and term structure

models with jumps will be studied. First an approximate approach to a fractional Black-

Scholes model with jumps is introduced. Then we will consider the fractional Vasicek

model with jumps and its corresponding approximate model. Finally, the solution to the

approximate model will be found and proved that it converges in L2(Ω) to the solution

of the original model.

4.1 A Fractional Stock-Price Model with Jumps

Let us consider a probability space (Ω,F ,P) on which we define a standard Brownian

motion (Z(t), t ≥ 0), a Poisson process (N(t), t ≥ 0) with intensity λ and a sequence

(Yn, n ≥ 1) of independent, identically distributed random variables taking values in

(−1,+∞). We will assume that the σ-algebras generated respectively by (Z(t), t ≥ 0),

(N(t), t ≥ 0) and (Yn, n ≥ 1) are independent.

The objective of this section is to model a financial market in which there is one

riskless asset (with price S(t) = ert, at time t) and one risky asset whose price jumps

at random time T1, . . . Tn, . . . with the relative/proportional change in its value at a

jump time is given by Y1, . . . , Yn, . . . respectively. We may then assume that, between

two jump times, the price S(t) follows a fractional Black-Scholes model for a fractional

process B(t), that is, Tn are the jump times of a Poisson process N(t) with intensity

λ and that Yn is a sequence of identically distributed random variables with values in

(−1,∞). This description can be formalized on the intervals [Tn, Tn+1) by letting:

dS(t) = S(t)
(
µ dt + σ dB(t)

)
. (4.1)
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At t = Tn the jump of S(t) is given by

∆Sn = S(Tn) − S(Tn−) = S(Tn−)Yn

so that

S(Tn) = S(Tn−)(1 + Yn)

which, by the assumption Yn > −1, leads always to positive values of the prices.

Now, we consider the fractional Black-Scholes model with jumps defined similarly to

(3.11) by the following stochastic differential equation

dS(t) = S(t)
(
µ dt + σ dB(t)

)
+ S(t−)Yt dN(t),

S(t)|t=0 = S(0).

(4.2)

Here B(t) =
∫ t

0 (t − s)H− 1

2 dZ(s) and H is the Hurst index, 0 < H < 1.

The corresponding approximate model of (4.2) is defined for each ε > 0 by

dSε(t) = Sε(t)
(
µ dt + σ dBε(t)

)
+ Sε(t−)Yt dN(t),

Sε(t)|t=0 = S(0) (same initial condition as in (4.2)),

(4.3)

where Bε(t) =
∫ t

0 (t − s + ε)H− 1

2 dZ(s). We can prove that:

(i) Bε(t) is a semimartingale and Bε(t) → B(t), in L2(Ω), t ∈ [0, T ], as ε → 0 (this

assertion is mentioned already in Chapter I)

(ii) The solution Sε(t) of (4.3) converges in L2(Ω) to the exact solution S(t) of (4.2)

as ε → 0.

Furthermore, the convergence mentioned in (i) and (ii) are uniform with respect to t.

That is we have the following theorem.

THEOREM 4.1. The solution of (4.3), for ||S(0)||2 = E|S(0)|2 < ∞, is given by

Sε(t) = S(0) exp

(

− 1

2
σ2ε2αt + σεαZ(t) +

∫ t

0
Hε(s) ds +

∫ t

0
log(1 + Ys) dN(s)

)

,

where σ = H − 1
2 ,

Hε(t) = µ + ασ

∫ t

0
(t − s + ε)α dZ(s).
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Furthermore, for H > 1/2 the stochastic process S∗(t) defined by

S∗(t) = S(0) exp

(

µt + σB(t) +

∫ t

0
log(1 + Ys) dN(s)

)

is the limit in L2(Ω) of Sε(t) as ε → 0. This limit is uniform with respect to t ∈ [0, T ].

PROOF: Replacing dBε(t) = αϕε(t)dt+εαdZ(t), where ϕε(t) =
∫ t

0 (t−s+ε)α−1dZ(s),

in equation (4.3), we obtain

dSε(t) = [µ + ασϕε(t)]Sε(t) dt + σεαSε(t) dZ(t) + Sε(t−)Yt dN(t), (4.4)

or,

dSε(t)

Sε(t)
= [µ + ασϕε(t)] dt + σεα dZ(t) +

(

Sε(t−)

Sε(t)

)

Yt dN(t)

= Hε(t) dt + σεα dZ(t) +

(

Sε(t−)

Sε(t)

)

Yt dN(t) (4.5)

where Hε(t) = µt + ασϕε(t). Moreover, we write equation (4.4) in integral from as

∫ t

0
dSε(t) =

∫ t

0
Hε(s)Sε(s) ds +

∫ t

0
σεαSε(s) dZ(s) +

∫ t

0
Sε(s−)Ys dN(s)

Thus,

Sε(t) = S(0) +

∫ t

0
Hε(s)Sε(s) ds +

∫ t

0
σεαSε(s) dZ(s) +

∫ t

0
Sε(s−)Ys dN(s)

Using the formula (3.7), Sε(t) can be given in the following equivalent representations

Sε(t) = S(0) +

∫ t

0
Hε(s)Sε(s) ds +

∫ t

0
σεαSε(s) dZ(s) +

N(t)
∑

n=1

Sε(Tn−)Yn. (4.6)

Let ∆Sε(Tn) = Sε(Tn) − Sε(Tn−) = Sε(Tn−)Yn. Equation (4.6) can then be written:

Sε(t) = S(0) +

∫ t

0
Hε(s)Sε(s) ds +

∫ t

0
σεαSε(s) dZ(s) +

N(t)
∑

n=1

∆Sε(Tn).

Choosing the function f(x, s) = log x for x = Sε(t) > 0, direct calculation shows that

fx =
1

x
, fxx = − 1

x2
, and fs = 0.
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An application of the Itô formula for jump-diffusion processes ( see Theorem 3.5 in

Chapter II ) gives:

log Sε(t) = log S(0) +

∫ t

0

(

0 +
( 1

Sε(s)

)

·
(

Hε(s)Sε(s)
)
)

ds

+
1

2

∫ t

0
(σεα)2S2

ε (s)

(

− 1

Sε(s)

)2

ds

+

∫ t

0

(

1

Sε(s)

)

(σεα)Sε(s) dZ(s)

+

N(t)
∑

n=1

[

log
(
Sε(Tn−) + ∆Sε(Tn)

)
− log

(
Sε(Tn−)

)]

= log S(0) +

∫ t

0
Hε(s) ds − 1

2

∫ t

0
(σεα)2 ds +

∫ t

0
σεα dZ(s)

+

N(t)
∑

n=1

[

log

(

Sε(Tn−)(1 + Yn)

Sε(Tn−)

)]

= log S(0) +

∫ t

0

(

Hε(s) ds + σεα dZ(s)
)

− 1

2

∫ t

0
(σεα)2 ds

+

N(t)
∑

n=1

log(1 + Yn)

(4.7)

Using formula (3.7), equation (4.7) can be given in the following equivalent representa-

tions

log Sε(t) = log S(0) +

∫ t

0

(

Hε(s) ds + σεα dZ(s)
)

− 1

2

∫ t

0
(σεα)2 ds

+

∫ t

0
log(1 + Ys) dN(s)

by(4.5)
= log S(0) +

(
∫ t

0

dSε(s)

Sε(s)
−
∫ t

0

(

Sε(s−)

Sε(s)

)

Ys dN(s)

)

− 1

2
σ2ε2αt

+

∫ t

0
log(1 + Ys) dN(s)

= log S(0) +

∫ t

0

dSε(s)

Sε(s)
− 1

2
σ2ε2αt +

∫ t

0
log(1 + Ys) dN(s)

−
∫ t

0

(

Sε(s−)

Sε(s)

)

Ys dN(s).

Here Yt is obtained from Yn by a piecewise constant and left continuous time interpo-

lation. Thus

∫ t

0

dSε(s)

Sε(s)
= log

Sε(t)

S(0)
+

1

2
σ2ε2αt −

∫ t

0
log(1+Ys) dN(s) +

∫ t

0

(

Sε(s−)

Sε(s)

)

Ys dN(s).

(4.8)
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Combining (4.8) and (4.5) we get

log
Sε(t)

S(0)
+

1

2
σ2ε2αt −

∫ t

0
log(1 + Ys) dN(s) +

∫ t

0

(

Sε(s−)

Sε(s)

)

Ys dN(s)

=

∫ t

0
Hε(s) ds + σεαZ(t) +

∫ t

0

(

Sε(s−)

Sε(s)

)

Ys dN(s).

Hence, the solution of (4.3) is

Sε(t) = S(0) exp

(

− 1

2
(σεα)2t + σεαZ(t) +

∫ t

0
Hε(s) ds +

∫ t

0
log(1 + Ys) dN(s)

)

.

(4.9)

On the other hand,

∫ t

0
Hε(s) ds = µt + ασ

∫ t

0
ϕε(s) ds,

and it follows from the semimartigale expression of Bε(t) (see the proof of Theorem 2.1)

that
∫ t

0
ϕε(s) ds =

1

α

(

Bε(t) − εαZ(t)
)

.

Therefore
∫ t

0
Hε(s) ds = µt + σBε(t) − σεαZ(t).

Hence, from equation (4.9), we obtain

Sε(t) = S(0) exp

(

µt − 1

2
σ2ε2αt + σBε(t) +

∫ t

0
log(1 + Ys) dN(s)

)

.

One can see that if ε → 0 and α = H − 1
2 > 0 then 1

2(σεα)2t → 0, so we have shown

(Theorem 2.2) that Bε(t) → B(t) in L2(Ω) uniformly with respect to t ∈ [0, T ]. In fact,

let us consider the process S∗(t) defined as

S∗(t) = S(0) exp

(

µt + σB(t) +

∫ t

0
log(1 + Ys) dN(s)

)

.

We are now ready to show that S∗(t) is the limit of Sε(t) in L2(Ω) as ε → 0. We have

Sε(t) − S∗(t)

= S(0) exp

(

µt − 1

2
(σεα)2t + σBε(t) +

∫ t

0
log(1 + Ys) dN(s)

)

− S(0) exp

(

µt + σB(t) +

∫ t

0
log(1 + Ys) dN(s)

)
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Thus

Sε(t) − S∗(t)

= S(0) exp

(

µt + σB(t) +

∫ t

0
log(1 + Ys) dN(s)

)

·
[

exp

(

− 1

2
(σεα)2t + σ(Bε(t) − B(t))

)

− 1

]

= S(0) exp

(

µt + σB(t)

)

·
︸ ︷︷ ︸

(4.10.1)

exp

(
∫ t

0
log(1 + Ys) dN(s)

)

︸ ︷︷ ︸

(4.10.2)

·

[

exp

(

− 1

2
(σεα)2t + σ(Bε(t) − B(t))

)

− 1

︸ ︷︷ ︸

(4.10.3)

]

(4.10)

Denoting the norm in L2(Ω) by || · ||, we see that by a hypothesis of the theorem,

||S(0)||2 = ES(0)2 < ∞.

Moreover, from (4.10.1) we note that

∣
∣
∣
∣ exp

(
µt + σB(t)

)∣
∣
∣
∣ ≤ exp(µt) · exp

(

σ||B(t)||
)

≤ exp(µT ) · exp

(

σ
Tα+ 1

2√
2α + 1

)

(4.11)

since, by virtue of the Itô integration isometry,

||B(t)||2 = E

[
∫ t

0
(t − s)α dZ(s)

]2

= E

∫ t

0
(t − s)2α ds =

t2α+1

2α + 1
.

Secondly, from (4.10.2) we compute

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
exp

(
∫ t

0
log(1 + Ys) dN(s)

)∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
exp

(
N(t)
∑

n=1

log(1 + Yn)

)∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

N(t)
∑

n=1

(1 + Yn)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ K,

(4.12)

K a constant. This is due to the finite number of jumps in the finite interval [0, t].

Finally, we compute term (4.10.3) on the right hand side of (4.10). It follows from the

relation eA − 1 = A + o(A) that we have
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∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
exp

(

− 1

2
(σεα)2t + σ(Bε(t) − B(t))

)

− 1

︸ ︷︷ ︸

(4.10.3)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

≤
∣
∣
∣

∣
∣
∣− 1

2
(σεα)2t + σ(Bε(t) − B(t))

∣
∣
∣

∣
∣
∣+ o

(
∣
∣
∣

∣
∣
∣− 1

2
(σεα)2t + σ(Bε(t) − B(t))

∣
∣
∣

∣
∣
∣

)

≤ 1

2
σ2ε2αt + σ||Bε(t) − B(t)|| + o

(

1

2
(σεα)2t + ||σ(Bε(t) − B(t))||

)

It follows from Theorem 2.2 that ||Bε(t)−B(t)|| ≤ C(α)ε
1

2
+α and α = H − 1

2 > 0 (since

H ≥ 1
2). Hence

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
exp

(

− 1

2
(σε2α)t + σ(Bε(t) − B(t))

)

− 1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

≤ 1

2
σ2ε2αT + σC(α)ε

1

2
+α + o

(

1

2
σ2ε2αT + σC(α)ε

1

2
+α

)

.

(4.13)

The right hand side of (4.13) does not depend on t and approaches zero when ε → 0.

Therefore, one can see from (4.11), (4.12), and, (4.13), that
∣
∣
∣
∣Sε(t) → S∗(t)

∣
∣
∣
∣ in L2(Ω)

as ε → 0 and the convergence is uniform with respect to t. �

COLLORARY 4.2. The process S∗(t) is the unique solution of the fractional stock

pricing model with jump (4.2).

PROOF: The uniqueness of this solution follows from that of the L2-limit. If S∗(t)

and S
′

∗(t) are limits of Sε(t) in the L2(Ω),

||S∗(t) − S
′

∗(t)|| ≤ ||S∗(t) − Sε(t)|| + ||Sε(t) − S
′

∗(t)|| → 0, as ε → 0.

�
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4.2 Introduction to a Fractional Vasicek Model with

Jumps

In continuous time t ≥ 0, the standard definition of the bank interest rate (r(t), t ≥ 0)

is based on the relation

dB(t) = r(t)B(t) dt

where (B(t), t ≥ 0) is a bank account. Clearly,

r(t) =
d

dt

(
lnB(t)

)

and

B(t) = B(0) exp

(
∫ t

0
r(s) ds

)

.

The interest rate (also called short rate of interest, spot rate or instantaneous rate of

interest), in fact, reflects the price of borrowing/investing money from/in the bank. The

concept of interest rate plays an even more important role in the “indirect data” of the

evaluation of share prices. This explains why there are a variety of models with interest

rate (r(t), t ≥ 0) described by diffusion equations

dr(t) = µ(r(t), t) dt + σ(r(t), t) dZ(t), (4.14)

where (µ(x, t), t ≥ 0), (σ(x, t), t ≥ 0) are given stochastic processes and (Z(t), t ≥ 0)

is a standard Brownian motion. It is known that the solution of (4.14) is always a

Markov process that has no memory. So the model (4.14) is not appropriate since, in

the financial markets, each value of r(t) can influence upon its behavior in some time

range. Moreover, we know from above that bond prices may indeed jump. This reason

disqualifies (4.14) as a valid model.

Recall the classical Vasicek model:

dr(t) = (b − ar(t)) dt + σ dZ(t),

a, σ positive constants and b any real number.

Let us consider a probability space (Ω,F ,P) on which we define a standard Brownian

motion (Z(t), t ≥ 0), a Poisson process (N(t), t ≥ 0) with intensity λ and a sequence

(Yn, n ≥ 1) of independent, identically distributed random variables taking values in
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(−1,+∞). We will assume that the σ-algebras generated respectively by (Z(t), t ≥ 0),

(N(t), t ≥ 0) and (Yn, n ≥ 1) are independent.

The objective of this section is to model an interest rate with jumps at random

times T1, . . . Tn, . . . and suppose that the relative/proportional change in its value at a

jump time is given by Y1, . . . , Yn, . . . respectively. We may then assume that, between

two jump times, the bond price r(t) follows a fractional Vasicek model for a fractional

process B(t): Tn are the jump times of a Poisson process N(t) with intensity λ and

that Yn is a sequence of identically distributed random variables with value in (−1,∞).

This description can be formalized by letting, on the intervals [Tn, Tn+1),

dr(t) = (b − ar(t)) dt + σdB(t),

where a, σ are positive constants and b is any real number, while at t = Tn the jump of

S(t) is given by

∆rn = r(Tn) − r(Tn−) = r(Tn−)Yn,

so that

r(Tn) = r(Tn−)(1 + Yn),

which, by the assumption Yn > −1, leads always to positive values of the prices.

Now, we consider the fractional Vasicek model with jumps which is defined by the

following stochastic differential equation

dr(t) = (b − ar(t)) dt + σ dB(t) + Yt dN(t),

r(t)|t=0 = r(0),

(4.15)

where Yt denotes the piecewise constant, left-continuous time interpolation of the sequce

of value at a jump time Yn and B(t) =
∫ t

0 (t − s)α dZ(s), α = H − 1
2 , H ∈ (0, 1) and

r(0) is a given square integrable random variable.

The stochastic differential equation (4.15) is interpreted as a stochastic integral

equation:

r(t) =

∫ t

0
(b − ar(s)) ds + σB(t) +

∫ t

0
Ys dN(s).
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4.3 Approximate Fractional Vasicek Model with Jumps

We have seen that the driving process B(t) of (4.15) is not a semimartingale unless

H = 1
2 (Theorem (2.1)). Hence in order to solve (4.15) we consider the approximate

equation

drε(t) = (b − arε(t)) ds + σ dBε(t) + Yt dN(t), (4.16)

where Bε(t) =
∫ t

0 (t− s− ε)αdZ(s) is a semimartingale (Theorem 2.1). In fact Bε(t) can

be expressed (see the proof of Theorem 2.1) as

Bε(t) = α

∫ t

0
ϕε(s) ds + εαZ(t), (4.17)

where ϕε(t) =
∫ t

0 (t − s − ε)α−1dZ(s). Writing (4.17) in differential form:

dBε(t) = αϕε(t) + εα dZ(t)

and substituting it into (4.16), we obtain

drε(t) = (b − arε(t)) dt + σ
(
αϕε(t) dt + εα dZ(t)

)
+ Yt dN(t),

rε(t)|t=0 = r(0),

(4.18)

where r(0) is given at time t = 0. We rewrite (4.18) as:

drε(t) = [(b − arε(t)) + σϕ(t)]dt + σεα dZ(t) + Yt dN(t)

rε(t)|t=0 = r(0).

(4.19)

where ϕ(t) = αϕε(t). We will solve the approximate model (4.19) (by Theorem 4.5)

and then we prove that its solution converges in L2 to the solution of the original model

(by Theorem 4.7).

The following two lemmas resulted from the Theorem (3.4) in Chapter II, which

show the existence and uniqueness of the solution of stochastic differential equations

(4.15) and (4.16) (Indeed (4.19)).

LEMMA 4.3. All coefficients of the stochastic differential equation (4.15) satisfies the

standard assumptions of the theorem (3.4). Thus there exists a unique solution of the

stochastic differential equation (4.15).
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PROOF: Rewrite equation (4.15) in integral form:

r(t) = r(0) +

∫ t

0
(b − ar(s)) ds + σB(t) +

∫ t

0
Ys dN(s).

Since B(t) =
∫ t

0 (t − s)αdZ(s), where α = H − 1
2 and 1

2 ≤ H < 1 (that is 0 ≤ α < 1
2),

we obtain

r(t) = r(0) +

∫ t

0
(b − ar(s)) ds +

∫ t

0
σ(t − s)α dZ(s) +

∫ t

0
Ys dN(s) (4.20)

According to Theorem (3.4) in Chapter II, comparing the coefficients of (4.20) with

(3.5), we have a(r, s) = b − ar, b(r, s) = σ(t − s)α and c(r, s) = Ys, where a, σ are

positive constants, b is any real number and r = r(s).

We will check standard assumptions one at a time: Firstly, since b and a are constant,

with r integrable on each finite time interval, assumption (i) holds.

Secondly, we know that the process Ys can only jump finitely many times in each

finite time interval. By hypothesis in section 4.2, when Yn is the relative change in its

value at a jump time Tn and Ys is obtained from Yn by a piecewise constant and left

continuous time interpolation, then the trajectory of Ys is piecewise constant. Thus Ys

is finitely integrable on each finite time interval.

Thirdly, we will check that the function a(r, s) and b(r, s) are bounded by the some

constant C. Let us consider, for 0 < s < t ≤ T . Since α = H − 1
2 and 1

2 ≤ H < 1, then

0 ≤ α < 1
2 :

|a(r, s)|2 + |b(r, s)|2 = |b − ar|2 + |σ(t − s)α|2

≤ (|b| + |ar|)2 + |σ|2|(t − s)α|2

≤ b2 + 2a|b||r| + a2r2 + σ2(t − s)2α,
(

since a, r ≥ 0, b ∈ R, (t − s) > 0 and α ∈ [0,
1

2
)
)

= b2 + 2a|b|r + σ2(t − s)2α + a2r2.

(4.21)

In the case α = 0, it easy to see that C := (2b2 +σ2)a2 and in the case 0 < α < 1
2 , since

(t − s)2α = e2α log(t−s) ≤ e2α log(t) ≤ e2α log(T ) =: C1.
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Thus (4.21) become

b2 + 2a|b|r + σ2(t − s)2α + a2r2 ≤ b2 + 2a2b2r2 + C1σ
2 + a2r2

≤ (2b2 + C1σ
2)a2 + (2b2 + C1σ

2)a2r2

=: C[1 + r2],

where C := (2b2 + C1σ
2)a2. Fourthly, to check that fuction a(r, s) satisfy a uniform

Lipschitz-condition with some constant L, direct calculation show us,

|a(r1(s), s) − a(r2(s), s)| = |b − ar1 − b + ar2| = | − ar1 + ar2| = a|r1 − r2|,

that is L = a. Finally, obviously

|b(r1(s), s) − b(r2(s), s)| = |σ(t − s)α − σ(t − s)α| = 0 ≤ L2|r1 − r2|2.

Thus all standard assumptions hold.

Existence and uniqueness of solution of stochastic differential equation (4.15) follows

from above that all coefficients of the stochastic differential equation (4.15) satisfies all

standard assumptions of Theorem 3.4, hence there exists a unique solution r(t) of the

stochastic differential equation (4.15). �

Now, consider the stochastic differential equation (4.16). As in the proof of Lemma

4.3, if we replace r(t) by rε(t) and σ(t− s)α by σ(t− s− ε)α, then the following lemma

holds:

LEMMA 4.4. All coefficients of the stochastic differential equation (4.16) satisfies

standard assumptions of the theorem (3.4). Thus there exists a unique solution of the

stochastic differential equation (4.16).

REMARK 4.1. As above we can represent the stochastic differential equation (4.16)

by (4.19). Hence, it follows from lemma 4.4 that there exists a unique solution of the

stochastic differential equation (4.19).

The following theorem yields the solution rε(t) to the problem (4.19). In fact:
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THEOREM 4.5. The solution of the approximate model (4.19) is given by:

rε(t) =
b

a
+

(

r(0) − b

a

)

e−at + σεα

∫ t

0
e−a(t−s) dZ(s)

+ σ

∫ t

0
ϕ(s)e−a(t−s) ds +

∫ t

0
Yse

−a(t−s) dN(s),

where 0 ≤ α < 1
2 .

PROOF: Let us consider first the stochastic differential equation

dx(t) = (b − ax(t)) dt + σεα dZ(t) + Yt dN(t),

x(t)|t=0 = x(0).

(4.22)

Set u(t) = b − ax(t). Hence u(0) = b − a(0), dx(t) = − du(t)
a

and (4.22) becomes

−du(t)

a
= u(t) dt + σεα dZ(t) + Yt dN(t),

or

du(t) = −au(t) dt − aσεα dZ(t) − a Yt dN(t). (4.23)

The equation (4.23) is in fact the classical stochastic Langevin equation with jumps.

To solve this equation, consider the process v(t) = u(t)eat. Using the differential of the

product rule and the stochastic differential equation (4.23), we have

dv(t) = eat du(t) + aeatu(t) dt

= eat
(
du(t) + au(t) dt

)

= eat
(
− aσεα dZ(t) − aYt dN(t)

)
.

This gives

v(t) − v(0) = −aσεα

∫ t

0
eas dZ(s) − a

∫ t

0
Yse

as dN(s).

Now the solution for x(t) (i.e. the solution of the classical stochastic Langevin equation

with jumps) is:

u(t) = u(0)e−at − aσεα

∫ t

0
e−a(t−s) dZ(s) − a

∫ t

0
Yse

−a(t−s) dN(s). (4.24)

REMARK 4.2. This solution is a strong solution, and the process u(t) in (4.23) is

called Ornstein Uhlenbeck process with jumps.
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Substituting u(t) as a function of x(t), (4.24) becomes

b − ax(t) =
(
b − ax(0)

)
e−at − aσεα

∫ t

0
e−a(t−s) dZ(s) − a

∫ t

0
Yse

−a(t−s) dN(s),

or

x(t) =
b

a
−
(

b

a
−x(0)

)

e−at + σεα

∫ t

0
e−a(t−s) dZ(s) +

∫ t

0
Yse

−a(t−s) dN(s). (4.25)

Let us consider further an ordinary differential equation:

dy(t) = −ay(t) dt + σϕ(t) dt,

y(t)|t=0 = y(0).

(4.26)

Solving (4.26), we get

y(t) = y(0)e−at + σ

∫ t

0
ϕ(s)e−a(t−s) ds.

Now, let z(t) := rε(t) where z(t) = x(t) + y(t) and x(0) = y(0) = r(0)
2 . Then

z(t) = x(t) + y(t)

=
b

a
−
(

b

a
− x(0)

)

e−at + σεα

∫ t

0
e−a(t−s) dZ(s) +

∫ t

0
Yse

−a(t−s) dN(s)

+y(0)e−at + σ

∫ t

0
ϕ(s)e−a(t−s) ds

=
b

a
− b

a
e−at + (x(0) + y(0))e−at + σεα

∫ t

0
e−a(t−s) dZ(s)

+

∫ t

0
Yse

−a(t−s) dN(s) + σ

∫ t

0
ϕ(s)e−a(t−s) ds

=
b

a
+

(

r(0) − b

a

)

e−at + σεα

∫ t

0
e−a(t−s) dZ(s)

+ σ

∫ t

0
ϕ(s)e−a(t−s) ds +

∫ t

0
Yse

−a(t−s) dN(s), (4.27)

the solution of (4.19). To check this, we note that

dz(t) = dx(t) + dy(t)

= (b − ax(t)) dt + σεα dZ(t) + Yt dN(t)

− ay(t) dt + σϕ(t) dt

= (b − az(t) + σϕ(t)) dt + σεα dZ(t) + Yt dN(t),

with z(0) = x(0) + y(0) = r(0), which is indeed the solution of problem (4.19).

Therefore, by uniqueness of the solution of (4.19) (Remark 4.1) we get (4.27) is the

solution to (4.19). �
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A natural question arises as to whether the solution rε(t) of (4.16) would converge to

the solution r(t) of (4.15). The following theorem will be used in the proof of Theorem

4.7.

THEOREM 4.6. Gronwall’s lemma If, for 0 ≤ t ≤ T , f(t) ≥ 0 and g(t) ≥ 0

are continuous functions such that the inequality

f(t) ≤ K + L

∫ t

0
g(s)f(s) ds

holds on 0 ≤ t ≤ T , with K and L positive constants, then

f(t) ≤ K exp

(

L

∫ t

0
g(s) ds

)

on 0 ≤ t ≤ T .

PROOF: see Klebaner (1998) �

4.4 Convergence

Suppose that r(t) and rε(t) are solutions of (4.15) and (4.16), respectively:

dr(t) = (b − ar(t)) dt + σ dB(t) + Yt dN(t), 0 ≤ t ≤ T,

and

drε(t) = (b − arε(t)) dt + σ dBε(t) + Yt dN(t), 0 ≤ t ≤ T.

THEOREM 4.7. rε(t) converges to r(t) uniformly in L2(Ω) as ε → 0.

PROOF: Since

r(t) − rε(t) = −a

∫ t

0
(r(s) − rε(s)) ds + σ(B(t) − Bε(t)),

then

||r(t) − rε(t)|| ≤
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
a

∫ t

0
(r(s) − rε(s)) ds

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

+ σ||B(t) − Bε(t)||, (4.28)

where || · || denotes the norm in L2(Ω). Since Bε(t) converges to B(t) in L2(Ω) where ε

tends to zero and this convergence is uniform with respect to t ∈ [0, T ] (Theorem 2.2).
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We have

sup
0≤t≤T

||B(t) − Bε(t)|| ≤ C(α)εα+ 1

2 ,

where 0 < α < 1
2 and C(α) depends on α (see the proof of Theorem 2.2). Therefore

(4.28) becomes

||r(t) − rε(t)|| ≤ σC(α)εα+ 1

2 + a

∫ t

0
||r(s) − rε(s)|| ds. (4.29)

A standard application of Gronwall’s lemma (Theorem 4.6) to equation (4.29) with

f(t) = ||r(t) − rε(t)||, g(t) = 1, K = (α)εα+ 1

2 , and L = a

gives

||r(t) − rε(t)|| ≤ eatσC(α)εα+ 1

2 .

It follows that

sup
0≤t≤T

||r(t) − rε(t)|| ≤ eaT σC(α)εα+ 1

2 → 0,

as ε → 0. The proof is completed. �

It is known that fractional Brownian motion differs from standard Brownian motion.

One of the differences is that increments of fractional Brownian motion are dependent

and exhibit some long memory and may indeed cause jumps. Thus the process rε(t)

long time ago may have influence upon its behavior today and may indeed cause jumps.

Hence, the fractional Vasicek model with jumps (4.15) reflects the situation in real

market more precisely than the classical one.

4.5 Conclusion

We began with a fractional Black-Scholes model with jumps, and have completely solved

this model with our approximation approach by Itô formula for jump-diffusion processes

by showing that its solution converges to the exact solution.

Finally, we have seen that after introducing a fractional Vasicek model with jumps,

we have completely solved this model with our approximate approach by establishing

and solving the approximately fractional model with jumps and by showing that its

solution converges to the exact solution. These results respond to increasing demands

in practice from considering the long range consequences of interest values with jumps.



Chapter V

Applications and Conclustions

In this chapter, the empirical historical data of the Thai Petrochemical Industry

(TPI) are simulated by classical Black-Scholes model, Black-Scholes model with jumps

and by the approximate fractional Balck-Scholes model with jumps. These paths are

illustrated against the empirical data. As expected, the result of simulation indicats that

the our pricing model give a better fit with the empirical data.

5.1 Introduction

This chapter will show an application of the approximate fractional Black-Scholes model

with jumps. We note that TPI stock prices are a suitable data since the TPI open-prices

(Figure 5.1) exhibit many instances of jump-up and jump-down. We estimate param-

eters from experiment of experience with many samples, so we do not show numerical

schemes. We wish not to compare our model to the classical Black-Scholes model or

Black-Scholes model with jumps, but rather to illustrate the power of our method. Al-

though in our case of TPI, the results seem to show that the approximate fractional

Black-Scholes model with jumps display a better fit than the classical model, neverthe-

less, it is too premature to declare the results true for other cases.

5.2 Stock-Price Simulation

In this section we give the formula simulation of stock prices. Firstly, we show an

approximate solution of the fractional Black-Scholes pricing model:

S(t) = S(0) exp

(
(

µ − σ2

2

)

t + σZ(t)

)

, ∀t ∈ [0.T ]. (5.1)

where the random source is an approximate fractional Brownian process Bε(t). Sec-

ondly, the prices simulated by the classical Black-Scholes pricing model with jumps:
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S(t) = S(0) exp

(
(

µ − σ2

2

)

t + σZ(t) +

N(t)
∑

n=1

(1 + Yn)

)

, (5.2)

Finally, the prices simulated by our approximate solution to the fractional Black-Scholes

pricing model with jumps:

Sε(t) = S(0) exp

(
(

µ − 1

2
(σεα)2

)

t + σBε(t) +

N(t)
∑

n=1

(1 + Yn)

)

, (5.3)

For comparative purposed, we compute the average relative percentage error (ARPE):

ARPE =
1

N

N∑

k=1

|Xk − Yk|
Xk

· 100

where N is the number of prices, X = (Xk, k ≥ 1) is the market prices and Y =

(Yk, k ≥ 1) is the model prices.

REMARK 5.1.

(i) For a sample path of fractional process, let us recall that an approximate fractional

Brownian motion used in this thesis is

Bε(t) =

∫ t

0
(t − s + ε)α dZ(s), (5.4)

where α = H − 1
2 , and the Hurst parameter H ∈ (0, 1). Using the same idea of

simulation of standard Brownian motion, a sample path of the fractional process

(5.4) can be simulated, for fixed t ≥ 0, as

Bε(t) '
N∑

k=1

(t − k

N
t + ε)α

[

Z((k + 1)
t

N
) − Z(k

t

N
)

]

=
N∑

k=1

(t − k

N
t + ε)α

√

t

N

[

Z((k + 1)) − Z(k)

]

=

√

t

N

N∑

k=1

(t − k

N
t + ε)αgk

where gk ∼ N (0, 1).

(ii) The explicit solution (5.1) - (5.3) contains three stochastic processes as inputs.

i) Brownian motion process Z(t), ≥ 0.

ii) The Poisson process N(t) and random sequence (Tn, Yn)n≥1, of points in

[0, T ] × [−1,∞).
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5.3 Thai Petrochemical Industry (TPI)-Price Simulation

The paper of Cyganowski, Grünce and Kloeden (2002) describes the use of MAPLE

for jump-diffusion stochastic differential equations, in particular for the derivation of

numerical schemes and contains an implementation of schemes in MAPLE. We used

and developed a scheme that was appropriate for our research.

6

6.5

7

7.5

8

8.5

9

9.5

Jun,04 Jan,05
time

Figure 5.1: TPI open-prices.

An Figure 5.1 shows the daily prices of data set consists of 150 open-prices of TPI

starting from June 9, 2004 to January 7, 2005. The historical stock prices was obtained

from http://finance.yahoo.com.
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Let the ARPE by the model (5.1), (5.2) and (5.3) be denoted by ARPE(B),

ARPE(BJ) and ARPE(FBJ), respectively. With µ = −0.0000725, σ = 0.3025, H =

0.50001 ε = 0.000001 and parameter for jumps as µj = 0.00007624, σj = 0.0003679,

λ = 55.46 and γ = 1 are fixed. We worked out 500 trails and stored the ARPE(B),

ARPE(BJ) and ARPE(FBJ), for each sampling. The results show the following:

6

7

8

9

10

Jun,04 Jan,05
time

Figure 5.2: TPI open-prices as simulated by classical Black-Scholes pricing model

(solid = Empirical data, gray dashed = Simulated by S(t) =

S(0) exp((µ − σ2

2
)t + σZ(t)), ARPE(B) = 23.69%, and variance =

0.02656)
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Figure 5.3: TPI open-prices as simulated by Black-Scholes pricing model with

jumps (solid = Empirical data, gray dashed = Simulated by S(t) =

S(0) exp((µ − σ2

2
)t + σZ(t) +

∑N(t)
n=1 (1 + Yn)), ARPE(BJ) = 19.64%,

and variance = 0.01546)
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Jun,04 Jan,05
time

Figure 5.4: TPI open-prices as simulated by fractional Black-Scholes pricing

model with jumps (solid = Empirical data, gray dashed = Simu-

lated by Sε(t) = S(0) exp((µ − 1
2
(σεα)2)t + σBε(t) +

∑N(t)
n=1 (1 + Yn)),

ARPE(BJ) = 13.54%, and variance = 0.00033)

One can see in case of TPI open-prices (Figures 5.2, 5.3, and 5.4) that the fractional

Black-Scholes pricing model with jumps gives better fit with data than classical Black-

Scholes pricing model and Black-Scholes pricing model with jumps.
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5.4 Suggestions for Further Research

We should observe that further problems can be considered. For instance, one can

discuss the arbitrage opportunities in fractional Black-Scholes model with jumps, for-

mulate European or American options pricing formulae, study portfolio optimization

for the fractional Black-Scholes model with jumps, and model calibration. More details

follow.

An arbitrage opportunity exists if there is a feasible transaction requiring no in-

vestment that produces a positive payoff with certainty. To rule out the possibility

of arbitrage, zero wealth must be an absorbing state. That is, if an investor’s total

wealth (including capitalized future wage income, gifts, bequests, and welfare payments)

reaches zero, then it remains there. Rogers (1997) show that there exist arbitrage op-

portunities with fractional Brownian motion although he did not consider the geometric

fractional Brownian motion. So, if we add a jump term in fractional Black-Sholes model,

it is not enough to exclude arbitrage opportunities in the fractional pricing model with

jumps.

Options are generally defined as a “contract between two parties in which one party

has the right but not the obligation to do someting, usually to buy or sell some under-

lying asset”. So options are a type of derivative assets since an asset derives its value

from some other asset. Call options are contracts giving the option holder the right to

buy something, while put options, conversely, entitle the holder to sell something. The

European option is such that the option can only be exercised on the expiration date

while The American option allows the option to be exercised at any time during the life

of the option.

Several articles have already focused on the valuation of European options when the

underlying value follows a jump diffusion process. Merton (1976) was the first obtain

a closed form solution. However work on the analytical valuation formulas for Euro-

pean or American options when the price of the underlying asset evolves as fractional

Black-Scholes model with jumps is conspicuous by its absence. In fact the problem of

the American option valuation, especially useful for real options, is more complex.
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Finally, indeed, the option pricing formula comes from the absence of arbitrage,

together with the fact that the option payoff f(S(T )) can be replicated by a hedge

portfolio consisting of stocks and bonds in suitable weights. The option value is the

value of the hedge portfolio at time zero, that is, the initial capital needed to establish

this replicating portfolio. What does this impact portfolio optimization if the asset price

is evaluated by the fractional Black-Scholes model with jumps ? Much more work in

this direction needs to be done.
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Option Pricing Model Driven by 


a fractional Levy Process


Simulation Part

A MAPLE worksheet by Arthit Intarasit,  October 2004


This program is run on Maple V Release 5.1 Version 5.1. We used and developed a schemes of 
Cyganoski, Grune and Kloedn (2002).


> restart:

with(stats): with(plots): with(plottools):

### plotsetup(inline,plotoptions="width=200in,height=300in");

### WARNING: persistent store makes one-argument readlib 
obsolete

readlib(randomize)(): 

# ---- Loading data

       # ---- Read data for X-Sever

emp_data  := 
readdata("/home/arthit/simulation/tpi01.txt",[float]):

       # ---- Read data for work station

buffer    := emp_data:



# ----- Setting amount of data and value of first data

emp_amount := nops(emp_data):

emp_data   := array(1..emp_amount):

for k from 1 to emp_amount do

    emp_data[emp_amount - k + 1] := buffer[k]:

od:



# ----- Setting about structure of approximation

T      := floor(emp_amount/100): 

steps  := emp_amount:
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# ----- Plotting data of TPI  

X0  := emp_data[1]:

X   := [0,X0]:



for n from 1 to (steps-1) do

    t := n*T/steps:

    X := X, [t,emp_data[n]]:

od:



[X]:

a := plot([X],color=black,linestyle=1):



# ----- Evaluates jump times 

jumps := proc(lambda::algebraic, T::algebraic, mu::algebraic, 
sigma::algebraic) 

  local i, j, tau, t, again, U, Ulist;

  again := true;

  t[0]  := 0;

  for i from 0 while again=true do  

    tau := stats[random, exponential[lambda]](1):

      if (t[i]+tau <= T) then

      t[i+1] := t[i]+tau:

    else

      again := false:

    fi:

  od:  



  for j from 1 to i-1 do

    if sigma = 0 then U:=1: 

    else U:=exp(stats[random, normald[mu,sigma]](1))-1: fi:    

    if (j = 1) then Ulist := [t[j],U]:    

    else Ulist := Ulist, [t[j],U]:   fi:  

  od;



  if (i = 1) then []:

  else [Ulist]: fi:

end:



# ----- Evaluates jump sum

jumpsum := proc(t::algebraic, U::list, gamm::algebraic)

    local i, j, nj, sum, again;

    sum :=0: j := 0:

    nj  :=nops(U):
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  if (nj>0) then  

    again := true:

    for i from 1 while (again) do

      if (t>=U[i,1]) then j := i:

      else again := false: fi:

      if (i=nj) then again := false: fi:

    od:

  fi:



  for i from 1 to j do

    sum := sum + ln(1 + gamm * U[i,2]):

  od:

  sum:  

end:



# ----- Evaluates a path Brownian motion

W_path := proc(T,n)

  local w, h, t, alist:

  w     := 0:

  t     := 0:

  h     := T/n:

  alist := [0,w]:

  from 1 to n do

    t := t + h:

    w := w + random[normald[0,sqrt(h)]](1):

    alist := alist,[t,w]:

  od:

  [alist]:

end:



# ----- Evaluates a path Brownian motion

Wt := proc(W,t,T,n)

  local i, dt:

  i  := floor(n*t/T):

  if (i=n) then W[n+1,2]

  else

    dt := t*n/T -i:

    dt*W[i+2,2] + (1-dt)*W[i+1,2]:

  fi:

end:  
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# ----- Evaluates a path fractional Brownian motion

fWt := proc(W,t,T,n,steps,e)

  local h, k, fWt, wiener:

  k   := 0:

  fWt := 0:

  h   := T:

  wiener  :=  Wt(W,t,T,W_steps)-Wt(W,t-h,T,W_steps):    

  from 1 to steps do

    k   :=  k + 1:

    fWt :=  fWt + 
(((t-t/steps+e)^alpha)*sqrt(t/steps*1.0)*wiener):

  od:

fWt:

end:  

 

# ------ Gernerate a discrete path of a Wiener process on [0,T] 
with n = 1000 steps

randomize():



W_steps := 1000 :

W       := W_path(T,W_steps):

mu      := -0.0000725  : sigma  := 0.3075:



gamm := 1000           : lambda := 15.25: 

muG  := -0.00001       : sigmaG := 0.00001:



randomize():

U     := jumps(lambda,T,muG,sigmaG):

lines := [seq(line([U[i,1],0], [U[i,1],gamm*U[i,2]], 
color=black, linestyle=1), i=1..nops(U))]:



St  :=  [0,X0]:

Se  :=  [0,X0]:

Xj  :=  [0,X0]:



e                :=  0.000001:

Hurst_parameter  :=  0.50001:   

alpha            := Hurst_parameter-(1/2):



for n from 1 to (steps-1) do  

    t  :=  n*T/steps;



    St :=  St,[t,

    X0*exp((mu-sigma^2/2)*t+sigma*Wt(W,t,T,W_steps))]:
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    Xj :=  Xj,[t,

    
X0*exp((mu-sigma^2/2)*t+sigma*Wt(W,t,T,W_steps)+jumpsum(t,U,gamm
))]:



    Se :=  Se,[t,

    
X0*exp((mu-((sigma*(e^Hurst_parameter))^2)*(1/2))*t+sigma*fWt(W,
t,T,W_steps,steps,e)

   +jumpsum(t,U,gamm))]:

od:



[Xj]:

[St]:

[Se]:



b := plot([St],color=black,linestyle=2): 

c := plot([Xj],color=black,linestyle=2):

d := plot([Se],color=black,linestyle=2):



plotsetup(ps,plotoutput=‘/home/arthit/simulation/tpi1801_0.ps‘, 
plotoptions="height=380,width=380,noborder,portrait");

plots[display]({a},titlefont=[HELVETICA,14],numpoints=1000,

labels=["time",""],font=[COURIER,10],axes=boxed,xtickmarks=[0="J
un,04",T="Jan,05"]);



plotsetup(ps,plotoutput=‘/home/arthit/simulation/tpi1801_1.ps‘, 
plotoptions="height=380,width=380,noborder,portrait");

plots[display]({a,b},titlefont=[HELVETICA,14],numpoints=1000,

labels=["time",""],font=[COURIER,10],axes=boxed,xtickmarks=[0="J
un,04",T="Jan,05"]);



plotsetup(ps,plotoutput=‘/home/arthit/simulation/tpi1801_2.ps‘,

plotoptions="height=380,width=380,noborder,portrait");

plots[display]({a,c},titlefont=[HELVETICA,14],numpoints=1000,

labels=["time",""],font=[COURIER,10],axes=boxed,xtickmarks=[0="J
un,04",T="Jan,05"]);



plotsetup(ps,plotoutput=‘/home/arthit/simulation/tpi1801_3.ps‘,

plotoptions="height=380,width=380,noborder,portrait");

plots[display]({a,d},titlefont=[HELVETICA,14],numpoints=1000,

labels=["time",""],font=[COURIER,10],axes=boxed,xtickmarks=[0="J
un,04",T="Jan,05"]);


Warning, new definition for transform
Warning, computation interrupted
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> 





mu   := -0.0000725   : sigma  := 0.3075:

e    :=  0.000001:



Hurst_parameter  :=  0.50001:  

alpha            := Hurst_parameter-(1/2):


> loop_num := 500:

for k from 1 to loop_num do 



    randomize():

    W_steps := 1000 :

    W       := W_path(T,W_steps):



    randomize():

    U      :=  jumps(lambda,T,muG,sigmaG):

    lines  :=  [seq(line([U[i,1],0], [U[i,1],gamm*U[i,2]], 
color=black, linestyle=1), i=1..nops(U))]:

    

 

################### Black & Scholes pricing models 

    St  :=  [0,X0]:

    for n from 1 to (steps-1) do  

        t  :=  n*T/steps;

        St :=  St,[t,

        X0*exp((mu-sigma^2/2)*t+sigma*Wt(W,t,T,W_steps))]:

    od:

    [St]:



    if k = 1 then

        Y  :=  [St]:

     else

        Y  :=  Y,[St]:

    fi:



#################### Black & Scholes pricing models with jumps 

    Xj  :=  [0,X0]:

    for n from 1 to (steps-1) do  

        t  :=  n*T/steps;

        Xj :=  Xj,[t,

        
X0*exp((mu-sigma^2/2)*t+sigma*Wt(W,t,T,W_steps)+jumpsum(t,U,gamm
))]:

    od:

    [Xj]:
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    if k = 1 then

        Yj  :=  [Xj]:

     else

        Yj  :=  Yj,[Xj]:

    fi:



#################### fractional Black & Scholes pricing models 
with jumps 



    Se  :=  [0,X0]:

    for n from 1 to (steps-1) do  

        t  :=  n*T/steps;

        Se :=  Se,[t,

        
X0*exp((mu-((sigma*(e^Hurst_parameter))^2)*(1/2))*t+(sigma*fWt(W
,t,T,W_steps,steps,e))

       +jumpsum(t,U,gamm))]:

    od:

    [Se]:



    if k = 1 then

        Ye  :=  [Se]:

     else

        Ye  :=  Ye,[Se]:

    fi:



od:



# ------ Compute the root mean-square error (RMSE):

RMSE         := array(1..loop_num):

RMSE_final   := 0.0:



RMSE_j       := array(1..loop_num):

RMSE_final_j := 0.0:



RMSE_e       := array(1..loop_num):

RMSE_final_e := 0.0:



for k from 1 to loop_num do    

    num   := 0.0:

    num_j := 0.0:

    num_e := 0.0:



    byff  :=  0.0:
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    RMSE_buff   := 0.0:

    RMSE_buff_j := 0.0:

    RMSE_buff_e := 0.0:



    for l from 2 to steps do 

        Z     :=  Y[k,l]:

        buff  :=  abs(X[l,2]-Z[2])/X[l,2]:

        num   :=  num + buff:

    od:

   

    for l from 2 to steps do 

        Zj      :=  Yj[k,l]:

        buff    :=  abs(X[l,2]-Zj[2])/X[l,2]:

        num_j   :=  num_j + buff:

    od:

   

    for l from 2 to steps do 

        Ze      :=  Ye[k,l]:

        buff    :=  abs(X[l,2]-Ze[2])/X[l,2]:

        num_e   :=  num_e + buff:

    od:

  

    RMSE_buff   :=  num/(steps-1): 

    RMSE_buff_j :=  num_j/(steps-1):

    RMSE_buff_e :=  num_e/(steps-1):

    RMSE[k]    := RMSE_buff:  

    RMSE_final := RMSE_final + RMSE_buff:      

    

    RMSE_j[k]    := RMSE_buff_j:  

    RMSE_final_j := RMSE_final_j + RMSE_buff_j:      



    RMSE_e[k]    := RMSE_buff_e:  

    RMSE_final_e := RMSE_final_e + RMSE_buff_e:      

od:



RMSE_final    :=  RMSE_final/loop_num;

RMSE_final_j  :=  RMSE_final_j/loop_num;

RMSE_final_e  :=  RMSE_final_e/loop_num;



for i from 1 to loop_num do

    if i = 1 then

        RMSE_List :=  RMSE[i]:

    else

        RMSE_List := RMSE_List, RMSE[i]:

    fi:

od:
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od:







for i from 1 to loop_num do

    if i = 1 then

        RMSE_List_j :=  RMSE_j[i]:

    else

        RMSE_List_j := RMSE_List_j, RMSE_j[i]:

    fi:

od:



for i from 1 to loop_num do

    if i = 1 then

        RMSE_List_e :=  RMSE_e[i]:

    else

        RMSE_List_e := RMSE_List_e, RMSE_e[i]:

    fi:

od:



[RMSE_List];

[RMSE_List_j];

[RMSE_List_e];




 := RMSE_final .2367878178

 := RMSE_final_j .1964470666

 := RMSE_final_e .1354346378

.2252173508 .1263048667 .2655967908 .4204707983 .2105979425 .1074264853, , , , , ,[

.3006308016 .1300737205 .3353667258 .1411645946 .1346558534 .07773869524, , , , , ,

.08415775765 .1795554849 .2778034051 .3970532692 .1981517859 .09158925027, , , , , ,

.1871046994 .1143519936 .4575195540 .2802777688 .1760534988 .1032936996, , , , , ,

.2881752706 .1798275903 .1291688916 .09642072289 .7613305852 .1466400475, , , , , ,

.4288365310 .1031187360 .6349987982 .07551653517 .6799354913 .1737690746, , , , , ,

.2589827660 .2630028532 .5985608444 .3031470833 .07305149248 .1462320277, , , , , ,

.4214391254 .3310214072 .1431753729 .2183441407 .09613609490 .3713061594, , , , , ,

.2539456555 .1706559038 .1219169148 .1105473615 .6114441446 .1978999717, , , , , ,

.1225191651 .2246546009 .1764684995 .1031086831 .2324115993 .1313628734, , , , , ,

.08596827282 .2442347377 .9667684336 .4220223991 .1848138459 .1069701736, , , , , ,

.06682334846 1.308936195 .1468324303 .1850365966 .3682274644 .8138785423, , , , , ,

.2204286888 .3557869217 .4855124852 .2859966691 .2962962535 .2616220199, , , , , ,

.1258313709 .1866077195 .1324480607 .1278304327 .6948721812 .1831632992, , , , , ,

.4477361450 .2369231132 .2237964417 .09808008295 .2148821290 .8062683745, , , , , ,

.07997013839 .1135199288 .1015726579 .06232273481 .1229015388 .2388146952, , , , , ,
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.2999715164 .3245062944 .1734699922 .2645758410 .2274461053 .1629597895, , , , , ,

.1829127726 .2723428286 .4640859876 .1173302504 .2887425202 .3437079924, , , , , ,

.1293785432 .1662752872 .1429513582 .9262358450 .1711949838 .09506694953, , , , , ,

.1152835466 .1591614231 .1470131499 .2104927178 .1221439150 .1611540938, , , , , ,

.1092135444 .2268301398 .2665644508 .1614792958 .1409090195 .2373797038, , , , , ,

.1144042372 .3633686252 .3746698130 .3339894800 .3605644289 .2577693317, , , , , ,

.4762581213 .8135253081 .08872855436 .08516828658 .4462285562 .1424751895, , , , , ,

.1844527785 .2136751168 .1013941418 .08384130013 .2562780385 .5137208144, , , , , ,

.1601661550 .1735138634 .1729332024 .2002357897 .1977697111 .2069733948, , , , , ,

.09094137443 .2795160740 .3099784475 .08753536832 .5942501895 .09099877987, , , , , ,

.1458479034 .3271638811 .1358214498 .2747592771 .1513215831 .5737292062, , , , , ,

.4229715962 .08636576409 .3595715268 .5512453684 .1215352166 .2182392213, , , , , ,

.09533555913 .1098196471 .1023020705 .3407895950 .3930297338 .4577221338, , , , , ,

.2332365793 .3317199742 .1764544416 .08983403255 .1279911571 .1757253834, , , , , ,

.1870763934 .1373617404 .2381340761 .5463052418 .07803917255 .3870067152, , , , , ,

.1553460216 .2145007039 .5744216675 .1178331933 .09366418678 .2345779199, , , , , ,

.2010037117 .2556691316 .2830701795 .3548905453 .1908538819 .3338377851, , , , , ,

.1909060321 .4955580432 .1493050462 .3671369127 .3985135152 .1095860313, , , , , ,

.4568401142 .1080287952 .07955957107 .3421941909 .08869062443 .2039008410, , , , , ,

.2996980154 .09780975282 .1773016000 .1639503156 .1320711628 .2569913577, , , , , ,

.1138189923 .1660672635 .4041427009 .1368848289 .5855798550 .2092721248, , , , , ,

.1189289695 .5407303052 .1293063415 .1655505985 .1085120123 .1184394683, , , , , ,

.3352320481 .1312800111 .1655631757 .1555816609 .07559385564 .1861833793, , , , , ,

.1248748758 .1214530092 .1398710530 .3190044590 .4408082504 .09864038349, , , , , ,

.1300952499 .3415735424 .2288982030 .1762123048 .4522989249 .6448880438, , , , , ,

.07825190524 .1237473062 .08578172738 .1493069461 .2388653403 .2744566399, , , , , ,

.5748871796 .3222360228 .09140052805 .09765111329 .1026641145 .1916785417, , , , , ,

.2835363089 .1354921538 .1321128691 .2675740183 .06794318148 .3120872495, , , , , ,

.2243151480 .1185408140 .1288127610 .2133179704 .2591565340 .1327720430, , , , , ,

.5099133489 .1748847517 .1478824576 .2361190359 .1523809433 .3139925328, , , , , ,

.1645239409 .06872599450 .2169801569 .2115427732 .3173503040 .1243118364, , , , , ,

.08735852510 .2110450732 .09214490658 .1653959844 .1968219044 .09701977517, , , , , ,

.08814365557 .1398324880 .2000146503 .1525342607 .2006180536 .2409512587, , , , , ,

.1994954977 .1345792156 .1467488209 .06669830262 .1613599861 .2474070258, , , , , ,

.2664818256 .1759655815 .08320869215 .2678971534 .5387036503 .8580110503, , , , , ,

.2005365847 .09020123255 .09632233792 .2523404130 .1672176552 .1773923174, , , , , ,

.3610649862 .1289589601 .1778279796 .09415853705 .1421195987 .6692355285, , , , , ,
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.1214271230 .1870062015 .1322601834 .09040297208 .09745107114 .1263307349, , , , , ,

.3691516271 .4448404537 .5126424977 .1594775080 .09721303215 .2235422961, , , , , ,

.1873346360 .1204014926 .2125107182 .2072842153 .2668478352 .1721147706, , , , , ,

.1540950776 .3055605983 .1452309007 .2064286997 .1866246693 .09328973497, , , , , ,

.1130776499 .1899313067 .07496218987 .1612910747 .1236188770 .2632227780, , , , , ,

.1032784191 .2735519427 .1342684771 .1261459609 .4326606785 .7315604416, , , , , ,

.1527342197 .1254406964 .1705865631 .1508602373 .07987456201 .1689055294, , , , , ,

.08729662638 .4524700044 .2434806860 .1274955350 .6424827017 .2522585077, , , , , ,

.5052670030 .2943207334 .1218031193 .1012221701 .2323720792 .6569229629, , , , , ,

.2313744862 .09881215946 .6593775080 .08515245034 .2373221638 .1352080057, , , , , ,

.07368072705 .2239336138 .1260075926 .1735637064 .1306975777 .1468681934, , , , , ,

.2294170676 .3843420105 .2256717215 .4391647817 .3063057295 .1023536558, , , , , ,

.07485791369 .1197866105 .3600734105 .2641052730 .08362885913 .2357903860, , , , , ,

.2624867457 .4265018789 .3265535616 .2560387708 .3566316953 .1774371673, , , , , ,

.1467140632 .1533446664 .1012589179 .1477203062 .3722918879 .1579162926, , , , , ,

.2669053061 .1153341228 .1497492543 .2230426954 .2721125130 .1685130651, , , , , ,

.1006159633 .1414806191 .6072605958 .3994799503 .2779971069 .1773755091, , , , , ,

.4213071218 .3255507442 .1176682313 .2689924670 .1314906852 .1648944123, , , , , ,

.1149527838 .1869906211 .2727259277 .1260748897 .08380081040 .1231871334, , , , , ,

.1352325162 .1747796573 .3180307713 .2526852883 .2826079430 .3789424293, , , , , ,

.2086331317 .2750941910 .3961477619 .5570464129 .1836280846 .1266461928, , , , , ,

.2927018501 .1684227954 .1566594894 .1145410003 .3088634501 .1652140238, , , , , ,

.1304301935 .1401480310 .2454920880 .2624144070 .1651606821 .08304824222, , , , , ,

.1017182244 .1018103975 .1463215847 .1799377251 .1704403984 .2547567168, , , , , ,

.2615524570 .1427497361 .4985690817 .1772442354 .1473240593 .1767008159, , , , , ,

.4382108661 .4410441313 .1495927648 .2256312894 .08475186362 .1201267026, , , , , ,

.1062438793 .1705102264 .09263640503 .1546965523 .2109304491 .8179031664, , , , , ,

.3872544999 .1222603640 .2019703166 .2599654132 .1343474242 .2848727727, , , , , ,

.3220869485 .3538349771 .7630020960 .2268468177 .1407667142 .1428998341, , , , , ,

.3527970608 .1121983260 .3292806586 .6330271674 .1036828696 .3004405075, , , , , ,

.2437614953 .1204183419, ]

.1872526955 .1008967699 .2230207176 .3376006964 .2644009894 .06230716034, , , , , ,[

.2055955765 .09622495456 .2731490477 .1246613048 .2180387509 .06959442530, , , , , ,

.06906090228 .1299568764 .2299258912 .2668986166 .1258602107 .1370289184, , , , , ,

.09422003430 .1318496983 .3441496645 .3244939838 .2754376101 .1740658346, , , , , ,

.2138569326 .1537465083 .1035785475 .1145327383 .5683329334 .1698343280, , , , , ,

.3200179803 .1929575061 .5233940840 .1048285106 .5530477015 .08297813953, , , , , ,
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.1783047574 .1596080923 .4568889349 .2037351469 .07723277792 .2366463946, , , , , ,

.2811915206 .3538167395 .06990023664 .1744142213 .1083536689 .3182859338, , , , , ,

.1857301656 .2350076952 .1141187953 .1557786754 .4547169140 .1082667899, , , , , ,

.1709746280 .1961885750 .1168643936 .09473743389 .1676883514 .1122073166, , , , , ,

.1650390666 .1316405477 .7063989148 .3122968984 .1490274932 .06777400329, , , , , ,

.07410601846 1.154554799 .1041305427 .2510620858 .2450990642 .7719885141, , , , , ,

.1810140470 .2801735141 .2315015644 .1718780689 .1666698793 .1777913805, , , , , ,

.1410800318 .1517137417 .09336120671 .1612251323 .5794416142 .1702047097, , , , , ,

.3445819787 .1978356956 .1678771871 .1534691898 .1375634879 .6136147865, , , , , ,

.1023745634 .1072462626 .1285236703 .1058705934 .1602004213 .1394000764, , , , , ,

.2470540601 .2674127140 .1120298341 .2184019483 .1269519756 .2044205746, , , , , ,

.1471282432 .1608397570 .4050313071 .1010371945 .3680491430 .2148540066, , , , , ,

.1690757734 .2155423807 .1265610875 .7120110356 .1876231391 .1001478114, , , , , ,

.1213555509 .1243677245 .1667508830 .1111625675 .07492168993 .1032778058, , , , , ,

.1130603125 .1397041379 .1413079793 .2096017238 .1279982534 .1537352614, , , , , ,

.09949434832 .2735405028 .2929243679 .2168470354 .2586195243 .1337307915, , , , , ,

.3606633717 .5273829887 .1299231740 .1262661756 .2756136490 .1726322863, , , , , ,

.1022349395 .09228472933 .09542194154 .1459012895 .1310600243 .4117797688, , , , , ,

.1180907354 .09602032940 .1013198103 .1621432138 .1601176157 .1546833950, , , , , ,

.1354932619 .1417292246 .2465306376 .08821396356 .3932976477 .1329331962, , , , , ,

.2113887505 .2053542700 .1205548963 .3028287640 .1215779682 .3574112995, , , , , ,

.3135426192 .09915232678 .2177871372 .4610979027 .09498904456 .1331308089, , , , , ,

.1380969246 .08615911430 .1500369750 .2322721101 .3129694356 .3475330429, , , , , ,

.1432009500 .2753878324 .2087963468 .08502272537 .09318900732 .06753065074, , , , , ,

.2289911310 .08230800705 .2747421416 .4217863958 .1029954366 .3261289991, , , , , ,

.1127149107 .1607223683 .3582018361 .08033097383 .1013987886 .1738967566, , , , , ,

.1500917170 .2058647528 .2471851128 .3280346710 .2656996944 .1921541042, , , , , ,

.2499586843 .2703860577 .2047735505 .2815049975 .2540472409 .1443337146, , , , , ,

.3459263316 .1416795862 .1492409785 .1968212230 .09607578879 .1310177698, , , , , ,

.2168201932 .1258047641 .2093012073 .1592013549 .1857391564 .1448538167, , , , , ,

.1723855883 .05895358807 .2993859187 .1256031532 .4189783753 .1260735333, , , , , ,

.1286524066 .3420769108 .2265458594 .1254801592 .1415686944 .1421600402, , , , , ,

.2560783928 .1027149530 .1199822170 .1070555215 .08619414013 .1112256864, , , , , ,

.1787138286 .1149099946 .1119650793 .2339201684 .3420197287 .08551466329, , , , , ,

.08894791383 .1995292267 .1944604349 .2011248893 .2824441485 .4861336768, , , , , ,

.1121777249 .1030807711 .1299013197 .1128768240 .1528230860 .2106031602, , , , , ,

.4945083961 .2672167191 .1040255501 .1364876426 .09143654772 .1234602980, , , , , ,
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.2418266606 .1503996452 .1914549987 .1780680589 .1064572331 .3468561939, , , , , ,

.2918759026 .09381612242 .1595566389 .1644481093 .3157196466 .08980623054, , , , , ,

.4185072005 .1222346773 .1686762910 .1573708637 .1267657464 .1974301881, , , , , ,

.1357911570 .07597696275 .1555355744 .1629817426 .2251632943 .1254255113, , , , , ,

.09422443577 .1056362931 .1022813738 .09021366597 .1414675389 .1182030967, , , , , ,

.1093382062 .1890916105 .1174989689 .1269270538 .2947858475 .1701472901, , , , , ,

.1052116926 .08637629517 .1268123159 .1134923584 .1320785697 .1559826657, , , , , ,

.2125388985 .2100593393 .1594175769 .1596828088 .4137686992 .7267107886, , , , , ,

.1337243935 .1121364066 .1147528076 .1977503726 .1704476505 .09427996020, , , , , ,

.3008130461 .1384849756 .1016918214 .1256671438 .1443349381 .5175517711, , , , , ,

.08103115919 .1144032083 .2004975513 .1344792701 .1110869989 .1202448907, , , , , ,

.2148477583 .3573109448 .4106068804 .09837714148 .08661895752 .2382534988, , , , , ,

.1479091096 .07900030873 .1374204012 .2195383057 .1930458592 .2115194550, , , , , ,

.1010223670 .2079026237 .09733599980 .1619535957 .1240759230 .07627241926, , , , , ,

.1627132279 .2451611777 .1109429669 .09939048107 .1203315264 .1938901979, , , , , ,

.1608062601 .1623703964 .08128701383 .09296247141 .3330333288 .6229600246, , , , , ,

.09825659074 .1723225192 .1326070714 .1925779864 .1492746862 .2103400901, , , , , ,

.1144744001 .3556680844 .1155268429 .1563105818 .5362974087 .1377521930, , , , , ,

.4056682199 .1508069319 .07787676248 .07140236329 .1555814640 .5685493624, , , , , ,

.1989992901 .1099426302 .6216747127 .1453788083 .1715371168 .1592673933, , , , , ,

.1158409232 .1652662061 .1545556995 .1182968495 .2014402950 .1284633435, , , , , ,

.1192281228 .3245741432 .1169237201 .3024937515 .2010156023 .1128499917, , , , , ,

.07703140141 .1280560900 .2628562893 .1540004636 .1183385872 .1600867236, , , , , ,

.1878851036 .2837184809 .2118089842 .1332180595 .2084617994 .1044791721, , , , , ,

.1052868415 .1557620488 .1699473094 .1111432412 .2977353448 .1889092530, , , , , ,

.1895565146 .1765470189 .2060110096 .2522781362 .1290345532 .07027630570, , , , , ,

.1066986657 .1144510815 .5397892909 .2845921223 .2245027423 .08758777477, , , , , ,

.3542084536 .1920607415 .1801371230 .1948369807 .1142732328 .09417154295, , , , , ,

.1402372491 .2134185880 .1804017539 .08999081537 .1012422999 .1236118245, , , , , ,

.1596608154 .3014553679 .2040466258 .1731761709 .1746364811 .2584991954, , , , , ,

.1582640511 .2231625938 .2687572750 .4893659832 .1482974514 .09355993544, , , , , ,

.1690716173 .09832869725 .1727800021 .1771859147 .2255092123 .07446892322, , , , , ,

.1087868580 .1240706585 .1987199299 .1799522079 .1218319867 .1039467619, , , , , ,

.07939583020 .08523732530 .1171662538 .1005964017 .2593825019 .3028452769, , , , , ,

.3177690892 .09020112490 .3727722782 .2124706714 .1237095244 .1604934415, , , , , ,

.2818359307 .3026486756 .1085674817 .2540413830 .1026446221 .1428181354, , , , , ,

.1385154836 .1810685484 .1202162419 .1104746550 .2106229299 .5949049258, , , , , ,
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.3107668359 .1102179970 .2435934564 .2149944329 .2002378644 .2348928877, , , , , ,

.2887946607 .2590524605 .5968951687 .1478006081 .1959301411 .1990338369, , , , , ,

.2814608356 .09009383953 .2876875102 .4630083077 .1200244377 .2370520532, , , , , ,

.1553546789 .1020556047, ]

.1669299599 .1390528850 .1569905066 .1489391507 .1291202077 .1227643603, , , , , ,[

.1393701543 .1357726348 .1414357398 .1467867322 .1130964384 .1434357839, , , , , ,

.1763070875 .1579989617 .1566644953 .1316799696 .1315941867 .1330439793, , , , , ,

.1260590295 .1329228604 .1327331340 .1336958974 .1153330331 .1192853503, , , , , ,

.1438802607 .1378235945 .1310550734 .1437281264 .1191671862 .1145726115, , , , , ,

.1316350536 .1090169409 .1220813814 .1583520368 .1242049686 .1134059705, , , , , ,

.1263385185 .1280493197 .1266991625 .1197701346 .1421423638 .1146358392, , , , , ,

.1167919713 .1649740448 .1242191901 .1346162632 .1569565575 .1639974866, , , , , ,

.1342828012 .1065241556 .1570437914 .1540839747 .1267359487 .1215058568, , , , , ,

.1464235427 .1665700083 .1330403336 .1754449382 .1509896170 .1124391487, , , , , ,

.1347818307 .1063240544 .1013511381 .1384801264 .1459977610 .1416348932, , , , , ,

.1463133784 .1402964124 .1301622330 .1309581094 .1183730752 .1818413272, , , , , ,

.1522329756 .1420129856 .1112554917 .1243501069 .1144264846 .1298076680, , , , , ,

.1308550836 .1462909721 .1408145116 .1626204948 .1604139993 .1230199153, , , , , ,

.1299901723 .1501557144 .1692311503 .1160488153 .1186804868 .1227732232, , , , , ,

.1277011750 .1331472523 .1499594048 .1233955332 .1537595170 .1367737497, , , , , ,

.1456123677 .1558968988 .1240206648 .1601773552 .1435507636 .1285486056, , , , , ,

.1447958481 .1073267265 .1594300992 .1408074098 .1069849869 .1304630157, , , , , ,

.1144886044 .1138784879 .2014377256 .1191807065 .1844222213 .1473683942, , , , , ,

.1186816471 .1402248459 .1803657082 .1241987356 .1234648093 .1422671607, , , , , ,

.1302424740 .1221218564 .1148499609 .1392652322 .1564073458 .1432117787, , , , , ,

.1593450365 .1441151440 .1593501314 .1388257549 .1285355493 .1209952643, , , , , ,

.1291831117 .1056614872 .1388751453 .1155846390 .1106764576 .1302464293, , , , , ,

.1106527646 .1117497676 .1524272397 .1125365646 .1166753177 .1342365181, , , , , ,

.1418808962 .1427569127 .1258062879 .1599265326 .1464274667 .1405225642, , , , , ,

.1189371219 .1225061986 .1455662070 .1195055432 .1008310266 .1249164336, , , , , ,

.1384766617 .1198119099 .1673821801 .1701337366 .1413447375 .1111239722, , , , , ,

.1306930050 .1661823477 .1199332834 .1413286156 .1479147932 .1416936310, , , , , ,

.1463169554 .1477596506 .1300048899 .1237768583 .1400051649 .1173889604, , , , , ,

.1313933191 .1462400644 .1574614957 .1401637154 .1517726440 .1144514403, , , , , ,

.1536554965 .1286080881 .1553428771 .1231579394 .1361782681 .1551044142, , , , , ,

.1380998558 .1325557582 .09182843785 .1506596475 .1854824475 .1515710746, , , , , ,

.1499952060 .1539710783 .1682847972 .1695896402 .1157722342 .1217618727, , , , , ,
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.1290071433 .1195021813 .1300189287 .1376602565 .1180160988 .1635905172, , , , , ,

.1326098620 .1549809761 .1029821811 .1052410775 .1652917663 .1352572738, , , , , ,

.1330286434 .1309022960 .1575714117 .1897654739 .1321813443 .1099431011, , , , , ,

.1213838769 .1071931064 .1287975894 .1745037007 .1134443485 .1278028249, , , , , ,

.1279286534 .1084027638 .1118195872 .1663098971 .1470075353 .1266311362, , , , , ,

.1400315350 .1318435583 .1527382644 .1309763507 .1433403953 .1296442429, , , , , ,

.1142209902 .1603274280 .1407061793 .1335115821 .1321152072 .1393907433, , , , , ,

.1277138342 .1182387072 .1551503977 .1691099183 .1168260356 .1341051907, , , , , ,

.1473329051 .1180246770 .1014405392 .1374489893 .1154810274 .1400938428, , , , , ,

.1409711128 .1421131998 .1837916660 .1088356179 .1837500421 .1252345288, , , , , ,

.1663075841 .1608734762 .1238463479 .1228744481 .1418418442 .1613215520, , , , , ,

.1120846819 .1573102871 .1540507905 .1478756720 .1306764087 .1339499734, , , , , ,

.1348507383 .1453431408 .1408620008 .1314531331 .1754365124 .1204960969, , , , , ,

.1275257387 .1554100059 .1427571936 .1267152560 .1366179855 .1370973322, , , , , ,

.1293494444 .1036654076 .1402051281 .1267906368 .1353781842 .1473981156, , , , , ,

.1430451578 .1457577372 .1206121807 .1516922984 .1178836558 .1409282885, , , , , ,

.1094206595 .1176311264 .1491555439 .1325779349 .1144919480 .1419321115, , , , , ,

.1532573613 .1646197480 .1027085752 .1220808374 .1170432083 .1244749674, , , , , ,

.1315600495 .1091609506 .1474288736 .1317663123 .1319651081 .1203641536, , , , , ,

.1532490434 .1949318482 .1183922883 .1547707205 .1483805956 .1230501779, , , , , ,

.1274132372 .1043519213 .09465457873 .1371799175 .1716925487 .1491252387, , , , , ,

.1062885605 .1282206595 .1452494590 .1249097772 .1276249034 .1654300818, , , , , ,

.1295154320 .1470738191 .1157356072 .1285233988 .1297437416 .1566247526, , , , , ,

.1082068212 .1301208167 .1302201589 .1600588926 .1106831707 .1304488753, , , , , ,

.1303684840 .1267366293 .1203925752 .1293919164 .1027811017 .1387975335, , , , , ,

.1006976083 .1372291906 .1338037812 .1154436073 .1337355211 .1253541214, , , , , ,

.1230491763 .1565061426 .1512161603 .1310457103 .1289231405 .1453270306, , , , , ,

.1526174778 .1383858499 .1106913104 .1266077659 .1357004013 .1272654950, , , , , ,

.1336088856 .1193098793 .1353467505 .1267767395 .1312666548 .1436698505, , , , , ,

.1610342350 .1356058438 .1747256264 .1323266416 .1245537231 .1373902963, , , , , ,

.1254893858 .1470718356 .1340483816 .1167560969 .1238597768 .1567919126, , , , , ,

.1268656321 .1565867353 .1150725880 .1252738750 .1394657114 .1461567838, , , , , ,

.1334267277 .1144051866 .1188848145 .1203249904 .1268682774 .1427478863, , , , , ,

.1532871227 .1217413952 .1217750727 .1126109545 .1101628252 .1272644833, , , , , ,

.1113295797 .1722959256 .1210263675 .1435234087 .1402975983 .1439638686, , , , , ,

.1368685728 .1107006869 .1411675538 .1368831130 .1171045326 .09898883530, , , , , ,

.1470904177 .1492443521 .1462931367 .1321069275 .1477996862 .1245173393, , , , , ,
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.1464792227 .1108223530 .1229784995 .1281554634 .1249325342 .1175926036, , , , , ,

.1536473190 .1526787526 .1336779996 .1216730942 .1266252842 .1248669907, , , , , ,

.1657905052 .1011487615 .1276502036 .1357589913 .1229673401 .1228019956, , , , , ,

.1607272669 .1457123266 .1214907691 .1492082009 .1749942323 .1325025667, , , , , ,

.1143758361 .1114629290 .1777061568 .1235330692 .1362522760 .1258279805, , , , , ,

.1352363960 .1237703169 .1298205748 .1403576964 .1240957809 .1396236687, , , , , ,

.1369784321 .1310593568 .1431616054 .1136082492 .1135055873 .1391454386, , , , , ,

.1216214022 .1178436332 .1368468913 .1441066426 .1576040850 .1417691597, , , , , ,

.1202846548 .1186973981 .1446757628 .1457927704 .1399448589 .1549687999, , , , , ,

.1444795164 .1706265212 .1605627805 .1256429086 .1872865154 .1177560063, , , , , ,

.1225196770 .1307433585 .1283083987 .1659752172 .1186715970 .1581628630, , , , , ,

.1588610334 .1333600239 .1173240919 .1145183984 .1273882904 .1268691223, , , , , ,

.1504086313 .1244151746 .1602139610 .1182135819 .1229780268 .1465134214, , , , , ,

.1402812205 .1460122576, ]
> 


J:=Y[190]:

K:=Yj[190]:

L:=Ye[190]:

b:=plot([J],color=black,linestyle=2):

c:=plot([K],color=black,linestyle=2):

d:=plot([L],color=black,linestyle=2):



plotsetup(ps,plotoutput=‘/home/arthit/simulation/tpi1801_4.ps‘, 
plotoptions="height=380,width=380,noborder,portrait");

plots[display]({a,b},titlefont=[HELVETICA,14],numpoints=1000,

labels=["time",""],font=[COURIER,10],axes=boxed,xtickmarks=[0="J
un,04",T="Jan,05"]);



plotsetup(ps,plotoutput=‘/home/arthit/simulation/tpi1801_5.ps‘,

plotoptions="height=380,width=380,noborder,portrait");

plots[display]({a,c},titlefont=[HELVETICA,14],numpoints=1000,

labels=["time",""],font=[COURIER,10],axes=boxed,xtickmarks=[0="J
un,04",T="Jan,05"]);



plotsetup(ps,plotoutput=‘/home/arthit/simulation/tpi1801_6.ps‘,

plotoptions="height=380,width=380,noborder,portrait");

plots[display]({a,d},titlefont=[HELVETICA,14],numpoints=1000,

labels=["time",""],font=[COURIER,10],axes=boxed,xtickmarks=[0="J
un,04",T="Jan,05"]);


> 
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