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computer aided geometric design, parametric spline interpolation, chord length,
uniform, centripetal and monotonicity preserving parametrizations, mesh

concentration in large gradient domains.

A new parametrization algorithm for interpolation by splines is given in this
thesis which almost invariably results in better shapes than either chord length,
uniform or centripetal parametrizations. The method is based on monotonicity
preservation for the given data and is invariant under affine transformations. It enables
one to improve the visual correspondence between curve and the initial data and gives
a mesh concentration in large gradient domains. The algorithm can be generalized to

approximate multivalued surfaces.
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Chapter 1

Introduction

In many practical problems, we have to deal with interpolation of discrete data
when geometric properties of the data such as positivity, monotonicity, convexity,
presence of linear sections, the angles and the bends should be retained. Standard
approaches such as spline interpolation, NURBS (nonuniform rational basis splines)
and other usuvally fail in the treatment of this problem which is called a shape
preserving interpolation problem. To obtain the required shape properties of the
resulting curve/surface, different authors introduce some parameters into the structure
of the spline to satisfy the geometric constraints. The key idea is to develop algorithms
for an automatic choice of these parameters.

In the case of multivalued data, we need to combine the construction of shape
preserving interpolatory functions with an appropriate parametrization.

F.esearch on constructing shape preserving interpolatory functions started with
the spline in tension of Schweikert (1966) where exponential splines were used as
approximants. This was followed by the work of Spath (1969, 1974), Nielson (1974),
Pruess (1976, 1979) and de Boor (1978) with various exponential and cubic spline
interpolants containing “tension parameters” to control shape. All of these
approximations were interpolatory and globally C*, but strictly speaking were not
local in the sense that changing data at one point meant the entire approximation had
to be regenerated. This made automatic algorithm for choosing free parameters to
control shape (especially monotonicity) fairly complicated. McAllister, Passow and
Roulier (1977) derived a method for generating shape preserving curves of arbitrary
smoothness based on the properties of Bernsiein polynomials, but to achieve C’
smoothness they had to use piecewise polynomials of degree at least four. There is

also the possibility of using piecewise rational interpolants (e.g., see Delbourgo and




Gregory (1985), Gregory and Delbourgo (1982)) although these are usually
only C' or they are intended for strictly monotone or strictly convex data.

In 1980, Fritsch and Carlson (1980) proposed a shape preserving interpolatory
cubic spline which was only C' globally, but consequently was local, and admitted
much simpler algorithms for the choice of free parameters to control shape (Fritsch
and Butland 1984). Recently Renka (1987) working on the exponential spline has
produced an algorithm for automatically choosing tension parameters in the C' case
together with an iterative approach to extend this in a special manner to C°.
Costantini (1987) also has families of shape preserving interpolants based on
Bernstein polynomials; these are very simple to use but are co-monotone, i.e., the
spline on the ith data interval is increasing or decreasing as the data on that interval.
Such splines have the disadvantage that they must have slope zero at a point where the
neighboring secant lines have a sign change in their slope; hence, any local extrema of
the underlying approximation are assumed to be in the data sample. Also, to get
globally C* interpolants, one must use quintic splines. Other examples of C'of shape
preserving spline interpolants, are found in Burmeister, Hess and Schmidt (1985), and
Schmidt and Hess (1987). Finally, there is the work of Dougherty, Edleman and
Hyman (1989) where C* quintic splines are used; a fairly complete algorithm is
given there for preserving monotonicity and there is also a considerable discussion
concerning convexity for the piecewise cubic case.

There are cases where the added smoothness of the C” splines is often needed
and it is desirable to avoid the global dependence of the tension parameters in existing
algorithms. In the paper by Pruess (1993), it was shown that if two extra break points
are allowed between each data subintervals (similar to Pruess (1979)), then there are
enough degrees of freedom to construct a globally C* cubic spline interpolant which
is local and which has slopes and curvatures at the data points as free parameters.
Another local algorithm for constructing monotone and convex Csplines was
developed in Kvasov (1996) using generalized tension splines.

In many CAGD applications, a user wishes to construct a smooth and visually

pleasing parametric curve passing through some given 2D or 3D control points.




The two most commonly used parametrizations or knots spacings are the chord
length spacing and the uniform spacing. It is easy to construct examples where the
uniform knot spacing yields poor results by having two data points near each other
and the next point significally farther away. Examples are given in de Boor (1978) and
Farin (1993) where the data are unequally spaced on gentle curves, yet loops or
oscillations occur between data points. Several authors (for example Boor (1978) and
Farin (1993)) have suggested using chord length knot spacing partially because it
approximates the arc length of a parametric curve. Another motivating factor for
chord length is the result of Epstein (1976) which guarantees that there will be no
cusps for the case of a closed periodic curve. As noted in Foley (1986), the chord
length knot spacing often produces visually poor results when the data is poorly
scaled, or when the direction of the data changes abruptly.

A nonlinear optimization problem is solved in Marin (1984) in order to
determine a knot sequence for interpolation, and another optimization problem is
solved in Hoschek (1988) to select a parametrization for an approximation (not
interpolation) problem. A knot spacing recently developed by Lee (1989) and
discussed in Farin (1993), is termed the centripetal model. This model was motivated
by the paradigm of a car traveling through the data points, and it works well on some
data sets. An interesting note related to the car paradigm is that this knot sequence,
(also the chord and uniform methods), disregard the angles formed by the control
polygon. It would be useful to take these angles into consideration.

The three spline interpolation methods which use the chord length, uniform
and centripetal parametrizations, are each invariant under rotations, translations and
equal scaling in the x and y coordinates. However, the chord length and the

centripetal methods are not scale invariant when the x and y coordinates of the data

are scaled differently. The geometric properties of scale, rotation and translation
invariance are important in character font applications where characters are stored as a
sequence of control points which are transformed to the desired position, and a
parametric spline interpolant is formed to represent the character. The shape of the
characters should be consistent if the defining data points are scaled differently in x

and vy, rotated, translated or sheared. Another justification for wanting scale




invariance is that the resulting curve should be the same regardless of whether the x-

axis is measured in seconds, minutes or hours, and the y-axis is measured in inches,

feet or meters, for example. An easy solution to having a scale invariant method
would be to form the bounding box of the data points and map this rectangle to the
unit square. Such a scheme, however, would not be rotation invariant.

In applications involving robot motion and animation, if P — P, and the

other data points remain fixed, then it is desirable for h, =1, —1t, — 0, because h;
represents the time it takes to travel the distance between these two points. The chord
length and centripetal parametrizations satisfy this property, but the uniform spacing
does not. Uniform spacing often yields poor results when the data points are unevenly
distributed because it does not take into account any measure of distance between
points. The chord length knot spacing has a property which is useful in motion
applications in that the average speed between data points is constant in linear

regions. In terms of ratios, if F,_,,..., B, are collinear and the average speed from
FP_, to F is equal to the average speed from F, to P, then |F. - ﬂ._]|fhl._| =

|1F:+1 — F;|/hJ_Since there are possible corners to negotiate at F_, and F.,, we

would not expect to have similar ratios involving h;_, and h;, ;. The centripetal and
uniform methods do not have this property, and these methods may yield extraneous
oscillations in regions where the data points are not equally spaced and the points are
linear or gently curved. A property that all three of these methods have is that the
parametric spline curves are continuous with respect to small changes in the data.

We feel that in addition to distance, the relative shape of the control polygon
should be considered when motivated by the car paradigm because you would like to
slow down for corners and travel at a constant speed on linear stretches. Another
aspect that we like to incorporate is the affine invariant metric described in Nielson
(1987) and Nielson and Foley (1989). By using this metric, poorly scaled data
generally cause no problems. More importantly, it should not matter if the x-axis is
measured in seconds, minutes or hours, and the y-axis is measured in inches, feet or

meters. The interpolating curve should be independent of these arbitrary choices.




In this thesis, a new algorithm for a mesh construction by C? parametric cubic
spline interpolation is developed. The algorithm is based on monotonicity
preservation for the given data and is invariant under affine transformations. The mesh
knots can easily be calculated from explicit formulae and almost invariably result in
better shapes than either the chord length or the uniform parametrizations. This
enables one to improve the visual correspondence between curve and the initial data
and gives a mesh concentration in large gradient domains. The algorithm is
generalized for the case of surface approximation. Its possibilities are illustrated by
the test examples.

A large variety of applications now requires the use of curve/surface
description, especially in fields such as computer aided design and machining, and
computer vision and inspection of manufactures parts. Other areas where the
description of curves/surfaces is of interest include many fields of science, medicine,
cartography, television and the film industry. This diversity and the wide range of
apphcamhty of the subject enables us to consider the problem of constructing

monotonicity preserving curve/surface spline parametrization as very valuable.




Chapter I1

Cubic Spline Interpolation

In this chapter, we describe some of the algorithms for computing cubic
interpolating splines which are most often used in practical spline approximation. Cubic
splines combine the smoothness properties required in many applications with the
simplicity of their computer calculation and high accuracy of approximation. However, in
a number of cases the behaviour of cubic splines does not conform to the properties of the
initial data. Visually, this is evidenced by the presence of jumps, oscillations, and various
deviations not characteristic of a given set of points. These features may be expressed
mathematically as nonmonotonicity and the presence of inflection points of the spline on
intervals where the data is monotone and convex. One can obtain “correct” behaviour of
the spline by increasing the number of interpolation nodes. If this is impossible, then one

should use the methods of shape preserving approximation described further in chapter 3.

2.1 Cubic Interpolating Splines

Suppose that we want to interpolate a function f given by the data (x,,f,),
i=01,...,N, where f, = f(x,) and the points x, from an ordered sequence a=ux, <
x, <--< x, =b.This interpolation problem can be solved very efficiently by using cubic

splines.

Definition 2.1. A cubic interpolating spline is a function § € C*[a,b] such that
(i) on every interval [x,,x, ], the function § is a cubic polynomial (of order

four)




S(x)=S§, {x}:ﬂr.u +a;, (x— X, )+ a,, (x—x, }I +a,, (x—x, )3

for x e[x,,x,,]. i=0L....N-1

(ii) the consecutive polynomials are smoothly adjusted

S x. —0)=8"(x, +0), i=1,...,N-1,r=0]12;

(iil) the interpolation conditions are satisfied

S(xj]:ff: f=ﬂ,,,,,N.

According to this definition, a cubic interpolating spline § is an ordered set
of cubic polynomials which match up smoothly and form a twice continuously
differentiable function. The points x,,i=1,....,N —1, where the polynomials are
matched, are called the knots of the spline, and must not coincide with the
interpolation nodes. The knots of the spline can also have different multiplicities
depending on the number of the adjusted derivatives. In particular, a knot x, has
multiplicity k, (0<k, <3) if the derivatives of two consecutive polynomials are
matched in this knot up to the order 3-k,. However, in this chapter we consider
cubic splines with only simple knots (of multiplicity 1).

Each of the N polynomials forming a spline has 4 coefficients, that gives us a
total of 4N parameters. From this number, one needs to subtract 3(N-1) conditions of
smoothness and N+1 conditions of interpolation. The remaining two free parameters
(4N-3(N-1)-N-1 = 2) are usually determined from the restrictions on the values of the
spline and its derivatives at the endpoints of the interval [a,b] (or near its ends).
These restrictions are called the endpoint constraints. There exist several different

types of endpoint constraints, among which the most common are the following four

boundary conditions:

1. First derivative endpoint conditions:




§'(xg) = fy and S§7(x,) = [y

2. Second derivatuve endpoint conditions:

S?!{IDJ — .n!f and S.‘J’(XI"I) — fﬂ:l:

3. Periodic endpoint conditions:

S{r]{xu} = S[?']' (x,"-’L T:{ll,zl

4. "Not-a-knot” endpoint conditions where adjacent polynomials nearest to the

endpoints of the interval [a,b] coincide: §,(x) = §,(x) and §,_, (x) = §,, (x), that is,
S”(x, —0) = S”(x. +0), i=L,N-1.

It is natural to consider periodic endpoint conditions by assuming that the

interpolated function f is periodic with the period b —a.
2.2 Defining Relations for the Construction of a Cubic Interpolating Splines

The second derivative S”of a cubic spline is a continuous piecewise linear

function. Thus, using the notation M;=8"(x;), i=0,...,N, one can write

Mfm

h,

[}

—x)+ (x—=x,), xelx,x,] (2.1)

i+1

" r ‘Ml'
§"(x)=8§1x) = h—{x

where h=x,, -x, i=0,... . N-1

Integrating (2.1) twice will introduce two constants of integration, and the

result can be expressed in the form




M, 3 M1+I
S(x}——(X.+.~ X))+ 6h (x=x) +C,(x, -

T

x)+C,,(x—x, ).
(2.2)

Substituting x; and x,,, into equation (2.2) and using the values f, =5,(x, ) and

fi..=8,(x,,,) yvields the following equations involving C.and C,, respectively:

Mé 2 M1+l
L=?h +Ch and f, = 6 +C1|h|
These two equations are easily solved for C,,and C,,, and when these values are

substituted into equation (2.2), the result is the following expression for the cubic

function § on [x,,x,]:

S M, . M, s f Mk
r('r} - ﬁhl ('x."-] - x} + 6}3‘ {x - 'tg) + {hl - ﬁ }('t£+l - 'r)
fr'-r] Mj+]h£ -2 3
+(_h “ "6 Nx = x;). (2.3)

To find the unknown coefficients M,, i=0,...,N, one must use the derivative

of (2.3), which is

S; }_ i M f Ml'hl'
J(x =" T ) I {x x)? —{h 6 )
f."] Miﬂhl
(el 2.4
( h 6 (2.4)
Evaluating (2.4) at x; and simplifying the result yields
' Ma M|'+|. -fé+] _-f:
fx +0)==——h ——h, : A f=—7"7,
S/(x, +0) 3 A f, A S "

[}
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Similarly, we can replace i by i—1 in (2.4) to get an expression for 8§/ ,(x)

and evaluate it at x; to obtain

M. M.
S/ (x,—0)= ~§'—hg_, + Tﬂh“‘ +A_f.

As §/(x, +O)=8/,(x, -0), i=1,....,N -1, we obtain

hﬁ—]M|—| +2{hj—| +hJ}M£ +hJM|'+l:6.5|f’ ij =ﬁ¢f _ﬁ'l'—lf’
i=12,...,.N-1

(2.5)

The system (2.5) is underdetermined as it contains only N-1 equations for

finding N+1 unknowns coefficients M,. In order to complete this system, one needs

two additional equations. The standard strategy is to make use of one of the above

stated four endpoint conditions.

2.3 Endpoint Constraints and the Resulting Systems of Linear Equations

Using formulae (2.1) and (2.4), one can rewrite the endpoint conditions given

in section 2.1 in the following form:

A
hy
2. M, =f, and M, = f.;

3 faw =Fis My, = M, hy,, =h

1T

—

C2My+ M, =

Mm_Mr i Mf_Mj-]
h, h ’

i =1

i=1,N-1.

6
[Af=f1 M, +2M, = h_[f:’ ~Ayaflk
N-1

for all i

Let us consider the resulting systems of linear equations for calculating the

unknowns M,,i=0,...,N, in more detail.




1

l. For first derivative endpoint conditions, ohe obtains the following system

[ 2h, h, 0 o 0 Mg
hy, 2(h, +h,) h, S 0 M,
0 h, 2 +h) ... 0 M,
=b, (2.6)
0 : : .0 hy, 2k [ My ]

where

E= [6{ﬂgf - fu’}!63|f1652f5'“16(f.; _ﬁ.'n'—lf)]r
and T is the transposition operator.

2. For second derivative endpoint conditions, the system differs only by its

first and last equations.

_I 0 0 A | Mg _}’1;’
hﬂ 2{}1{)4‘&]} .Iii-] B . s G M] 6&|f
D h] 2(}1]4‘&2} . R . D Ml 6§1f
= . (2.7)
0 : : 00 1My | Y

3. For the periodic endpoint conditions, equation (2.5) is also valid for

i=N(or i=0), that is, one has

h:‘l’—]MN—] +2(h.\'—l +h~)1”~ +h.’~" MNH = 65Nf' (2'8}

Because f,,, = f,. M,,, =M, i=0], and hy = h, we obtain
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and equation (2.8) takes the form

lhl‘u'liw:fl +h.‘\"—I.M.'\"—l + 21:h.'u'—l +hﬂ)1w.'\r = 6(ﬁ'ﬂf _'&.'\"—if}'

We arrive at the following system of linear equations

[2(hg +hy) hy o0 .. . & M,
h 2 +thy) hy 0 M,
i hﬂ . . .0 h.i‘v'—l 2|:hf'.’—] +h0}_ LMN o
=b, (2.9

where

b =[66,f.68,f....6(A,f =A, ).

4. For “not-a-knot” endpoint conditions, one obtains the following system

_hl —“Iﬂ,"i"hl} hﬂ, 0 MU
hy 20hg+h) R . , o || M,
=hb.
0 : oy by thy) hyy || My
0 . o hyy =ty thy) hy || My |
(2.10)

where

b =10,68f.66,f,....65,_ f.01.
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Systems (2.6), (2.7), and (2.9) have tridiagonal or “almost™ tridiagonal
matrices. This permits us to apply particularly efficient algorithms (Gaussian
elimination without pivoting) for their solution. In order to obtain a system with
tridiagonal matrix in case of “not-a-knot” endpoint conditions, one needs first to

eliminate the unknowns M, and M, from system (2.10). If one subtract from
second equation of system (2.10), multiplied by #, by the first equation multiplied by

h,, then the resulting equation takes the form
(hy +2h))(hy + h )M, +(h) =h; )M, = 6h,5, f .
Analogously, if one subtracts from next to the last equation of the system
(2.10), multiplied by hy_, , the last equation multiplied by hy_,, then the resulting

equation will be

(hy_s = by )My + (2hy_y +hy Y hy oy +hy )M,
= 6h,_,0,_f.

We arrive at the following system of linear equations with three-diagonal

matrix
(o +2h)  m=hg 0 . . . o[ M ]
hy 2 +hy) by .. ' 0 M,
5 0 0 hy , hyoy 2hy g +hy ) [[ My
=bh, (2.11)
where

b =[60,8,f.,68,f.....60, 8, f]"
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andA, =h,[(h, +h), Hyo = h.ﬂf--]f(hﬁ—z +hy_p).
2.4 Diagonally Dominant Matrices. Existence and Uniqueness of the Solution

Let us investigate whether systems (2.6), (2.7), (2.9), and (2.11) have unigue
solutions. Obviously, this is the case if and only if the matrices in those systems are

nonsingular.
f . - - "
Definition 2.2. A square matrix A = { u} s called a matrix with a diagonal
I.j=

dominance, if the following conditions are fulfilled

=0, i=l...,n (2.12)

A matrix A is called a matrix with strict diagonal dominance, if the inequalities

(2.12) are strict.

Theorem 2.1. (Hadamard criterion). Every matrix with strict diagonal dominance is

nonsingular.

Proof: Suppose to the contrary that a matrix A has strict diagonal dominance and is

singular, that is,det(A) = 0 and the homogeneous system of equations Ax =0 or

Zau X; = i=1,....n,

has a nontrivial solution x=(x,,...,x_)".

One can find & such that |xk!2|xj1,i=1,...,n.Then it follows from kth

equation that
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I n
|ﬂkk||xk|£ > ‘ﬂkjuxj\£|xk|lz ‘%‘\

i=l 2k i=l =k

From here

R
IHESDY ‘akj‘

=172k

which contradicts the assumption of strict diagonal dominance of A.This completes

the proof.

It is easy to verify that the systems (2.6), (2.7), (2.9), and (2.11) have matrices
with strict diagonal dominance. In the case of first derivative endpoint conditions, one

has from system (2.6)

¥ =2{hl-_| +h:'}_h¢'—] -hf = hf—l +h;' }[}, I = I,...,N"],

y = 2}:”_] —hl;\,_] = h.l"lr—l }'},

Therefore. the matrix of this system has strict diagonal dominance.

By looking at equations (2.7) and (2.9), one can easily see that for second
derivative and periodic endpoint conditions, strict diagonal dominance also occurs.
For “not-a-knot” endpoint conditions, one obtains from system (2.11) strict diagonal

dominance of the matrix of this system as well

R = hg + 20y —|hy —ho| >0,
r=2(h_ +h)=h_,—h =h_ +h>0, i=2,.. ,N=2,

rn-1 = 2hy_y +hy_y =y = hy | > 0.
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Now using Theorem 1.1, one concludes that systems (2.6), (2.7), (2.9), and
(2.11) have unique solutions. As a consequence, there exists a unique cubic
interpolating spline § satisfying any of the considered above four types of endpoint

constraints.

2.5 Gaussian Elimination for Tridiagonal Systems

Let us consider a specially effective algorithm for solving linear systems with
tridiagonal matrices. The algorithm given below is a special variant of Gaussian
elimination. Keeping in mind the systems for a cubic interpolating spline with

endpoint conditions of types 1, 2, and 4, we consider the following system.

by ¢ 0 0 0 X, d,

a, b, ¢, 0 0 x, d,

T T | R W 2.13)
ﬂ [} ﬂr:—l br:—l l"r".n—l xa—l I£1rl'z—l
0 0 0 a b || x | |4 |

To start the elimination, one divide the first equation of this system by the
diagonal element b; and uses notations p, =c, /b and g, =d, /b;. Now suppose that
we have eliminated all nonzero subdiagonal elements in the first i —1 rows. In this

case, the matrix (2.13) is transformed to the following form

(1 ppb 0 0 0 0 ... 01 x][q]
0. L opialhs o ... 0 X, q,
0 0 Pia 0 0 Xio1 di1
0 Ofd. b.. c 0 x, || d,
G D I} ﬂ II"Il'l—] bﬂ—] cr:—l xﬁ—] drr—]
0 00210 a, e L X ] Ld. ]
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Now in order to eliminate the subdiagonal element a, in the ith row, we have
to multiply the (i-1)st row by a, and subtract it from the ith row. As a result, the ith

row of our system takes the following form

{bf —a; P )X F 6 X =‘f;' .

To obtain the unit on the main diagonal, one must divide the ith row by the coefficient

b; —a;p;_;- As a result, in the final form of the ith row, one obtains the following

formulae for the elements p, and g¢,:

s =2 1 >
= §=2,....n—-1, =T,
PJ bl _djpa—] pl IJIJ'I
d —aq,, d,
= s =, 2.14
4 ba_ajpf—l t o b] { :

Proceeding in this way, one arrives at the system

1 p 0 0 ... 0 ][x][4q]
0 1 p, 0 0l x| |a
ﬂ - D ] pn—? D -r.-;_z - qn—z
ﬂ e ﬂ ﬂ 1 .pn—l ‘rn—l qn—]
0o ..0 0 0o 1]lx]/|a |

Now using the back substitution, one can compute the unknown x;:

An = dn>

X, =—px,+tq, i=n-1,..,1 (2.15)
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2.6 Correctness and Stability of Gaussian Elimination

Let us consider the correctness and stability of the calculations in the above
described special variant of Gaussian elimination. By correctness, we mean the
possibility to perform all necessary calculations in the algorithm, that is, in our case,
that the denominators in formulae (2.14) do not vanish. The algorithm of Gaussian
elimination will be also stable if we do not have any progressive accumulation of
round-off errors by performing arithmetic operations (in our case by multiplications in

formula (2.15)).

For system (2.13) with tridiagonal matrix, the conditions of strict diagonal

dominance (2.12) take the form

B> la,|+]c), i=1,....n (2.16)

with ady =€, = 0.
Let us show that if the conditions of strict diagonal dominance (2.16) are

fulfilled. then the algorithm of Gaussian elimination (2.14) and (2.15) is correct and

stable. According to (2.14) and (2.16), one has |P1|:|C1 |/|bll < 1. Let us suppose by

induction that |p}.| <1, j=1,...,i — 1. Then using formula (2.14), one obtains

e i el el

pl= < < < o=,
ey o Ry B P

that is, <1 forall i.

Py
As

|bl. —a‘.p:._,l = |br.| —|a|.||pj_1| ::-IbJ—!ar.‘ >0, i=2,....n-1,
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then the denominators in formulae (2.14) are nonzero. This means the correctness of

Gaussian elimination.
Suppose that while practically solving system (2.13) by applying formulae
(2.14) and (2.15), one obtains X; =x; +&,i=1,....n, where & is a round-off error at
the ith step. Then according to (2.15), one obtains
X, =—pX,tq., i=n—-1..L
By subtracting formula (2.15) from this equation, one gets

£ ==DPE.> i=n-1,....1,

or

‘Eil < IP;‘"E:'+1| <lgal, i=n—-1,00

that is, the calculations by formula (2.15) are stable.

EI’E

It was shown above that for a cubic interpolating spline, the matrices of the
systems (2.6), (2.7), (2.9) and (2.11) for all considered four types of endpoint
conditions have strict diagonal dominance. Therefore, the systems (2.6), (2.7) and
{2.11) can be stably solved by the algorithm of Gaussian elimination without pivoting
{2.14) and (2.15). To solve system (2.9) one must use a slightly more complicated

algorithm which is , however, another modification of Gaussian elimination.

2.7 Method of First Derivative

In some cases, it is more convenient to use a different algorithm for
constructing cubic interpolating spline. Such an algorithm is based on the
representation of the spline through endpoint values of its first derivative.

Let us denote m, = S’(x,), i =0,..., N. On the interval [x,,x,,,], one can write

down the following tormula for the cubic interpolating spline
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S(x)=8,(x)=f,(1-0)+ f, t +e(1-0Oh[(m - A FXI=0)+(A, f —m_)1],

f;-ﬂ — f:
n 1

L]

Af = (2.17)
where t = (x—x,)/h, and b, =x., —x,.
It is easy to verify that S,(x;) = f,, $/(x;)=m,, j=i,i+1 By differentiating

the formula (2.17) two times with respect to x, one obtains
2
SHx)= -}1—[3(] —20A, f —(2=3t)m, —(1-3t)m, ]. (2.18)

Using this expression for adjacent polynomials on the intervals [x,_,,x,] and

[x..x,,] in the joint point x = x,, one finds

i+l

2
SI(x —0) =3 —(BAf +my +2m,),
i-1

2
SIx, +0) == (A f =2m = m).

From the condition of continuity S, (x, —0)=58/{x, +0),i=1,....N -1, one

obtains the system of linear equations

1 1 1 1 AL f AS
— . —_— Y r—m. =3+,
5 m,_, +2{hf_l - 3 ym, + h m,, ( h + h )
i=1,....N-1, (2.19)

In order to complete this system of equations, one needs two additional
restrictions which are usually given as endpoint conditions of the types considered in
section 1.1. Using formulae (2.17) and (2.18), one can rewrite these endpoint

conditions in the form:




1. First derivative endpoint conditions:
Hy = fo and my, = fus (2.20)
2. Second derivative endpoint conditions:

2my +m, = Eﬁﬂf_fﬂ?’oﬁv
My, +2my = fihy (24383 (2.21)

3.Periodic endpoint conditions:
Frse = Fio My =y, by = h, foralli; (2.22)

4.”Not-a-knot” endpoint conditions where adjacent polynomials nearest to the

endpoints of the interval [a,b] coincide: S,(x) = S,(x) and S ,(x) = S (x), that is,
§”(x,—0) = §”(x,+0), i=LN-1,
or

mtm,, m,tm Af AL .
0 S =-hT—'h—1', i=l,N -1, (2.23)
i -1 ; -

In the case of endpoint conditions of types 1 and 2, equations (2.20) and (2.21)
permit one to directly complete the system (2.19). In the case of periodic endpoint
conditions, one assumes that equation (2.19) is also valid for i = N. As according to
the conditions (2.22) Yy, = Yi» My,; =m; i=0,1, and hy, = hy, the system (2.19)

is completed by the equation



1 1 1 A A
+—m,_, +2(—+ ym, = 3(-—£+h—_lf

—m ).
hy I by hy  hy hy hy

One can easily verify that for the first three types of endpoint conditions, the
corresponding  systems of linear equations have matrices with strict diagonal
dominance and therefore there exists a unique related cubic interpolating spline. In the
case of “not-a-knot” endpoint conditions, in order to obtain a system whose matrix has
strict diagonal dominance, one needs first to eliminate the unknowns m, and m,, from
the system (2.19). As a result, taking into account the relations (2.23), the first and last

equations of this system reduce to the form

11 1 Af Af

(—+—m +—m, =24, ——+(1+24)—/,

PR 27,

My 2 1 1 ﬂ‘-,.;_zf ﬂ".«--|f
Y2 o my = (1420 )+ 2, — s
By e By Ty T T

where A, = h, [(hy +h) and fl_, = hy o [(hyy +hy ).

Thus, for all four types of endpoint conditions, the matrices of the
corresponding linear systems in the unknown m,,i=0,...,N, have strict diagonal
dominance. This permits us to solve these systems efficiently by means of the above
described algorithms of Gaussian elimination without pivoting.

In order to reduce the number of arithmetic operations performed in a practical
evaluation of the spline and its derivatives on the interval [x,,x,,], one can rewrite

formula (2.17) in the form

S,(x)=fi +(x=x, WA, f +(x—x.,)a, +(x=x)b))
where

Af-m m, +2A. f+m,
a, =T and b, = hf .

]




Chapter II1

Convex and Monotone Spline Interpolation

In this chapter, we discuss the convex and monotone interpolation by splines
§eC’. In practice, the C”cubic splines are very often used. We give sufficient
conditions of monotonicity (convexity) for these splines, provided the interpolated
data is monotone (convex). The conditions are formulated in terms of data divided
differences and they are very easy for testing. The method that was used to deduce
these conditions is based on the simple lemma about the tridiagonal system. It may be
applied to any spline if the construction of the spline is reduced to solution of

tridiagonal system with diagonal dominance.
3.1 Problem of Convex and Monotone Interpolation

Let us consider Lagrange interpolation for points a =x, < x, <--- <x, =b,

Sx)=f (=f(x)) (3.1)

by spline functions § which preserve the shape of the data (x,.f,), i=0,...,
example, if the function f is monotone or convex on some interval [ch.,:{,lt ], we
would like to have a spline § which also has these properties. To achieve this, we take
splines § with knots at the points x,, which have more parameters than necessary to
satisfy (3.1). The additional parameters are then selected to ensure the desired
properties of §. The main point, however, is to determine whether the error of

approximation ||f - 5|| remain small under the proposed algorithms which describe §.

We introduce the notation for the first two divided differences
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Af=(f=f)h, h=x, —x,i=0,.N-1,
Sf=Af-A_f, i=1.. N~

The data {f,} are said to be monotone if
Afz0,i=0,.,N-1, (3.2)
and convex if
6f=20,i=1..N-1, (3.3)
The problem of monotone (convex) spline interpolation consists of
constructing a monotone (convex) spline interpolant to monotone (convex) data.
A cubic spline § € C'[a.b] interpolant to { f,} can be written, for x € [x,,x._,],

in the form (see (2.17) in chapter 2)

Sx)=S(x)=(1-0*(1+20f +1*(3-20)f.,

+ht(1=1)m —ht* (1-0)m,,,, (3.4)

where t=(x-x,)/h, m; :S’{.‘cf-}, Jj=ii+1l

Fritsch and Carlson (1980) have proved the following

Lemma 3.1. If A.f =0 and

0<m, €3A.f, j=ii+1 (3.5)

then §/(x)=0 for xe[x,,x.,]

Proof: This result can easily be obtained without appealing to Fritsch and Carlson
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(1980). In fact, from (3.4), we have

S/(x)=s(t,m. m, )=60(1-1)A, f

+(1=4t+3t7)m, + (=2t + 31" )m (3.6)

i+l

The function s(t,m,,m,,,) is linear in variables m, and m,,,. Therefore, for proving the
inequality S/(x) =0, x €[x,,x,,]. under restrictions (3.5), it is sufficient to verify the
inequalities: s(1,0,0) 2 0, s(t,3A,.0)20, s(1,0,3A,f)=0, s(t,3A,f.3A,f)=0 for
t €[0,1]. It is easy to convince oneself that these inequalities hold; hence, the desired

result follows. This proves the lemma.
3.2 Monotone Matrix. Lemma on Tridiagonal Systems

Definition 3.1. A square matrix A is called monotone if Ay =0 implies y=0 and
Av <0 implies y<0. By y=0 (y<0), we mean that all components of a vector y

are nonnegative (nonpositive).

Let A be an invertible square matrix. Then A is monotone if and only if all

elements of A" are nonnegative (see Collatz (1964)).
Lemma 3.2. If a square matrix A = {a, ]}’ _, has a diagonal dominance and
a, >0, a, <0 (j#1), i,j=1...,n,

then it is monotone.

Proof: Show that Ay =0 implies y =0. Suppose to the contrary that a vector y has

negative components and let y, denotes the negative component of largest absolute

value. We take a vector z whose components all equal to | ¥y | As
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zadzj =|_‘FEIZHU }ﬂ, j-: I““,n'
i
then Az >0 and thus A(z+ y) = Az + Ay > 0. However

ZGJ-,:(}'J +zj]|:z:1ij(_vj+|yk|)£[l
I

j*k
The obtained contradiction proves the lemma.
Consider the system

byzy + €42, = dys
az,_, +hz tez, =d;, i= 1.2,....N =1, (3.7)

ayZyg thyiy = dy-

Let the system be solvable and its righthand members be positive. By Lemma 3.2 if

the matrix of system (3.7) is monotone then z, 20,i=0,....N. But the matrices that
occur by the construction of splines are usually not monotone. In this case, we can

apply the following.
Lemma 3.3. Let the coefficients of system (3.7) be such that

b =0, i=0,...,N; a20,¢,20,b >a, +c. i=1....N-1,(3.8)

¢, <byb, (@, +c) ay <by byl(ay, +cy)- (3.9)

If
d >0, d —cd, b, —ad_/b,20, i=0....N (3.10)

izl

(here ay =cy =d_ =dy, =0, b, =by, = 1), then system (3.7) is solvable and
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7,20, i=0,...,N. (3.11)

Proof. First, we consider the case ¢, 20 and a, = 0. We add to (3.7) equations

bz, =d,, withb =d, =1, i=-1,N+1, and suppose a, =a,,, =c,=cy, =0.
For each i=0,1.2,..., N, we take the linear combination of the (i-1)th, ith and (i+1)th
equations of this system with corresponding coefficients —a, /b,_,, 1, —¢, /b,,,.Then

we have

Byzy = Cozy = Dy,
-Az ,+Bz,-Cz,, =D, i=12,.. . N-L (3.12)
_ANZN—I_"ENZN =DN!

Where A =a,_a, /b_,B =b—ac._1/b_ —a,c lb,,

i+1-i i
lE:: = Cfcjﬂ II|rI{:"r'+l. ‘Dr' = du‘ _ar'df 1 IIIrbr'—l _Cédr'+l ‘IrbH]!
and evidently A, = C,_, =0. Thus, (3.12) is the system with unknowns zg,....Zy -
By using (3.8), we have A, 20,C, 20,i=0,..,N, and B, 2b —a,-c, >0, i=12,

..., N —2.Next, by using (3.9), we obtain

B, > b, —ba, l(a +c)-ca, /b, =¢l[b /(a, +c)—a,/b]>0,

B,=b,—a,c, /b > b,—ab,/(a, +¢) >0,

and B, , >0, B, > 0. Thus, all B, in (3.12) are positive. Further, it is easy to show

that system (3.12) has a matrix with diagonal dominance. As a result, this matrix is
monotone and nonsingular. Therefore, (3.11) is hold.

Now, let ¢, <0,a, <0 (the proof in the cases when ¢, 20,a, <0 or

¢, <0, a, =20 is similar). Eliminating z, and z from (3.7), we obtain the system
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blzl +z, = d1
az._, +hz, +cz,,,=d,, i=2,.. . N=-2 (3.13)
Ay Zy-a thy 2y, = d.fv‘ 1

b, —ac, I by.d, =d, —ad, /b,

b.\'-l = bn‘-] —cyqay lb, d, = dh’ 1 '“C.N'-]d,'.' "rb.'."

It is easy to see that system (3.13) satisfies all of the hypotheses which we have used

above in the study of the case ¢, 20,a, 20.Thus,z; 20, i=1,...,N-1. But
2o = (dy — ¢z, ) /by > 0 and, similarly, z, 2 0. This proof the lemma.
3.3 Convex cubic splines.
Let § be a € cubic interpolating spline with endpoint conditions
(3.14)

S'(x)=f" i=0,N.

It is shown in chapter 1 that values of the second derivative of the spline M, = §”(x,),

i=0,..,N, satisfy the system of linear equations (2.6) which can be rewritten in the

form
2M,+ M, =d,,
UM _ +2M +AM._ =d, i=0,.,N-1, (3.15)
M, +2M,=d,,
where
wo=h_J(h +h), A=1-pu,d =6f[x_,x,x._],
fon—1,

)

6 o, 6 .,
dy=3-(Bof + ), dy =5 —(fi~dyaf). A,f =75,
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Theorem 3.1 Let a C°cubic splines § with endpoint conditions (3.14) interpolate
the convex data{f,}, i =0,...,N. If the righthand elements of system (3.15) satisfy
the following inequalities

d,>0,d, 20,2d —Ad, —p,d_ =20, i=0l...N, (3.16)

where d_, =d,,, =0 and 4, =, =1, then $”(x) =0 for all x €[a,b], thatis, § is

convex on [a,b].

Proof. It is easy to verify directly that system (3.15) satisfies the conditions of Lemma
3.3. Therefore, by the constraints (3.16) its solution is nonnegative: M, 20, i =0, N.
On each interval [x,,x.,, ], i=0,...,N -1, we have

S7(x)=(1-0)M; + tM; ., t=(x=x;)1h;

and thus §”(x) =0 for all x € [a,b]. This proves the theorem.

Remark. Define /1 = maxh . If a C*cubic spline § interpolates a function f € C*

[a,b] and f”(x)>0 for all xe&[a,b], then conditions (3.16) will be fulfilled

provided that h is sufficiently small.

3.4 Monotone cubic splines.

Let a €’ cubic spline § interpolate the monotone data{f,}, i =0,,...,N,and

satisfy the endpoint conditions
S”(x)=f" i=0,N. (3.17)

For values of the first derivative of the spline m, = §'(x;), i =0,..., N, one has the




30

following system of linear equations (see (2.19) and (2.21))

2my +m, =¢, ,
Am_ +2m +um,, =c, i=1..,N-1, (3.18)
my ,+2m, =c,,
where

¢; =3AAf +3uAf, o =3A0f = fohy[2, €y =3A, ,f + Fahyo /2.

Lemma 3.4. If the righthand element of system (3.18) satisfy the following

inequalities

€20 ¢, 20, 2¢, - Ac,, — e, 20, i=0]1,.. N, (3.19)

where ¢, =c,,, =0 and g, =4, =1, then m, 20, i =0,1,...,N .

Prove: It is easy to verify that system (3.18) satisfies the conditions of lemma 3.3.
Therefore, by the restrictions (3.19), its solution is nonnegative: m, =0, i =0,1,..., N.

This proves the lemma.

From the fact that m, 20,i=0,1,...,N, it does not necessarily follow that
§(x) =0 for all x €[a,b]. To obtain this assertion, one needs a stronger assumption

than in Lemma 3.4.

Theorem 3.2. Let a C’ cubic spline § with endpoint conditions (3.17) interpolate the

monotone data{f,}, i =0,1,...,N. If the following inequalities are valid

¢ < 2¢, < 12A,f, (3.20)
vy S2¢y < 12A,f, (3.21)
’lfaj—lf < (I+"1f}ﬁ'|f! I= l!-uﬁN_Is (3.22)

WA, f < (A+p)A f, i=1...,N-1 (3.23)




A

then §’(x)= 0 for all x €[a,b], thatis, S is monotone on [a,b].

Proof. It is easy to check that the hypotheses of Lemma 3.4 follow from conditions

(3.20)-(3.23). Thus, m; 2 0, i=0,,...,N. From (3.18), we conclude that

My <S¢,/ 2,
m <c, 12=3AA S +uA )2, i=1. ,N-1

my, Sc, /2.
Taking into account (3.20)-(3.23), we obtain

0<m, <3A,f,.
O<m <3Af, j=i-Li; i=l.,N-1

0<m, <3A,.,f.

Now it follows from Lemma 3.1 that §°(x) 20 for all x e[a.b], that is, the

spline § is monotone on [a,b]. This proves the theorem.

1.5 Tension Generalized Splines. Conditions of Existence and Uniqueness

If the cubic spline does not preserve monotonicity or convexity of the data, we
will use generalized tension splines (see Spiith (1990), Zavyalov et al.(1980)). These
splines include, as special cases, the C? cubic spline, various types of rational splines,
the exponential spline, the cubic spline with additional nodes, etc. We give explicit
formulae for the parameters of generalized splines in order to secure the preserving of
monotonicity and convexity of the data.

Let us associate with a partition A:a=x, <X <- <Xy =bh of the interval
[a,b], a apace of functions S¢ whose restriction to a subinterval [x,,x.,],

i=0,...,N—1, is spanned by the system of four linearly independent functions
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{Lx,®,,¥, }, and where every function in § f is continuous and has two continuous

Jerivatives.

Definition 3.1. An interpolating tension generalized spline is a function S€S; such
that

(i) forany xel[x,,x ], i=0,....,N -1,

S(x)=1f, =@, (x )M 11 -0) +[fi,, = ¥i(x, )M, 1t

+ @ ()M, +¥.()M,,,, (3.24)

where t=(x—x)/h, M; =5"(x;), j=i,i+1,and the function @, and ¥,

are subject to the constraints

O (x,, )= (x)=0, r=01,2;  ®/(x)=¥/x,)=1

(ii) SeC’[a,b).

The functions ®, and ‘¥, depend on the tension parameters which influence

the behaviour of § fundamentally. We call them the defining functions. In practice,

one takes

G, (x)=¢,(Oh7 =y, (p, 1 -Dh’,

W (x)=v, (A =w(q,Dh', 0<p, g, <. (3.25)

In the limiting case when p, g, — <=, we require that lim D (p,,x)=0,
xe(x,,x,,], and lim___ ¥ (g,.x)=0, x€[x,,x;,), sothat the function 5 in formula
(3.24) turns into a linear function. Additionally, we require that if p, =g, =0, for all

i, we get a conventional cubic spline with ¢, (1)=(1- t)* /6 and v, (1)=t’[6.
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According to (3.24), we have

! — lI'i'.’(f.i M|’+I
S.i{-xl'}:ml :"ﬁ.’f -, _}I-F_I-P[(Ijﬂ} »

hi
Si(x)=m, =Af +¢-.{x.-}% +b, % (3.26)
where
a=—® (x)—h®/(x),
b ==Y (x.,)+h¥(x,,) (3.27)

The continuity condition for $”on A and the boundary relation §°(a) = f;" and

S'(b)=f . result in the following system of linear algebraic equations

Mﬂ MI ¥
I—F W (x,)——=Af — fo>

hy

ty

d _ﬂii E"_-'+f]_._fM L3 h—ﬁf
i (Xi2) I —H:h. hr) i (X0) o)

i=1 i-1 i

M., - M, ,
(I’.'\'—L(x.-\f—]} hh : +by h : =fu _"j".'\'-lf-
w-1 N-1

Let us find constraints on the defining functions @, and ‘¥, which ensure that

the interpolating tension generalized spline S exists and is unique.

Lemma 3.5. If the conditions

0<®.(x,)<b,, 0<¥,(x,,,)<a,, i=0,..,N-1, (3.29)

are satisfied, where @, and b, are as defined in (3.27), then the interpolating tension

generalized spline § exists and is unique.
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Proof: By virtue of conditions (3.29), the matrix of the system (3.28) is diagonally

dominant:

1
r :IE—[EIJ ¥ (x)] =0,
Iy

1 — 1
’]‘zh_[br-l ‘mj-1{x._|j'1+i[5r - (x )]=0, i=l,...,N—-1,
i=1 i

1 —
Fy :};_[bﬁ'—] _q}-\'-1(‘r-¥'-1}] >0.

N-1

Thus, the Hadamard criterion (see Theorem 2.1) implies that the matrix of system
(3.28) is nonsingular and that the interpolating tension generalized spline § exists and

is unique. This proves the lemma.

The conditions of Lemma 3.5 can be weakened. From (3.26), we have

M, = -T%{[b +W(x,, A - Emr'_LFf':xm}'mm}s

h,
M., = I_l (@ + @, (x)A f + D (x)m +a, b (3.30)
T =ab, - @ (x)¥ (x,).

The continuity condition for $”on A and the endpoint relations §$”(a)=f,"

and S”(b)=f . result in the following system of equations

‘E:ma + W, (x, )m = [En + ¥, (x,)] Ayf =

}m +', (I.H}—

Jl{xrl} m||+(ﬂ

i1 1. |
B h., _ h,
=la,_, +¢f—|{xg-1}]?-’j‘.-|f +1b, + Ti(xf+i}]?ﬂéf?

i=1,....N—1, (3.31)
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_ Lyt g
(I}N—I{x.'\'—l }m.\-'—l +a.\'—|m.‘\f = = N +[a,\-'—] +mm‘—](xﬁh]}]ﬁ,\.'_]f'
N=1
Lemma 3.6. If the conditions
0<®,(x,)<a,, 0<¥(x,,)<b, i=0,.. N-1, (3.32)

are satisfied, where @, and b, are as defined in (3.27), then the interpolating tension

generalized spline § exists and is unique.
Proof: It follows from the conditions of the lemma that if

0< mi(‘rf}lpr'(xﬁl) < 'E‘E:; f.:[},”.,N—I,
then

T =ab -® (x)¥(x,), i=0,...N-1.

Therefore, by virtue of the conditions of the lemma, the matrix of system (3.31) is

diagonally dominant:

Fo=b, = ¥,(x,) > 0,

?

B h
F=la_ -®,,(x_ }]% #1b, =¥, (5,15 >0, i=1,...,N -]
1 i

'FN =[EN—1 —‘13‘,\.-4{«"55-_1:"] > 0.

This ensure (see Theorem 2.1) that the spline § exists and is unique, and proves the

lemma.

In practical examples the conditions of Lemma 3.6 are less restrictive than
those formulated in Lemma 3.5. They are satisfied for the majority of tension

generalized splines used in practice. One can readily verify that these conditions are
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fulfilled by all of the defining functions presented below in section 3.7. This allows
one to construct the splines, that is, to solve the tridiagonal linear system (3.31),
efficiently by a special version of Gaussian elimination that avoids pivoting (see

chapter 2).

3.6 Convex Interpolation by Tension Generalized Splines

Let a tension generalized spline § given by (3.24) interpolate the convex data

{f;}, i=0,...,N, and satisfy the endpoint conditions S”(x,)= f.7 i=0,N, where
foz0 and f;=0. The system (3.28) for values of the second derivative of the

spline M, =5"(x,), i =0,...,N, can be rewritten in the form

Ma :fu’:
(I;MI_|+bjMf+cl.Mr-+, =r,f|-, i=1....N—1. (3.33)
M.-.' :f;e
where
a. =M, b, :L_{_E' c, :M d. = E.-f
h;-l i—1 i h;

[} I

Theorem 3.3. Let a tension generalized spline S interpolate the convex data {f,},
i =0,...,N, and satisfy the endpoint conditions S”(x,)= f,7 i =0,N. Suppose that,

the defining functions @, and ¥, in (3.24) given by (3.25) are convex on[x,,x,,, ],
i=0,...,N-1, thatis, ®/(x) =20 and ¥/{x)20 for all xe[x,,x,,], and comply
with constraints (3.29). If the righthand elements of system (3.33) satisfy the

following inequalities

f 20, f; 20, dg + djdr'—h'llrbr'—l —cd,, Jllllbf+'| 20,
i=1L...,N-1 (3.34)




ar

Where by =b, =1, dy = f d, = f, then §”(x) 20 forall x €[a,b], thatis § is

convex on [a,b].

Proof: It is easy to verify that under constraints (3.29), the systems (3.33) satisfies the
conditions of Lemma 3.3. Therefore, by the restrictions (3.34), its solution is
nonnegative: M, 20, i=0,...,N. Using formula (3.24) on each interval [x,,x

r'+I]"

i=0,...N-1, we have

§"(x) = OAOM, + WM.,
where by assumption ®7(x) =0 and W/{x)20. Thus $”(x)=0 for all x e [a,b].

This proves the theorem.
3.7. Monotone Interpolation by Tension Generalized Splines

Let a tension generalized spline § interpolate the monotone data {fi}, i=

0..... N, and satisfy the endpoint conditions §’(x,) = f, i =0, N, with fy =0 and

[]

fy 2 0. The system (3.31) for values of the first derivative of the spline m, = S(x,)

i =0,...,N,can be rewritten in the form

my = fy,
am_, +bm +&m, =d., i=0,. ,N-1 (3.35)
my = fy,
where
— =1 = — hi—] T IF‘il' i hl'
d = EDE_[(I‘._JT—, b =a._, T +b, }._-1 ¢ = "P,-{xr-_,]'ﬁ,

i-1

~ h, — h
d =la_ +®, |{xr'-|}]'?:__.tﬁ.--1f +[b + lPr'(‘rjﬂ)]?l.é'ff'

i=1 i
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Lemma 3.7. Let the constraints (3.32) be fulfilled. If the righthand elements of
system (3.35) satisfy the following inequalities
f020, f; 20, d +ad_[b ~cd,/b

ii=1

=0,

i i+]

i=1..,N-1 (3.36)
where b, =b, =1, d, = f/, d, = f,, then m, 20, i=0,...,N.

Proof: It is easy to verify that under constraints (3.32), the systems (3.35) satisfies the
conditions of Lemma 3.3. Therefore, by the restrictions (3.36), its solution is

nonnegative: m, 20, i =0,..., N. This proves the lemma.

Theorem 3.4. Let a tension generalized spline § interpolate the monotone data {f,},
i =0,...,N, and satisfy the endpoint conditions S'(x,)= f,, i=0,N, where faz0
and f, =0. Suppose the restrictions (3.32) and (3.36) are fulfilled. If the defining

functions @ and ‘¥, in (3.24), given by (3.25), are convex on [x,,x,,,] and

i+

, hPi) AW o W1 (337
= + , =0, 0¥ —1, .
Do(x) W¥.(x,,)

then S'(x) =0 for all x € [a,b], thatis, S is monotone on [a,b].

Proof: By Lemma 3.7, one has m, 20, i=0,...,N. Using constraints (3.32) from

system (3.35), we obtain
m, <d, [b <2max(A,_, f,Af), i=1..,N-L (3.38)

Differentiating (3.24) gives us
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h.
§'(x) = s(x,m ,m,,) = ?r[h‘ &, (x)A f +B(x)m +y,(x)m,, ],
where
o, (x) =¥(x, )P/ (x)+ D (x, )W/ (x) - D (x, )V (x,.,),
B (x) = =b,®[(x) + D, (x,)¥/(x) - @, (x,)¥/(x,,,),

Yilx) ==Y (x, )P/(x)+a,(x, MW (x) - D[ (x )Y, (x;41)-

The function s(x,m;,m,,) is linear in variables m; and m,,,. Therefore, for proving
the inequality S'(x)=0 forall xe [x,.x,,], under restrictions (3.38), it is sufficient
to verify the inequalities s(x,0,0) =0, s(x2A. F0) 20, s(x,02A,f) =0, s(x2A, f,
24,f) 20, for xe[x,x,,]. It can be easily done immediately by using properties
of functions @, and ¥, and inequalities (3.37); hence, the desired result follows. This

proves the theorem.
3.8 Examples of Defining Functions

Let us consider the defining functions @, and ¥, in (3.25), which are in most

common use. In the examples given below, they depend on the parameters:

@, (x) =9, (D] =y (p,.1-nh?,
¥, (x) =y, (DR =y(g,.1),

where 1 =(x—x,)/h and 0< p,,q, <.

(1) Rational splines with linear denominator (see Spath(1990)):

v, =01+q,(1-0]1Q,, 07 =2(3+3q, +q7).

The conditions of Lemma 3.6 are satisfied at — 1< p.g, <es, i=0,..,N-1, and

thus the interpolation rational spline exists and is unique. Lemma 2.5 holds, if, for
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example, we demand additionally that p, =¢,, i=0,...,N-1.

(2) Rational splines with a quadratic denominator (see Spath (1990)):

v (D=0 [1+q1(1-0]0,, 0" =2(1+¢,)(3+q,).

Here the conditions for Lemmas 3.5 and 3.6 to hold are the same as in (1).

(3) Exponential splines (see Sparh (1974, 1990)):

y () =1'e " [ (6+6g, +g7).

(4) Hyperbolic splines (see Koch and Lyche (1993)) and numerous references

there:

0 = sinhg,t —q,t
Vil = q; sinh(g,)
(5) Splines with additional nodes (see Pruess (1979)):

+4q,
6

_— qe
1+g,

1 3
v (1) = (1 )i

If we takeer, = (1+ p,) 'and B =1-(1+g¢,)"", then the points, x, = x, + &k,
and x, = x, + fBh,, fix the positions of two additional nodes of the spline on the
interval [x;,x,,,]. By moving them, we can go from a cubic spline to a piecewise

linear interpolation (see Pruess (1979)).




Chapter 1V

Monotonicity Preserving Parametrization

In this chapter, a new parametrization algorithm for interpolation by splines is
given which almost invariably results in better shapes than either parametrization by
chord length, uniform or centripetal parametrizations. The method is based on
monotonicity preservation for the given data and is invariant under affine
transformations. It enables one to improve the visual correspondence between curve
and the initial data and gives a mesh concentration in large gradient domains. The

algorithm can be generalized to approximate multivalued surfaces.

4.1 Background and Statement of the Problem

Let F; = (x:. ,y‘.}, i=01...,N, be a sequence of pairwise different data points

in the xy-plane. In order to draw a curve passing through these points, it is in general
necessary to construct a mesh A:a=13<1; <---<ty =b and to define a continuous

vector-function C(t)=(C, {rj,C_ﬁ (1)), t=la,b], such that

Cx(.!i.} =X, C‘}_(:J.}: Yoo i=01,..., N,

l.e

Cl[rl.]l - F}, i=01..N.

The chosen parameter values are called the interpolating nodes. The shape of the
curve is determined by choice of the interpolating nodes as well as the method of

interpolation on this mesh. The choice of the nodes greatly influences the resulting
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curve. The problem of finding a good set of interpolating nodes is known as the
parametrization problem.
The simplest and most widely used choice is the wuniform parametrization,

provided by

r: __.'ri—l +h, h={b_ﬂ}fﬁ‘ i=1,21...,N.

This is generally unsatisfactory for the obvious reason that the nodes do not
relate to the distribution of the data points. The choice of the interpolating nodes
should be based on the behaviour of the data, giving a data dependent
parametrization. It is generally accepted that a better choice is the cumulative chord

length parametrization

with |s| denoting the usual Euclidean distance. Here, the term “better” refers to a rather
vague quality of the curve: its “fairness”. There is no a precise definition of this
quality but it is customary to accept that a curve is fair if it reproduces the
interpolation polygon well and has a high degree of smoothness (see Criterion A in
Sapidis and Farin (1990)).

The theoretical foundation of parametrization by cumulative chord length for
natural splines was laid by Epstein (1976). In this case, the curve has no corners. But
it was shown by Lee (1992) that it may have cusps. Roughly, the distinction between
a corner and a cusp (for a parametric curve) is this: the position of the tangent line
changes discontinuously across a corner (at which the tangent line is undefined),
whereas across a cusp, the tangent line varies continuously, but the unit tangent vector
reverses its direction. Such a parametrization has sometimes been called the “natural
parametrization”. The main reason for this choice seems to be that it roughly

approximates the arc length parametrization (see Boor (1978)):
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I
=i+ | lCOF +1C O d i=12.N,
L '

=

which requires the iterations (see Spath (1974)). However, our aim is to create a curve
through a given set of points, and it is not clear why one should strive for the arc
length parametrization, nor is it clear that the suggested iterations should even
converge.

One obtains the exponential parametrization of Lee (1989), if

t =t + —(b—a), j=12,..,N,0<es<]
PP
J -1

As a particular cases, as ¢ = 0, 0.5, and 1, this gives uniform, centripetal (see
Lee(1989)), and chord length parametrizations. With nearly equally spaced points, all
these three parametrizations are roughly the same. In general, the centripetal
parametrization gives better results than either the chord length or the uniform
parametrizations.

The affine invariant parametrization by Foley and Nielson (1989) takes the
geometry of the control points into consideration and produces quality results fora
wide variety of curve/surface fitting problems. The interpolating nodes can also be
derived through optimization techniques (see Greiner (1994), Kurchatov and Snigirev
(1989), Marin (1984)). Intrinsic parametrization by Hoschek (1988) uses the
minimization of the distance between given points P, and an approximation curve
which is a nonlinear problem. But optimization methods are expensive, and moreover,
it is not entirely clear what objective function should be used.

The choice of the interpolating nodes can be based on the preservation of the
data shape properties such as monotonicity, convexity, etc. We shall say that a curve
C(1)is monotonicity preserving for the given data in the interval [r,.t,]. >k,

provided the following conditions are fulfilled
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Co(t)xjyy,x;) >0, CL(ENy i —¥;) > 0,if telt;, 1],

forall j=k,...,I-1. (4.1)
4.2 Affine Invariance of Polynomials and Splines in Parametric Space

Let R =(—e,20) be a real axis. Let us consider an affine transformation of

the parametric space R — R:f =qt+p, p,qg =const. Then the mesh A:r, <t <

.- <t,, is transformed into the mesh A:f, <f <---<f,, where t,=qt, +p,

j=01,.. N,

Lemma 4.1. Interpolating Lagrange polynomials are invariant with respect to affine

transformations of the parameter space R.

Proof: The Lagrange polynomial of degree n that interpolates the data (1., f)),

J =1i,...,i+n, has the form

i+n i+n

La0=2 010, o= [] ~—2L
J=i

keikaj G~ 1k)

Here
f (= ﬁ I"") = ﬁ {I f(f)
k= i‘.#j{rj rk} k= rk:;{f *_}
Hence

i+n i+n
La=21il;(0) = X110 = L,@.
J=t

j=i
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This proves the lemma.,

Let us consider on the interval [a,b]. in addition to the mesh A another mesh
§ ra<{ <---<{, ,<b, such that 1, <§<t,, 1=12,...,N-n. By S,106), we
denote a set of polynomial splines of degree n with nodes of multiplicity 1 on the
mesh & . Then (see Zavyalov et al. (1980)) there exists a unique spline S€S,,(0),
satisfying the interpolation conditions

S(t.)=f,, i=0L..,N.

Let us extend the mesh & by introducing additional nodes { , <---<{<a, b<{, .,
<--<{,.,. Any spline § € S, (6), can be uniquely represented on the interval [a,b] in

the form (see Zavyalov et al. (1980))

N=n

S(t) = zbiﬁn.r'{ﬂ*

i==n

where

i+n+l n
( 1)+
Bn,g U} - anH ‘:} 2 gk

k=i J‘l+] !(';k

mu+l.i{'r}:U "‘:r'}“ _gi+l :’"'{t_gi+n+1}= L :max{[},r},

is a normalized basis spline with support interval (&, Ciyp41)-
Under the above affine transformation of the parametric space, the meshes A

and & transform into the meshes A I =qt;+p.Jj= 0,1,...N, and 5 ; :qrr;'J + p,

j=12,...,N —n. The additional nodes of the mesh & :f,“j, j=-n,....0,N-—n+l,

-~

. N +1, are substituted by the nodes {;, j=-n,...0N-n+1.. . N+1, of the

extended mesh 5.
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Lemma 4.2. Interpolating splines are invariant with respect to affine transformations

of the parameter space R.

Proof: Let us show the equality B, (1) = B?M{F}l . If n = 0, then by definition (see

Zavyalov et al. (1980))

1 iftell. ),
B ()= frel g”_l
0. 0 otherwise.
Therefore fiﬂ.;-(f}= By;(1). Suppose the required equality is fulfilled for n—-1=k
(k =0). Then, by virtue of the recurrence relation for normalized B-splines (see

Zavyalov et al. (1980)) and by induction

t=G; Civnsl =1
B, (1) _—'gl___:_g-_En—lliU}_i'—g-_ : lH_g. | By 1in (1)
IR ] i t+hi+ I+
TF 2 _é'-“ n=li+1% 77 Ui
Si+n i i+n+l i+]

A -

If now § and § are interpolating splines on the meshes & and &,
respectively, then, by virtue of the uniqueness of the spline representation as a linear

combination of the basis splines, the following representation holds:

N-n N-n
S(t) = D bB,;(t) = _Zbiﬁm(f) = $(7).

This proves the lemma.

Note that, the invariance with respect to affine transformations of the paramat-

ric space of cubic weighted v -splines, and in particular conventional CZcubic splines,
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was shown in Foley (1987).

Let us obtain the relation between §* and §7. It is known (see Zavyalov et al.

(1980)) that

S’(t} =n .ijtl]Bn—]_j(I} * b,:“:l :{‘E}; _bf—l}f{ghﬂ - ‘:r}

i=—n+]

From here
bV = b, ~bi) Gan = &) = b,
Hence, by virtue of Lemma 4.2, we have
$'(1) = gS’(1). (4.2)

Let z = (2{.....23 )- By the vector z >0 ( < 0), we mean that z; >0 (<0)
forall i=12...., M. We shall have to make the following refinement of the result

from Miroshnichenko (1984).

M
Lemma 4.3. If A =[ﬁfj)_ _ li:-: a real matrix with diagonal dominance and
i.j=

a; >0, ajj <0 (j#i), i,j=12,....M,

then from the condition Az > 0 (< 0), it follows that z > 0 (< 0).

Proof: In the conditions of the Lemma, the matrix A is of monotone type (see

chapter 3), that is, from Az=0 (£0), it follows that z=0(<0). Let Az> 0.

Assuming z; =0, we have
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from Miroshnichenko (1984).

M
Lemma 4.3. If A=(a, )

i j=

is a real matrix with diagonal dominance and
1

a; >0, ajj =0 (j=#i), i,j=12,.... M,
then from the condition Az > 0 (< 0), it follows that z=0(<0).
Proof: In the conditions of the Lemma, the matrix A is of monotone type (see

chapter 3), that is, from Az>0 (<0), it follows that z220(<0). Let Az >0.

Assuming z; =0, we have
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This contradiction proves the lemma.
4.3 Algorithm of Parabolic Parametrization

Let us consider the behaviour of the parabola L., passing through the points

t;.fj), j=ii+Li+2, depending on the mesh choice. Let us seek the knot tisy

such that the parabola should be monotonicity preserving for the initial data, that is,

such that the following relations are met
Lir(Nfj—f;)>0, j=ii+l
We introduce the following notation,
0 =t = 1) (tin — 1), I =t —1;.
As a corollary of the Lemma 4.1 the knots t; = 0 and t,,, = 1 can be fixed. Then

o =1y, ]";.:1,

(M- ) fip = fi) + Rt =)0 (fivo = fi) = fin + 1i]

—Lis(t)= (-0
(4.3)
Fo= ([ — f)f,; = f..)). We consider three possible configurations of the
initial data:
A F >0
B. F< 0

C. F, =0
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A. By assumption the sequence f;< fi, < fiya 0o f; > fiy > fiynis
monotonic. Since L], (t) is a linear function, the monotonicity of L, , is equivalent to

the fulfillment of two inequalities

.[{1{1‘- Wi — fi) =0, Lf,z (tis2 W fiz1 — fi) = 0.

Simple manipulations, based on the fact that O<a; <1, readily yield the inequalities

2 L+]_fr' 2 fr'+2_f:=1
- +——— >0, —(l-a)y +——_—=0.
f|'+3_fr' f|'+2_ﬁ
From these inequalities, it follows that
o fia =1 ! fin =4 "

The same argument implies the following result:

Lemma 4.4, If the restriction imposed on the initial data F, = (f,, = f, )% (f.,,

f.,,) = 0 holds, monotonicity of the parabola is equivalent to the knot #;,; being in the

interval T/ =t +a/ T, t +a/ T).
] ] man ! ] I

max
One value of the knot ¢, in the range T’ can be obtained by minimizing the

parabola length. Since f,,, # f, the equality (4.3) can be transformated into the form

-1 _ -2t fin = J; _
(fiva = f3) Lj'l{f}_I+a,-“_ﬂ,-]{f,-+1—fi o).

Hence, if
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o, =(fio = f) I (fia = 1i)s (4.5)

then, we have the equality (f,,, —f,)" L/,(f) =1, that is, the parabola degenerates

into a straight line and it is easily verified that 7., =1, + T} € T'.

B. In this case, the knot 7,,, is chosen so that
L/,(t.,)=0.
Since, by virtue of (4.3), it follows that

L.il('rm) = ](1 - Hf}_t{afz(fsaz '_fe} - 2a|{ﬁ+1 _f. ) +fj+1 - fr]
=0, (1= ) [0 (frn = ) + (1= 06) (froy = 7]

we have

fi+] - fll
o = . (4.6)
Jlfm_ffl +|fr'+1_ff+ll

C. There are three possible configurations of the initial data:
L fi = fin = fuas
2. fi = fisfin # fis
3. fi # fursfin = fia:

In the first case, the position of the knot can be chosen arbitrarily because

L ,(t) = constant. The selection range for 7, will be the interval T.” =(0,1). In the

second and third cases, the parabola is non-monotone for any position of the knot ..,
(for case 2 in the interval [f;,1;;,], and for case 3 in the interval [r.,,.f...].

respectively). For continuity of formulae (4.5) and (4.6), we set




&1

£ ] =Jias Jin & Jrias
ﬂj:{l_ 'if fa fH_ fi f (4?:|

£ 'ilf f.' ;tfr'+|1 f|'+l:fa+2‘

where £ is a small number (e.g.£ =( computer precision ) 100). In the case B and C,
the interval 7,/ degenerates into the point f,, .

Therefore, formulae (4.5)-(4.7), determine a location of the knot t,,, for any
possible configuration of the initial data.

Let us formally denote the set of parameters obtained from formulae (4.5)-
(4.7), for the data fy. fy.....fy.as &/ =, i=01,.. N-2.

Using described above algorithm of parabolic parametrization, one can find
two sets of parameter values o, i =0,1,..., N -2, and a’, i=0]1,.,N -2, for data
Sets x,,x,,..., %y, and y,,y....,y,, correspondingly.

The mesh A for the curve C(1) = (C,(1),C, (1)) is constructed by the two

found meshes for functions C, and C. It follows from the above that

Lemma 4.5, The curve C will be rendered monotonicity preserving for the initial
data if T"NT’ #¢ and 1,, €T NT", for all i=0,1..,N—2. Otherwise the

conditions of monotonicity preservation are violated.

Let us specify the algorithm for parametrizing the curve C in the general case,

We define the parameters

-

d B
l‘l = Af,: +'dr‘+[}, (.I-j = ({xﬂl _xj}z +{}|‘HJ _}I}.)E}H_T

J=iLi+l i=01...,N-2,

which fix a mesh normed by cumulative chord length. Then we choose Lo =1+,

ft,el" NI It +é; e T NTYor TXNTY = ¢, we set
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fa =1+,
where
o if T T,
o =9 0y if T'cT”, (4.8)

(" +a')/2  otherwise.

The value 1., ¢ T.* " T.Y # ¢ is additionally corrected to the nearest point of
i+l i ] ¥ P

the interval T;* M T, . Thus, the mesh has been constructed.

One can say that we consider a parametrization which lies some where between
uniform and cumulative chord length parametrizations, similar to centripetal
parametrization but with very different algorithm.

Let us denote the step size of the mesh A by h =t —t., i=0],....N -1
Foracurve C(r) passing through the points p,,i=0,1...,N, the mesh A:t, <t, <---

<1, is uniquely determined by a set of parameters, o, ¢, -, &, _,, assigning the
relations of the mesh steps &, /h_, ,i =12,...,N — 1, and values h, or hy_; .

For a vector-function C,(t) = {Cx[r},q (1),C, (1)), which defines the curve in
the xyz-space passing through the points Q, =(x,,y,,z,), i =01,...,N, the general
parametrization algorithm is similar to the 2-D case with the formal substitution of the
interval T"NT'NT7 for the interval T°~7T". In formula (4.8), instead of
(" +e,")/2, wechoose &, = (&," + " +a,*) /3.

Furthermore, the parametrization will be called monotonicity preserving if the

parameters, o, o, , -, 0, _,, are chosen by the algorithms described above.

4.4 Parametrization for Cubic Splines

Let us consider a conventional cubic spline on the mesh Az, <t < <1,

satisfying the interpolation conditions

S(t)=f,, i=01,..N.
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In addition, let us choose boundary conditions preferable for practical calculations
(see Beatson and Chacko (1989)):

S (t)=f" i=0,N. (4.9)

Note that in order to preserve the invariance of the spline under affine transformations
of the parameter space, by virtue of (4.2), the value fi" must be modified by
falrzq_tf\.'i 'EI -__{]'N'

The given data will be called strictly monotonic if fo<fi<-<fyor

fo = fi =+ > fy and if in addition the following inequalities are met

Folfi=Ffo)=>0, fy(fy—fyg)>0.

We will say that the spline S preserves the strict monotonicity of the initial data if
S(1)=0, teltg.ty], and fy < f, << fyor §(0)<0, re(ty,ty], and f, >
fi >+ > f,. Sufficient conditions (see Miroshnichenko (1984)) for the initial data
are established which ensure that given nondecreasing initial data fosfis <1,
and the derivative of the cubic spline is nonnegative S°(1) 20, t€[t,,t, ].By virtue

of Lemma 4.3, the follows from Miroshnichenko (1984) that

Lemma 4.6. A cubic spline § with boundary conditions (4.9), preserves the strict

monotonicity of the given data if the following conditions are fulfilled

|fr_‘;i < 3|f1 _fllj|"fh0'- f,':’l": 3'[fﬁ.f _f,".-'-]|v
h;'h:—l_[‘f;' —f.'~1|“: (hiy + zhe')h_ls|ﬁ-+1 - f;-], i=12,...,N-1,

b7

fis _fi‘{{zhi—l +hijhi—]_llf;' —f;'—||= i=12,.,N-1,

Let us denote again o, = (1, —1.) It =) T, =t,, -1, i=01,.,N-2. Since
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according to the algorithm of monotonicity preserving parametrization
h/h_ =(-a_)/ e, then from Lemma 4.6, the following restrictions on q;

follow immediately:

fe+2 f:+| {H' f:+1 f:

< i=0l1,.. . N-2,
f;+2 fa f:+2 f!

which coincide with conditions (4.4) of monotonicity preserving parametrization.

Thus, we have proved.

Theorem 4.1. Let the initial data be strictly monotonic and given on the mesh
constructed by the algorithm of monotonicity preserving parametrization. Then a
cubic spline §, that interpolates this data and satisfies the boundary conditions (4.9),

preserves the strict monotonicity of the initial data if the following inequalities are

met:
by <3(f1 = fo) ! fg. hy_y <3(fx —fna) ! fy- (4.10)
The following two corollaries follow immediately from Theorem 4.1,

Corollary 4.1. Let the initial data be strictly monotonic. The interpolating parametric

cubic spline, C(r) -——(C*(r),C_‘,(r}), with nodes on the mesh A constructed by the

algorithm for monotonicity preserving parametrization is monotonicity preserving for

the initial data if

LT "nT"#¢, i=01.,N-2;

2. hy -::Smm( %0 }I _,}0),

"n Yo

XN =Xp_1 YN — Vo
3. hy_; < 3min( & - Nl,}"" YN 1}_

AN Y
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Corollary 4.2. Let x5 < x; <---< x, and x; >0, x}, >0. The interpolating parametric
cubic spline with nodes on the mesh A such that 7, €T, i=0]1,.., N-2, and
hog < 3(x) —xg)/ xg, hy,_, <3(x, —x,_ )}/ x,, monotonically increases on the interval

[fyut,].

If the restrictions of Corollary 4.2 are fulfilled, then for single-valued
functional data, there is a one-to-one correspondence between the points of the x-axis

and the curve points, that is, there exists a single-valued function v = y(x) with a
g]—‘lph {-C.T "C_-. )

Let us consider the choice of hy and hy_,.Conditions (4.10) can be fulfilled

in two ways:

1. Starting from specified values fg and fy , we find hy and hy_;:

2. We fix hy and hy_,and correct fjj and fy, .

In the first case, we choose as h,, =h (l-o,)/«,,

then conditions (4.10) will be fulfilled.

The second case is necessary in particular if the knots 7, and ¢, of the mesh
A are fixed, e.g. if we use the normed parametrization A:0=1; <t; <--<1y =1 We

set
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. Foa(ty) i Lo, (), = fo) >0,
0| esign( fi= 1) otherwise.

Analogously we find f; . In order to set fo and fy . the cubic Lagrange polynomials

can also be used,

Remark 4.1. By virtue of formula (4.5), the step size of the “monotonizin g" mesh for
monotonicity preserving parametrization is essentially increased in the domains of
sharply increasing “gradient” of the initial data. Hence, the points of the spline whose
values are obtained on a uniform partition of the interval, [ry,1,], will be
concentrated in such domains. This property of the suggested parametrization is useful

in applications,
4.5 Examples and Numerical Results

The figures below illustrate the employment of monotonicity preserving
parametrization (mp-parametrization for short) in interpolations by parametric cubic

and generalized tension splines of chapter 3 with the defining functions
v, () =0 /1+q:(1-0]Q,, 0 =21 tq)03+q,), ¢) =y, (1-1).

For comparison, spline curves with centripetal, cumulative chord length, and uniform
parametrizations, which are the most common, are given and are comparable with the
method suggested in this chapter in terms of implementation complexity and computer
resources consumed. The solid, dotted, dashed and dash-dotted lines show,
respectively, the curves with mp-, centripetal, cumulative chord length, and uniform
parametrizations. The bullet signs denote the data points. In the construction of the
cubic and generalized tension splines boundary conditions of type (4.9) were used
where the derivatives were computed by means of the second degree Lagrange

interpolating polynomials: §°(1,) = L/, (t,) and Sty ) =Ly, (ty).
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As our first example, we have interpolated Akima’s data of Table 4.1. The
effects of using four different parametrizations are depicted in Fig.4.1. Figs.4.1a and
4.1b are obtained setting g, =0, for all i, that is considering the parametric cubic
splines interpolating the data. Uniform and cumulative chord length parametrizations
are utterly unsatisfactory. The graph of the spline with centripetal parametrization fails
in one-to-one correspondence between the points of the x-axis and the curve. The
spline with mp-parametrization has small oscillations along the data, because the
conditions 1 of Corollary 4.1 are violated. A magnification on Fig. 4.1b shows clearly
this effect. In Figs. 4.1c and 4.1d, the new interpolants with tension parameters
g, =1, ¢, =11, q, =10, 4, =16, g, =35, gs =55. g, =38, 4; =4, gy =5g, =2 are
displayed for the same data, and the stretching effect of the increase in tension
parameters is evident.

Figure 4.2 illustrates an example from C. de Boor’s book (1978). The data
points have been obtained from the function f(x)=(x-03)*, with x =0, 0.1, 0.2,
0.3, 0.301, 0.4,0.5, 0.6. Here, centripetal and uniform parametrizations give a cusp
and a loop correspondently. Nonsymmetric and nonmonotone graph of the cubic
spline (g, =0 for all i) with mp-parametrization on Fig. 4.2a and 4.2b can be easily
improved by using tension with g, = 15, gq,=25, q,=075 q,=112, g, =15,
gs = q, =0 (see Figs. 4.2¢ and 4.2d).

The data for Figure 4.3 (Table 4.2) has been taken from the book by Spdth
(1974). Figs. 4.3a and 4.3b show the plots of interpolating cubic splines produced by
a uniform choice of tension parameters, namely, g, =0.In Figs. 4.3c and 4.3d to
approximate the segment of a straight line passing through the last three data points,
we have set ¢ = g, = g, = 10, while the remaining g, are unchanged.

The data for Figure 4.4 (Table 4.3) has been taken from the function f(x)
=(x—=5)" +2with x=25+i, i=0]l....5, considered by Goodman and Unsworth
(1988). Figs. 4.4a and 4.4b (no tension) and 4.4c and 4.4d (with tension parameters
g, = 15,9, =25,4, =075, ¢; = 112, g, = 75) show that we can easily transfer from

nonmonotone to monotone graph of the spline with mp-parametrization
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Figure 4.5 illustrates the behaviour of the splines for the data selected by us on
the plane using a drawing: {x}=1{0,05,13, 1.4, 1.1, 1.1,05, 1.1, 1, 1.7, 1.7, 1, 1,
1.4,05), {y}=1{0,05,06,08,1.5,1.8,23,25,3, 3.2,3.5,45,4.7,5,7}. Figs. 4.5a
and 4.5b are obtained setting ¢. =0 for all i. In Figs. 4.5¢ and 4.5d, we have used
tension parameters g, =2, ¢ = 183, g, =1, 4,0 =38.4,, = 0.8, while the remaining

parameters g, are unchanged.
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Table 4.1. Akima’s Data:

0 2 3 5 6 8 9 11 12 14 15

10 10 10 10 10 10 | 105] 15 56 60 85

&l

(c) (d)

Figure 4.1. Akima's data with sharp gradient increase. (a) Interpolation using mp-, centripetal,

cumulative chord length and uniform parametrizations (g; = 0). (b) Magnification of the interval

[8.9]. (c), (d) The same as (a),(b) but with g, = 1, g,=11, g,=10,q,=16, g, =35,

gs =33, qs = 38, ff?=4s‘?s:5s gy, = 2.

—i=rmsmememe=s==o= ypiform parametrization

___________ cumulative chord length parametrization

centripetal parametrization

monolonicity preserving parametrization




&0

0.0007% ™

Q.000%

0.0002%F

=0, 0002

=0, 00d

-0.0047

0, 00075} -

0.0005

d.00025

[

-0.00025
2.0005
-0.0007%
E;Zi n.335 0.3 0.305 2,31
(c) (d)

Figure 4.2, C. de Boor example. (a) Parametrizations for the parabola f(x) =(x— ﬂ3}2 with x = 0,
0.1, 0.2, 0.3, 0301, 04,05, 0.6 and magnification of the interval [0.2,0.4]. (b) Magnification of the
interval [0.29,0.31]. (c).(d ) The same as (a), (b) but with g, = 1.5, g, =25, g, =0.75, g, =112,
qs =713, s =q5 =0.

uniform parametrization

_______________ cumulative chord length parametrization
,,,,,,,,,,,,,, centripetal parametrization

monotonicity preserving parametrization
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Table 4.2. Spdath Data:

X; 0 2 2.5 3.5 5.5 6 7 8.5 10

¥i 2 25 | 45 5 45 | 15 1 0.5 0

(a) (b)

(c) (d)

Figure 4.3. Spdthdata. (a) Interpolation by parametric cubic splines. (b) Magnification of the interval

[6,8]. (), (d) The same as (a), (b) but with g, =10, 1= 5.6.7.

uniform parametrization

——————————————— cumulative chord length parametrization
.............. centripetal parametrization

monotonicity preserving parametrization




B2

Table 4.3. Data for function f(x) =(x-5)"+2 with x=25+i, i=0,1,....5.:
X; 2.5 3.5 4.5 5.5 6.5 7.5
¥i 41.0625 7.0625 2.0625 2.0625 7.0625 41.0625

(c)

Figure 4.4. (a), (b) Parametrizations for the data obtained from the function f(x) =(x—35)" +2

(d)

with x =25+1i, i =0,1,....,5. (c), (d) The same as (a), (b) but with g, = 1.3, g, = 2.5,
g, =075, g, =112, q, =75.

uniform parametrization

centripetal parametrization

cumulative chord length parametrization

monotonicity preserving parametrization




63

(b)

(c) (d)
Figure 4.5, Example with the data of a “human face™.(a), (b) No tension, (¢),(d) The same as (a), (b)

but with tension parameters ¢, = 2, g, = 185, g, =1, gq,, = 38, g,, = 08. while the remaining

parameters ¢, are unchanged.

uniform parametrization

_______________ cumulative chord length parametrization
.............. centripetal parametrization

monotonicity preserving parametrization




Chapter V

Conclusion

The problem of monotonicity preserving parametrization is part of the more
general problem of shape preserving approximation. To obtain the required shape
properties of the resulting curve/surface, different authors introduce some parameters
into the structure of the spline to satisfy the geometric constraints. For those purposes,
most common splines are now generalized tension spline which include as particular
cases rational, exponential, hyperbolic additional-knots, a variable degree splines.
Using appropriate parametrization, one can substantially reduce the values of the
tension parameters or even avoid their application completely. Evidently a “good”
parametrization should depend on the data and retain properties of the initial data such
as positivity, monotonicity, convexity, presence of linear sections, etc. The most
common methods of parametrization for discrete data are uniform, centripetal and
cumulative chord-length parametrizations. Unfortunately, these methods do not
preserve the above mentioned data shape properties and very often do not have
anything in common with the shape of the data.

This thesis presents one of the first attempts to develop a “true” shape
preserving parametrization. To construct a parametrization method, only one shape
property of the data has been chosen, that is, monotonicity. Very often this property is
the most valuable one. If we can construct a monotone curve matching the monotone
data then the property of positivity will be provided automatically. We consider only a
“comonotone” approximation when the curve satisfies criterion (4.1). This approach
permits us to construct a very simple algorithm of parametrization, but which is not
always practical. As a result, in order to guarantee monotonicity of the resulting curve
for monotone data, one still needs to apply tension splines. However, the values of the
tension parameters can be reduced, when compared with other methods of

parametrization.
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In this thesis, a new parametrization algorithm for interpolation by splines is
given which almost invariably results in better shapes than either parametrization by
chord length, uniform or centripetal parametrizations. The method is based on
monotonicity preservation for the given data and is invariant under affine
transformations. It enables one to improve the visual correspondence between curve
and the initial data and gives a mesh concentration in large gradient domains. The
algorithm can be generalized to approximate multivalued surfaces.

A large variety of applications now requires the use of curve/surface
description, especially in fields such as computer aided design and machining, and
computer vision and inspection of manufactures parts. Other areas, where the
description of curves/surfaces is of interest include many fields of science, medicine,
cartography, television and the film industry. This diversity and the wide range of
applicability of the subject enables us to consider the problem of constructing
monotonicity preserving curve/surface spline parametrization as very valuable.

The results obtained in this thesis can also be used in many applied problems
and first of all in computer aided geometric design (computer description and
numerical modelling of aircraft surfaces, bodies of ships and cars, complex details of
engines etc.). These algorithms can be applied also in many fields of science
(mathematical models in mechanics and physics describing by differential equations),
in high resolution TV system, in medical research (software for digital diagnostic

equipment) etc.
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Appendix A

Computer Program for Monotonicity Preserving

Parametrization

{$A+,B- D+ E+F-,G- I+ L+N-,0-P- Q- R+S+T-V+X+}{$M 65520,0,6553 60}

Program Tension_Spline;
Uses Crt, Graph;
const N =11;

NN =N;

max = 20;

lype

var

epsilon = le-4;

arrl = array[0..N-1] of real;

arr2 = array[0..(N-1)*10] of real;
arr3 = array[0..N-2] of real;
RowType = Array[0..N] of Real;

T. X, Y, mi, mi_for_x, mi_for_y, del_x, del_y, xii, yi,PP,QQ : arrl;
P.X1,Y1,X2,Y2,X3,Y3,X4,Y4 : arr2;
pi, qi : arr3;

NI : integer;

sum,a,b.11,12,13,14,U : real,

mat : Array[0..N-1] of RowType;

start,stop : integer;

Procedure RowReduce;

Var

Begin

i integer;

PP[0] := mat[0,1]}/mat[0,0]:




QQ[0] := mat[0,N]/mat[0,0]:
Fori:=1toN-2do

begin
PP[i] := mat[i,i+1])/(mat[i,i] - mat[i,i-1]*PP[i-1]):
QQIi] := (mat[i,N] - (mat[i,i-11*QQLi-11))/
(matli,i] - (mat[i,i-11*PP[i-11)):
end;

QQIN-1] := (mat[N-1,N] - (mat[N-l,H-E]*QQIN—Z]]}I
(mat[N-1,N-1] - (mat[N-1 N-2]1¥PP[N-2]));
End;

Procedure Back Subsitution,

Var  i:Integer;

Begin
mi[N-1] := QQIN-1};
For i := N-2 Downto 0 do
begin
mi[i] := - (PP[il*mi[i+1]) + QQIil:
end,
End;

Procedure Fine_delta_s(xi,xi_l xi_2,51,5i_1 Si_2:Real ; Var delta:Real);
Var deltal,delta2 : Real;
Begin

deltal := (Si_1 - SiM/(xi_1 - xi);

delta2 = (Si_2 - Si_1)/(xi_2 - xi_1);

delta := delta2 - deltal;

End;

Function qq_i(qgil:real):Real;

Begin




qq_i := 1/(6 + 6*qil +2*qil*qil);
End;

Function Sine_(g4.t: real):real;
Var qqq: real;
Begin
qqq =qq-i(gd):
Sine_ = (((3*Sqr(t))*(1+q4*(1-1)) + g4*(t*t*1))/Sqr(1+g4*(1-1))) * qqq;
end;

Function sin_(i:integer ; XX,q21,h:Real):Real;
Var t4: Real;
begin
t4 = (XX - T[i])/h;
sin_ :=h*Sine_(q21,t4);
End:

Function phi_(i:integer ; XX,p21 Jh:Real):Real;
Var  t3: Real;

Begin

(3 = (XX - T[i]¥h;

phi_ :=-Sine_(p21,1-t3) * h:
End;
Function Sine(g3,t : Real) : Real;

Var  qqqq : Real:
Begin

qqqq = qq-i(q3);

Sine := ((t*t*t)/(1+q3*(1-1)))*qqqq;
End;

T2




Function sin(i:integer ; XX,ql 1,h:Real):Real;
Var  t2: Real;
Begin
t2 .= (XX - T[i])/h;
sin:= Sine(qgl 1,t2)*(h*h);
End;

Function phi(izinteger ; XX,p11,h:Real):Real;
var t5 ; real;
Begin
t5 = (XX - T[i])/h;
phi := Sine(p11,1-t5)*(h*h);
End;

Procedure Fine_a_i(i:integer; XX,pl.hureal ; Var a_i:Real);
Begin

a_i :=-phi(i,xx,p1,h) - h*phi_(i,xx,pl.h};
End;

Procedure Fine_b_i(i:integer; XX,ql.h:real ; Var b_i: real);
Begin

b_i = -sin(i.xx,q1,h) + h*sin_(i,xx,q1,h);
End;

Procedure MakeDelta(N : Integer; T.X.,Y : Arrl).
Var  1:Integer;

delta_x.delta_y : Real;
Begin

for i:=1 to N-2 do

begin

Fine_delta_s(T[i-11,T[i), T[i+1],X[i-1].X[1].X[i+1 ].delta_x);
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End;

Procedure

war

Begin

del_x[i] := delta_x;

Fine_delta_s(T[i-1], T[], T[i+1],Y[i-1,YQOL.Y [i+1].delta_y):

del_y[i] := delta_y;

end;

h, h1,a_i, b_i : Real;

i,j :integer;

qi = pi;
FillChar(mat,Sizeof{mat),0);
mat[0,0] :=1:

mat[ON] =del_0;

mat[N-1,N-1] == 1;
mat[N-1,N] :=del_n_I;

For i:=01to N-3 do

begin
h :=T[+1] - Tli]:
hl:=T[i+2] - T[i+1];

Fine_a_i(i+1, T[i+1], pili], hl, ail;
Fine_b_i(i, T[i+1], qilil, h, b_i ),

mat[i+1,i]  := phi(i, T[i], qi[i], h)/h;
mat[i+1,i+1] := (b_i/h +a_i/hl);

mat[i+1,i4+2] :=sin(i+1, T[i+2], qili], h1)/h1;

mat[i+1,N] :=delta[i+1]:

end;
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h := T[N-2] - T[N-3]:
hl:=T[N-1] - T[N-2];

Fine_a_i(N-2, T[N-2], pi[N-2], hl,a_i );
Fine_b_i(N-3, T[N-2], gi[N-2], h, b_i );

mat[N-2,N-3] := phi(N-3, T[N-3], qi[N-2], h)/h;
mat[N-2,N-2] :=(b_i/h +a_i/h1):

mat[N-2,N-1] :=sin(N-2, T[N-1]. qi[N-2], h1)/hl;
mat[N-2,N] :=delta[N-2];

FowReduce;
Back_Subsitution;

End;

Function Ipoint(var U:real; N:integer; var X:arrl):integer;
Var  i1k:integer:
Begin {Ipoint}
For I:=0to N-2 do
If (x[i]<=U) and (U<=x[i+1]) then k:=i,
Ipoint:=k;
End {Ipoint};

Function Seval(N:integer; xx,gicreal ; TT,X,Mi : arrl) : real;
var | :integer;
hl,t: Real;
const i:integer=0;
Begin { Seval }
i := Ipoint(xx,N,TT);
hl:= TT[i+1]-TT[i];
t:=(xx-TT[i]V/hl;
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Seval := (X[i] - Phi(i,TT[i],qi,h1)*mi[i])*(1-t) + (X[i+1] -Sin(i, TT[i+1].qi,h1)
*mi[i+1])*t+Phi(i,xx,qi,h1)*mi[i]+Sin(i,xx,qi,h 1)*mi[i+1];
End {Seval};

Procedure Graphics(N:integer; X1,Y1,X2,Y2,X3,Y3,X4,Y4:arr2);
var a,b,p,xv1,xv2,yvl,yv2 Ylow,Yhigh:real;
ErrCode.grDriver,grMode,i,l : integer;

st @ string;

Function I1(x:real):integer;
begin
Il := trunc((xv2-xv1)*(x-a)/(b-a)+xvl)
end;
Function 12(y:real):integer;
begin
12 := trunc((yv1-yv2)*(y-Ylow)/( Yhigh-Ylow)+yv2)

end:

Begin {Graphics}{ Choice of scale }
xv1:=0; xv2:=630; yv1:=0; yv2:=349;
a:= X1[Start]; b :=a;
{a:=X2[Start]; b:=a;}

{a:= X3[Start]; b:=a;}
{a:= X4[Start]; b := a;}
for i:= Start+1 to Stop do
begin

p:=XI[il;

if p<a then a:=p;

if p>b then b:=p;

{p:=X2lil;




if p<a then a:=p;
if p>b then b:=p;}

(p:=X3[i;
if p<a then a:=p;

if p>b then b:=p:}

{p:=X4[i];

if p<a then a:=p;

if p=b then b:=p:}
end;
Ylow:=Y I[5tart]; Yhigh:=Ylow;
{Ylow:=Y2[5tart]; Yhigh:=Ylow;}
{Ylow:=Y3[Start]; Yhigh:=Ylow;}
{Ylow:=Y4[Start]; Yhigh:=Ylow:}
for i:= Start+1 to Stop do
begin

p:=Y1[il;

if p<Ylow then Ylow :=p;

if p>Yhigh then Yhigh:=p;

[p=Y2[i];
if p<Ylow then Ylow :=p;
if p>Yhigh then Yhigh:=p;}

{p:=Y3[il;

if p<Ylow then Ylow :

Il

P
if p>Yhigh then Yhigh:=p:}

{p:=Y4[il;
if p<Ylow then Ylow :=p:
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if p>Yhigh then Yhigh:=p:}
end;
Ylow := Ylow-0.5;
Yhigh := Yhigh+0.5;

{ Initialization of Graphical Regime }
grDriver:=3; grMode:=1; InitGraph({grDriver,GrMode,'c:\tp\bgi');
ErrCode:=GraphResult; if Not (ErrCode=grOk) then
begin RestoreCrtMode;

WriteLn('Graphics error:',GraphErrorMsg(ErrCode)); exit
end;
{ Clear of the screen }
SetBkColor(black); ClearDevice;
{ Drawing of the axis }
SetLineStyle(SolidLn,0,3); SetColor(white);
if(a*b<=0) then line(11(0),12(Ylow),I1({0),I2(Yhigh)).
if(Ylow*Yhigh<=0) then begin SetLineStyle(SolidLn,0,1
Line(I1(a),12(0),11(b).12(0)) end:
{ Drawing for the graph of the function }

SetLineStyle(SolidLn,0,0); SetColor(red);
MoveTo(T1(X1[Start]),12(Y 1[Start])):

for i:= Start+1 to Stop do
LineTo(I1(X1[i]),12(Y 1[i])); Readkey;

{SetLineStyle(SolidLn,0,0); SetColor(white);
MoveTo(I1(X2[Start]),I12(Y2[Start]));

for i:= Start+1 to Stop do
LineTo(I1(X2[i]),12(Y2[i])); Readkey;}

{SetLineStyle(SolidLn,0,0); SetColor(green);




MoveTo(I1(X3[Start]),12(Y3[Start])):
for i:= Start+1 to Stop do
LineTo(I1(X3[i]),12(Y3[i])); Readkey:}

{SetLineStyle(SolidLn,0,0); SetColor(yellow);
MoveTo(I1(X4[Start]),12(Y4[Start])):

for i:= Start+1 to Stop do _
LineTo(11(X4[i]).12(Y4[i])); Readkey;}

for i:=0to NN-1 do

begin
PutPixel(I11(X[i])-1,12(Y[i]).LightRed);
PutPixel(I1(X[1])+1,12(Y[i]),LightRed);
PutPixel(I1(X[i]),12(YTi]),LightRed);
PutPixel(I1(X[i]),12(Y[i])-1,LightRed);
PutPixel(T1(X[i]).I2(Y[i])+1,LightRed);

end;

ReadKey;

CloseGraph

End: {of Graphics}

Function Norm(x1,y1,x2,y2,l:real):real;
Var  Temp : Real;
Begin
Temp ;= Sqrt( sqrix1-x2) + sqr(y1-y2) );
Norm = exp(l*In(temp));
End;

Procedure Input_Tension;
Begin
pi[0] :=0.;

79




pi[1]:=0.;
pil2] =0
pi[3] = 0.
pi[4] :=0.;
pi[5] :=0.;
pil6] :=0.:
pi[7]:=0.;
pi[8] :=0.;
pi[9] :=0.;

qi := pi:
End;
Procedure Input_Tensionl;
Begin

pil0] == 1;
pi[1] := 11;
pi[2] := 10;
pi[3] := 16:
pi[4] := 35;
pil5] :=5.5:
pi[6] :=3.8;
pil7] =4
pi[8] := 5.
pil9] =2

start :=0;
stop := 100;
qi = pi;




End:

Procedure Input_Data;

Begin
X[0] :=0;
X[1] :=2;
X[2] =3;
X[3] :=5;
X[4] :=6;
X[5] :=8§;
X[6] =9
X[7] =11
X[8] =12
X[9] =14
X[10] =15
Y[0] :=10;
Y[1] :=10;
Y[2] := 10
Y[3] =10,
Y[4] := 10;
Y[5] :=10;
Y[6] = 10.5;
Y[7] :=15;
Y[8] =56,
Y[9] =60
Y[10] := 85;
a:=0;




Procedure MakeT(1l:Real);

Var
Begin

End:

i: Integer;

Sum :=0;

For i:z=0to N-2 do

Sum := Sum+Norm(X[i+1],Y[i+1],X[i],Y[i].]);

T[O] :=a;

For i:=1 to N-1 do

T[i] := T[i-1]+Norm(X[i],Y[i],X[1-1],Y[i-1],[)*(b-a)/Sum;

Procedure MakeSpline(l:real:Var S1,52: Arr2);

Var

Begin

Temp : Real;
L1.Z : Integer;
FFF : Text;

MakeT(l);
MakeDelta(N, T, X,Y);

Spline (N, T, X, Del_x, del_x[0], del_x[N-1], mi);

mi_for_x := mi;

Spline (N, T, Y, Del_y, del_y[0], del_y[N-1], mi);

mi_for_y := mi;

N1:=10%(N-1);

forj := 0to N-2 do

begin
Temp = (T[J+1]-TI])/10;
fori:=1to 10 do

g2




begin
U := T[j]+(i-1)*Temp;
Z :=j*10+i-1;
$1[Z] := Seval(N, U, qi[j]. T, X, mi_for_x);
S2[Z] := Seval(N, U, qifj]. T, Y, mi_for_y);
P[Z] =U;

end;

end,

U := T[N-1];
S1[N1] := Seval(N, U, gi[N-2]. T, X, mi_for_x});
S2[N1] := Seval(N, U, gi[N-2], T. Y, mi_for_y):
P[N1] :=U;

Assign(FFF,'UULDAT');

Rewrite(FFF);

For I:= 0 to 100 do
Writeln(FFF,P[1]," " SI[1]);

Close(FFF);

Assi gn(FFF,'UUZ.DhT'};

Rewrite(FFF);

For I:= 44 to 67 do

Writeln(FFE,P[1]," ".S2[1]);

Close(FFF);
End;
(*
[ Monotonicity Preserving Parametrizatin Algorithm }
Procedure Find_Alpha(fi fi_1,fi_2:real ; Var condition:char ; Var alpha:real);
Begin

{ Case A}
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If (fi_1 - fi)*(fi_2 - fi_1) > 0 then

begin
alpha = (fi_1 - fi)/(fi_2 - fi);
condition :="A"
end Else
[ Case B }
If (fi_1 - fi)*(fi_2 - fi_1) < O then
begin
Alpha = sqrt(abs(fi_1 - fi))/sqrt(abs(fi_l-fi)+abs(fi_2-fi_1));
condition ='B"
end Else
{ Case C }
begin
If (fi=fi_1) and(fi_1=fi_2) then Alpha :=0.5 {any const} else
If (fi=fi_1) and(fi_l<>fi_2) then Alpha := epsilon else
If (fi<>fi_1)and(fi_1=fi_2) then Alpha := 1-epsilon ;
condition :="'C";
end;

End;

Procedure Find_min_max(fi,fi_1.fi_2 tizreal ; Var min,max,alpha:real};

Var  condition : char:

Begin

Find_alpha(fi,fi_1,fi_2,condition,alpha);

If Condition="A' Then

begin
min := 1-sqrt((fi_2 - fi_1)/(fi_2 - f1));
max ;= sqrt((fi_1 - fi)/(fi_2 - fi));
min := ti+min;
max := t+max;

end Else




End;
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begin
min := ti+alpha;
max := ti+alpha;

end;

Procedure MakeT2(l:real);

Var

Begin

i : Integer;

Tx_min, Tx_max, Ty_min, Ty_max : Real;

T min, T_max : Real;
a_,a_,di,di_l,t_l : real;
a_x_i,a_y_i : real;
condition : char;
T[O] := a;

a =0

ti_l:=0;

For i:=0 to N-3 do

begin
di :=Norm(X[i+1],Y[1+1].X[i].Y[i].1);
di_1:=Norm(X[i+2],Y[i+2].X[i+1].Y[i+1].1);
a_ c=dif{di+di_1);
Find min_max(x[i],x[i+1].x[1+2].,t[i], Tx_min, Tx_max,a_x_i);
{Find open set Txi and find alpha_x}
Find_min_max(y[i]?}r[iﬂ],y[i+2],t[i],T}'_min,T}f_max,a_y_i};
{Find open set Tyi and find alpha_y}

If Tx_min > Ty_min Then T_min := Tx_min Else
T_min := Ty_min:

If Tx_max > Ty_max Then T_max := Ty_max Else
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T _max = Tx_max;
{ Find intersection of Txi and Tyi }
ti_1:=T[i]+a__;

If (T[i]+a__>=T_min) and (T[i]+a__<=T_max) Then ti_1:=T[i]+a__;

If (T_min>T_max)or((T[i]+a__)<T_min)or({T[i]+a__)>T_max) Then

begin
If (Tx_min>=Ty_min)and(Tx_max<=Ty_max) Then
{ Txiissubsetof Tyi } a_:=a_x_ielse
If (Ty_min>=Tx_min)and(Ty_max<=Tx_max) Then
{ Tyiissubsetof Txi } a_:=a_y_ielse

a_:=(a_x_i+a_y_i)/2;

ti_1:=T[i] +a_;

end;

Th+1]:=ti_1;
end;
T[N-1] := T[N-3]+1:
End;

Procedure MakeSpline1(l4:real; Var S1,52: Arr2);
Var Temp : Real;

L1.Z : Integer;

FFF : Text;
Begin

MakeT2(14);

MakeDelta(N,T,X,Y);

Spline (N, T, X, Del_x, del_x[0], del_x[N-11, mi);

mi_for x :=mi;
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Spline (N, T, Y, Del_y, del_y[0], del_y[N-1], mi);

mi_for_y := mi;

N1 := 10%(N-1);

forj:=0to N-2do

begin
Temp = (T[J+1]-TI])/10;
fori:=1to 10 do

begin
U :=T[j]+(i-1)*Temp;
Z = j*104i-1;
S1[Z] := Seval(N, U, qi[j], T, X, mi_for_x);
S52[Z] = Seval(N, U, qi[j], T, Y, mi_for_y):
P[Z] =,
end;
end;
U :=T[N-1];

S1[N1] := Seval(N, U, gqi[N-2], T, X, mi_for_x);
S2[N1] := Seval(N, U, qi[N-2], T, Y, mi_for_y);
P[N1] :=U;

Assign(FFF,'h:\Prs3.DAT");

Rewrite(FFF);

For I:=0to N1 do
Writeln(FFF,P[1]," "SI[I]

Close(FFF);

Assign(FFF,'h:\Prs4. DAT').
Rewrite(FFF);
For =0 to N1 do




Writeln(FFE,P[1]," ".S2[1]):
Close(FFF);
End;
*)
BEGIN {main program }
ClrSer,
Write('Tnput 11 : '); Readln(l1);
{Write('Input 12 : '); ReadIn(12);}
[Write('Input 13 : ); ReadIn(13); }
{Write('Input 14 : '); ReadIn(14); }

input_data;

input_Tension;

del_x[0] :=-1;
del_x[N-1] :=-1;
del_y[0] =0

del_y[N-1] =21,
MakeSpline(11,X1,Y1);

{del_x[0] :=-1;
del_x[N-1] :=-1;
del_y[0] =10
del_y[N-1] :=21:
MakeSpline(12,X2,Y2);}

{del_x[0] :=-1;
del _x[N-1]1 :=-1;
del_y[0] = O;
del_y[N-1] :=21;




MakeSpline(13,X3,Y3);}

{input_Tensionl;

del_x[0] :=-1;
del_x[N-1] :=-1;
del_y[0] := 0

del_y[N-1] :=21;
MakeSpline1(14,X4,Y4);}

Graphics(N1,X1,Y1,X2,Y2,X3,Y3,X4.Y4);
END. {Program}
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