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Chapter 1

Introduction

The unconstrained minimization problem is considered as one of the
important problems in continuous optimization, both in theoretical and
application aspects. For the theoretical aspect, the problem involves a wide range
of mathematical subjects, from fundamental subject such as advanced calculus,
mathematical analysis and linear algebra, to the advanced subjects such as func-
tional analysis, differential geometry and operator theory etc. For the application
aspect, the problem always has its place in many practical or real-world problems
in various disciplines such as science, engineering, economics, computer graphic
design etc. The latter aspect also leads to the continuous development of com-
putational methods for solving the unconstrained minimization problems, as no
single all-purpose algorithm can handle a variety of unconstrained minimization
problems, in particular those arising from real-world problems.

The class of objective functions in the unconstrained minimization
problems considered here will be restricted to the class of continuous differentiable
functions on R". This restriction makes the unconstrained minimization problem
equivalent to solving a system of n equations with n unknowns. Determining a
minimizer of an objective function is, in general, not easy, as for the problem
of solving a system of nonlinear equations. Since, many factors involve in the
iterative process, such as the choices of starting points, the choices of directions
for searching for the minimizer, the criteria for determining a step length along

the search direction, the complexity in computing the Hessian, in particular, when



dealing with problems with high dimensions etc. For these reasons, many methods
have been developed and are still being continuously developed to solve the un-
constrained minimization problems efficiently. Some well-known and classical
methods are the steepest descent method, Newton method, conjugate gradient
method and the quasi-Newton methods. Some other methods, such as opti-
mization bisection (OPTBIS) method for imprecise function and gradient val-
ues (Vrahatis, M.N., Androulakis, G.S., and Manoussakis, G.E. (1996)) and a
dimension-reducing (DROPT) optimization method (Grapsa, T.N. and Vrahatis,
M.N. (1996)) have also been recently developed. However, most of the methods
share one common task, i.e., how to construct the suitable search directions for
locating the minimizer. The efficiency of the method therefore relies very much
on the choices of search directions.

Newton’s method for unconstrained minimization problems is analogous
to the Newton’s method for solving nonlinear equations. As this method re-
quires the computation of the Newton direction from the inverse of the Hessian
of the objective function. The attractive feature of this method is that it pro-
duces a sequence of iterates which converges quadratically to the minimizer if the
starting point lies sufficiently close to the minimizer. In this sense, it is a local
method. However, the computation of the Hessian in each iteration makes this
method less attractive when the dimension of the problem is high. Consequently,
some modifications on the Hessian computation or approximations of the Hessian
were developed. One approach is to construct the least change secant update for
approximating the Hessian. Some well-known updates, such as, symmetric rank-
one (SR1) updates, Davidon-Fletcher-Powell (DFP) update, Broyden-Fletcher-
Goldfarb-Shanno (BFGS) update were then developed. For details of the devel-

opment of these updates for Hessian approximations can be found, for example, in



Nocedal, J. and Wright, S. J. (1999), Kelley, C.T. (1999), Luenberger, D.G. (1984)
and Dennis, J.E., JR. and Schnabel, R.B. (1983). The method which employs this
modified Newton direction is called the variable metric method or quasi-Newton
method. The framework of the Newton method is still used for this method. The
only difference is that the true Hessian is replaced by the Hessian approximation.
Two efficient updates which are usually employed for achieving the Hessian ap-
proximation are Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-
Shanno (BFGS) updates. Both updates preserve the positive definiteness of the
inverse Hessian approximation. The quasi-Newton method, using the BFGS up-
date (or DFP update) was proved to produce a g-superlinearly convergent method
(Broyden-Dennis-Moré, 1973) under the suitable choices of the starting point and
initial Hessian approximation. In 1997, Liao, A. modified the BFGS update and
gave the convergence results. Li, D-H. and Fukushima, M. (2001) modified the
update for nonconvex minimization and also established the convergence results.
For the trust region method, the symmetric rank-one update is found to be more
suitable as the Hessian approximation produced is close to the true Hessian. The
global convergence of the trust region method was shown by Conn, A.R., Gould,
N.I.LM. and Toint, Ph.L. (1991) under the suitable conditions. In 1989, Luksan,
L. improved the variable metric methods based on the controlled scaling and on
the pertinent combination of the rank one method with other variable metric
methods. Recently, a new variable metric method for large scale cases has been
introduced by Vléek, J. and Luksan, L. (2002). Moreover, they suggested some
modifications and improvements of reduced-Hessian methods.

The conjugate gradient direction was first proposed by Hestenes and Stiefel
in 1950. It was initially investigated for a convex quadratic function. It turned

out that for this specific case, a number of interesting theoretical and geometrical



results were found, such as, the conjugacy condition, the finite termination prop-
erty, the expanding subspace minimization, and the Krylov subspace relations.
Details and proofs of these properties, can be found in Nocedal, J. and Wright, S.
J. (1999), Nazareth, L. (1979) and Buckley, A. (1978). For dealing with a more
general class of problems, the conjugate gradient direction was then modified by
Fletcher and Reeves in the 1960s. Many methods were then developed based on
their ideas and some are widely used in practice. Two well-known methods are
Fletcher-Reeves (FR) and Polak-Riebiére (PR) methods. The convergence prop-
erties of these methods are discussed, for example, in Nocedal, J. and Wright, S.
J. (1999), Dai, Y.H., Han, J., Liu, G., Sun, D., Yin, H. and Yuan, Y-X. (1999),
Grippo, L. and Lucidi, S. (1997) and Dai, Y.H. and Yuan, Y-X. (2000). In 1977,
Powell proposed a restart strategy for the conjugate gradient method to improve
the convergence. Recently, the new efficient restart strategy has been introduced
by Luksan, L. (1991). Nonetheless, it tends to be very sensitive to round off error.

The investigations in this thesis will utilize the framework of the line search
procedure with different criteria for choosing the scalar or step length along the
search direction. The Armijo’s rule (Luenberger, D.G. (1984)), backtracking tech-
nique (Dennis, J.E.; JR. and Schnabel, R.B. (1983)), Wolfe conditions, Strong
Wolfe conditions (Nocedal, J. and Wright, S.J. (1999) and Fletcher, R. (1987)),
for choosing the step length will be used here. Various search directions such as
the steepest descent, quasi-Newton and conjugate gradient directions are used as
the search directions. These directions will be also used in such a way that they
are combined to produce the hybrid directions. The behaviours and performances
of the constructed hybrid directions will be tested on some standard test prob-
lems for unconstrained minimization problems from Moré, J.J. et al. (1981). The

idea of producing such a hybrid direction will serve as the basis for further de-



velopment especially for parallel computation, as these direction can be produced
independently.

The proposed research will therefore focus on two main aspects. The first
one is to investigate the theoretical aspects and properties related to the combined
directions for solving unconstrained minimization problems within the line search
framework. The ideas are based on minimization on a linear variety, i.e., instead of
searching along a single direction, the line search is performed along a combined
direction so that the minimizer along this combined direction will be as close
as possible to the minimizer of the objective function on the linear variety. The
combined directions will be constructed based on the quasi-Newton and conjugate
gradient directions. The second one is the computational aspect, i.e., to develop a
numerical method and implement it for observing the performances and efficiency
of the combined directions on the standard test problems from the collection of
Moré, J.J., et al. (1981). The effects of the choices of the step length based on
various criteria will also be tested numerically.

The search directions will be restricted to the quasi-Newton directions
based on the BFGS update and the CG directions based on the Polak-Riebiére
(PR) choice of the scalar and also the steepest descent directions. The numerical
investigations will be based on the four combinations of these three directions with
various values of the scalar multiples in the linear combinations. These choices
only serve as the preliminary directions for investigation.

The investigation proposed here should help establish another approach
for solving the unconstrained minimization problems. It is intended here that
the proposed method based on the line search along the combined direction will
serve as the basis for developing a parallel algorithm which will help speed up the

convergence and reduce the number of function evaluations.



The thesis contents consist of five chapters. Chapter I presents the
literature survey on the methods for solving the unconstrained minimization
problems, emphasizing on the line search framework and well-known search
directions. Chapter II presents the theoretical background of the search directions
and the line search procedures. Some advantages and disadvantages of the
presented search directions are also discussed in Chapter II. Chapter III presents
the theoretical properties related to minimization on a linear variety and a
numerical algorithm based on the hybrid directions within the line search
framework will be proposed. The numerical results and discussion of the
performances of the proposed hybrid directions on the standard test problems
are given in Chapter IV. Finally, the conclusion is presented in Chapter V, and

the FORTRAN program is given in the Appendix.



Chapter II

Line Search Procedures and Search Directions

The problem considered here is an unconstrained minimization of a

nonlinear function in n real variables, f : R* — R

min f(z). (2.1)

There are various methods for solving this problem. The line search framework
is often used as one of the approaches for solving this problem. The line search
framework can be formulated as follows:

Given a starting point zy, the sequence {z;} generated in the line search

framework takes the form
Tk41 :xk"'/\kdk; k= 0,1,2,... (22)

where dj, is the search direction which has to be a descent direction at x; and
Ax 1s a positive scalar reflecting the step length taken in the dj direction. There
are various strategies in constructing the search directions which involve a lot of
theoretical considerations as discussed in Dennis, J.E., JR. and Schnabel, R.B.
(1983), Kelley, C.T. (1999) and Nocedal, J. and Wright, S.J.(1999) and also the
computational methods. The properly chosen step lengths also play a very im-
portant role for successfully locating the minimizer of f as well as the convergence
speed of the sequence {xy} to the minimizer of f. Some properties of the search
directions and the criteria for choosing the step length are briefly discussed in the

following sections.



2.1 Search Directions

2.1.1 Steepest Descent Directions

The basic method for unconstrained optimization is the classical
steepest descent (SD) method which makes use of the gradient of f, Vf(z), at
each iteration. As it is known that the maximum decrease of f from the point
x is along the negative of the gradient of f at z. The search direction for this
method is then called the steepest descent direction and in each iteration of the

line search, the search direction is taken to be
dZD = —9k, (23)

where gr = V f ().
The convergence analysis of this method is based on the investigation of

applying this method to find the minimizer of the convex quadratic function

() = %xTQx — b7z, (2.4)

where @) is an n X n symmetric positive definite matrix. The minimizer for this

quadratic case is, in fact, the unique solution, x*, of the linear system,

Qzr =b. (2.5)
As introduced in Luenberger, D.G. (1984), the error function,

B(z) = (a—2)"Q(a — 7*) = §(x) + 52 TQa", (2.6)

is used instead of the initial objective function for analyzing the convergence of
the steepest descent method. Using the exact line search, that is, solving for the

value of \; which minimizes the function of a single variable A

h(A) = d(xr — Agr), (2.7)



where g = Vé(zr) = Qxp — b. It was shown in Luenberger, D.G. (1984) that at
iteration k,

e,Umax - e,Umin
e/Uma,x + 6/Umin

E(zk41) < 2E($k), (2.8)
(e

or
Bl < (722 By (29)

Tetr1) = 1 Tk), .
where ev,,. and ewv,;, are the largest and smallest eigenvalues of the Hessian of

[ at z*, V2f(x*), respectively, and 7 = €Upq./€VUmin, is the ratio of the largest to
the smallest eigenvalue. The inequality (2.8) shows that from any starting point
Zg, the steepest descent method converges to the unique minimizer z*. However,
the rate of convergence depends on the ratio » which will cause slow convergence
as this ratio increases when the largest and the smallest eigenvalues are very much
different.

For the nonquadratic case, the steepest descent method should be imple-
mented with the inexact line search. The exact line search is not appropriate
for computation in this case as it involves an exact one-dimensional minimization
problem in each iteration. Therefore, only a suitable scalar A in (2.7) which
guarantees the sufficient decrease of the value of function f in the direction dj
is required. The steepest descent method when applied to a nonquadratic func-
tion, with either exact or inexact line search, and under some mild assumptions,
can be shown to converge to a local minimizer or saddle point of f(z). That is,
if the steepest descent method produces a sequence {z;} converging to a local

minimizer 2* where the Hessian V2 f (z*) is positive definite, and ev,,,, and ev,;,

max

are the largest and smallest eigenvalues of V2 f(z*) , then it can be shown that
{1} satisfies

P * _ .
||33lc+1 z || <e, ¢ = €VUnmax €Umm' (2.10)

lim sup
evmax + evmin

kooo |z — 2|
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As in the quadratic case, the convergence is linear and the convergence rate
depends on the largest and smallest eigenvalues of the Hessian of f at the
minimizer z*.

In 1966, Armijo modified the steepest descent method by proposing the
scheme for adapting the step length Ay in (2.2) and also gave the convergence

result as stated in the following theorem.

Theorem 2.1.
Suppose that the objective function f : R* — R satisfies the following

conditions:

1. f is continuous and bounded below on R",

2. For a given xo € R*, f is continuously differentiable on the bounded
level set L(xg) = {z : f(z) < f(zo)},
3. f has a unique minimizer x* € R",
4. Vf(z) =0 is satisfied for x € L(xy) if and only if v = z*,
5. Vf is Lipschitz continuous on L(xo).
Let Ay = Xo/2™ 7Y, m =1,2,..., where \q is any assigned positive number. Then

the sequence {xy} generated by
T = Tp + Am 57, k=1,2,... (2.11)
where A\, = Xo/2™ " and my, is the smallest positive integer for which
P+ A7) < Fle) + SAm Y F (o) (2.12)
converges to the minimizer * of f.

The advantages of the steepest descent method under the line search

framework can be described as follows:
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1. The computation of the search direction in each iteration is simple, since
only the gradient of the function at the current iterate is required, i.e.,
dr = =V f(z).

2. The search direction being descent can always be assured since

dr = —V f(zy,) satisfies the following condition:

V f(xx)"dy < 0. (2.13)

3. The method is a global method if the scalars A chosen along the steepest

descent directions satisfy
flzp + Mdi) < f(x1) + oAV f(21) Tdy (2.14a)

or

f@ra1) < flae) + oV f(zi)  (@rs1 — ), (2.14b)
for some fixed constant a € (0, 1), and
Vf(@rr1) Tde = V f (g + Ady) Tdy > BV f (1) Tdi (2.15a)
or

Vf(zer1) " (@re1 — 2x) > BV f(2r) " (2541 — 21), (2.15b)
for some fixed constant § € («, 1).

The above two conditions (2.14) and (2.15) are known as Armijo and Goldstein’s
conditions.
Some disvantages of the steepest descent method are discussed for example

in Vrahatis, M.N., et al. (2000). They are as follows:

1. Each iteration is calculated independently of the others, that is, no

information is stored and used to help accelerate convergence.
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2. It is not generally a finite procedure for minimizing a convex function.

3. The rate of convergence depends strongly on the morphology of the objective

function.

2.1.2 Newton Directions

The idea for constructing the Newton direction is based on the

following local quadratic model of f about the current iterate xy,
1
my(xr +d) = fa) + V(ze)Td+ idTVQf(xk)d. (2.16)

The minimizer of this model (2.16) is the point zy + di, where Vmy(zy + di) = 0,

or dj, satisfies,

The search direction is then called the Newton (N) direction. Denote this direction

by d}/, and in each iteration dj is given by

¥ =~ [V F ()] TV (). (2.18)

As for solving the system of nonlinear equations, it is required that the Hessian
in (2.18) has to nonsingular and moreover positive definite for this problem for
di to be a descent direction. The corresponding step length A, in (2.2) for the
Newton direction is, in general, taken to be 1. Since this will help capture the
fast local quadratic convergence when the iterates get closer to the minimizer of
f as in the case of the Newton direction when applied to find the roots of the
nonlinear functions.

However, the Newton direction has some restrictions. Specifically, if the
starting point is too far from a minimizer, the Hessian, V2f(z;), may not be

positive definite and the local quadratic model will not have a local minimizer,
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and the local linear model of V f(x), will have a root which corresponds to the
local maxima or saddle point of m,. For these reasons, some modifications were
introduced. As discussed in Dennis, J.E., JR. and Schnabel, R.B. (1983) and

Luenberger, D.G. (1984), the Hessian V?f(z;) is modified by taking
Hy, = V2f(ri) + el (2.19)

for some positive constant ¢, that makes Hj positive definite. Discussions and
references on how to obtain ¢, are provided in Dennis, J.E.; JR. and Schnabel,
R.B. (1983) and Luenberger, D.G. (1984). So, the modified Newton directions

provides the estimates of the minimizer as
Tep1 = Tk — MeHy, 'V f(21), (2.20)

where the scalar )\; has to satisfy conditions such as Armijo’s conditions,
Goldstien’s conditions or other conditions to be discussed later. However, )\
should be close to 1 when the iterates are close to the minimizer z*, where V? f (z*)
is positive definite and ¢ in (2.19) is close to zero.

Next, the statements of theorem on the convergence of the Newton method
are given. Details of the proof can be found in Dennis, J.E., JR. and Schnabel,

R.B. (1983), Nocedal, J. and Wright, S.J. (1999) and Kelley, C.T. (1999).

Theorem 2.2.
Let f be twice Lipschitz continuously differentiable on D C R™, that is,

there exists a constant v > 0 such that
IV2f (@) = VF@W)l < vl —yll, forall z,y € D.

Suppose further that V f(z*) = 0 and V2f(x*) is positive definite. Then there is

a 0 > 0 such that if vo € Ns(x*), the point generated by Newton direction

Thrn = 2 — [V2f ()] V f (@),
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converges q-quadratically to x*.

Some advantages and disadvantages of the Newton method can be

summarized as follows:

Advantages

1. The method generates the sequence which converges g-quadratically to
the minimizer if the objective function and the starting point satisfy the
conditions in Theorem 2.2.

2. The minimizer is found in one iteration if the objective function is strictly

convex.
Disdvantages

1. The Newton method is a local method.
2. The full Hessian has to be calculated in each iteration.
3. Solving a system of linear equations is required in each iteration and the

Hessian matrix may be ill-conditioned.

2.1.3 Quasi-Newton Directions

An alternative for the Newton direction is developed based on
approximating the Hessian in equation (2.17) by an n X n nonsingular matrix

By. The search direction then takes the following form,
dZ¥ = —B, 'V f(z1), (2.21)

and is called the quasi-Newton (QN) direction. Theoretical considerations and
development have lead to various forms of By in equation (2.21). The main

condition is to require that By, satisfies the multidimensional secant equation,

B;H_lsk = Yk, (222)
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where s, = 21—k, and yx = Vf(xp1) — Vf(x) . Equation (2.22) describes
an underdetermined system. Therefore, other conditions need to be imposed in
order to determine By ; uniquely. These conditions are discussed for example in
Nocedal, J. and Wright, S.J. (1999) and they lead to the so-called quasi-Newton
updates. Some important and widely used quasi-Newton updates are discussed

in the following.

Rank One Update
A well known rank one update is the Broyden’s update or secant update
which was proposed by Broyden, C. in 1965. It is mainly used for replacing the

Newton’s direction for solving a nonlinear system.
F(z) =0, (2.23)

where F': R* — R" and x € R". The major difference is that the Jacobian needs
not be computed in this approach. That is, the major ideas of this update is
an attempt based on the approximation of the Jacobian, J(z), by using the old
data and old Jacobian approximation in the previous iteration. The method for
solving nonlinear system (2.23) based on the Broyden’s update, or the Broyden’s
method, generates the sequence {zj} of the estimates of the root in (2.23) of the

form
Tpy1 = T — AI;IF(ﬁk) (224)

The Broyden’s update of A, for the next iteration is given by

(yk - AkSk)SZ

Agy1 = Ap + pe

: (2.25)

where sy = zx41 — 2 and y, = F(xg41) — F(xx). The update Ay, satisfies the
secant equation (2.22).
The objective of Broyden’s update is to save the amount of the

computation of Jacobian matrix required for the Newton direction. However,
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it is a local method which produces the iterates converging superlinearly to the
solution z* when the starting point z, is sufficiently close to z*, where J(z*) is
nonsingular and A, is also sufficiently closed to J(xg). In practice, the finite dif-
ference is used for obtaining are initial Jacobian approximation, Ay. The following

theorem gives the convergence results of the Broyden’s method.

Theorem 2.3. (Dennis-Moré, 1974)

Let D C R™ be an open conver set F': R* — R*, J(z}) € Lip, (D), 2* € D
and J(x*) nonsingular. Let { A} be a sequence of nonsingular matrices in R™*"
and suppose for some xo € D that the sequence of points generated by (2.24)
remain in D, and satisfies xp # x* for any k, and limy_,x) = x*. Then the
sequence {xy} converges g—superlinearly to x* in some norm || -||, and F(z*) =0,

if and only if

A — (&
i 1= T@)sill (2.26)
k=00 II'sk|l

where Sy = Tpy1 — Tg.

For the application to the minimization problems, this update is not
suitable because the update formula in (2.25) does not preserve the positive
definiteness, that is, Axy; may not be positive definite even if A is positive

definite.

Rank Two Updates
Some important and popular rank two updates for quasi-Newton methods

for unconstrained minimization problems are presented in the following.

(1) DFP Update

In 1959, Davidon, Wm.C. proposed a rank two update for solving uncon-

strained minimization problems and due to Fletcher, R. and Powell, M.J.D. that
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the update become popular. The Davidon-Fletcher-Powell (DFP) update for the

unconstrained minimization problems has the following form,

Bii1 = (I — yuesi) Be (I — veswyr) + Yl » (2.27)
with
1
Yk = .
"yl

Equation (2.27) shows that By is updated in each iteration to get the new
approximation to the Hessian, By, . However, to save the amount of compu-
tations and to avoid the factorization By in each iteration, the inverse form
of Byj.1, denoted by Hy.i, can be obtained by using the Sherman-Morrison-

Woodbury formula (A.1) as

Hyyry, Hy n SkS)

Hk_|_1 - Hk - ’
Y HrYr Yy Sk

(2.28)

where Hj; and Hy,;denote the inverse of Byand B,; respectively. Equation
(2.28) shows that the inverse Hy is updated to get Hy.i. The search direction is

then directly given by
d,?FP = —Hka(CCk). (229)

The DFP update is considered to be quite effective but it was soon replaced by the

BFGS update, which is considered to be the most effective quasi-Newton updates.

(2) BFGS Update
The quasi-Newton update which is widely used in unconstrained
optimization problems is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update.
As it exhibits the desirable property, that is, preserving positive definiteness.

The inverse update formula of the approximation of the inverse Hessian is

Hy1 = (I — prseyr ) He (I — pryesy) + pesese s (2.30)
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with

1
Pk = )
Yy Sk

and the search direction is therefore given by
dF% = —HpV f(xy). (2.31)
For this update, the curvature condition
Yy sk > 0, (2.32)

has to be satisfied in each iteration in order to preserve the positive definiteness,
given that the initial approximation, Hy, is symmetric positive definite.
Using the Sherman-Morrison-Woodbury formula (A.2), Equation (2.30)

can be transformed into

Bysys;, By N YkYy

s{ Bysg ylsy
which directly updates the Hessian approximation. For the convergence results

related to this update, Dennis, JE.JR. and Moré, J.J. (1974) gave the following

theorem.

Theorem 2.4.

If the function f is twice continuously differentiable in an open convex
set D, and assume that V?f € Lip,(D). Consider a sequence {xy} generated by
(2.2), where Vf(zg)Tdy, < 0 for all k and Ny is chosen to satisfy (2.52a) with
an a < 3, and (2.52b). If {zy} converges to a point z* € D at which V? f(z*) is
positive definite, and if

o IV ) + V2 F ()l
k—00 |||

0, (2.34)

then there is an index ko > 0 such that for all k > ko, Ay = 1 is admissible.
Furthermore, Vf(z*) = 0, and if A, = 1 for all k > ko, then {xy} converges

g-superlinearly tox* .
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In 1987, Byrd, R.H., Nocedal, J. and Yuan, Y-X. also gave the global
convergence results of a class of quasi-Newton methods on convex problems.
The interesting and efficient computational implementation of the quasi-Newton
methods based on a parallel algorithm design using the BFGS update was also
presented in Caprioli, P. and Holmes, M.H. (1998), and Chen, Z., Fei, P. and

Zheng, H. (1995).

(3) SR1 Update

The other important update is the symmetric rank one (SR1) update which

has the following form

(yx — Brsk)(yx — Brse) "

B =B
wH b (yx — Brsk) sk

(2.35)

By applying the Sherman-Morrison-Woodbury formula (A.1), the corresponding
update formula for the inverse Hessian approximation, H; can be obtained as

follows

(s — Hyyr) (sk — Hiy) T

Hyoy = Hy +
e ¢ (sk — Hrye) Ty

(2.36)

It can be seen that even if By is positive definite, By,; may not have this property;
the same is true for Hy ;. The matrices generated by the SR1 update formula
tend to be very good approximations of the true Hessian. In Conn, A.R., Gould,
N.I.LM. and Toint, Ph.L. (1991), the convergence of the sequence of the matrices
generated by the SR1 update was shown under suitable conditions. They also
pointed that by maintaining the positive definiteness of the update as in the case of
the BFGS update can cause some drawbacks. The first one is that the true Hessian
at points far away from the minimizer may not be positive definite and therefore
maintaining positive definiteness of the Hessian approximations is not appropriate

and the concept of the Hessian approximation has to be revised. The second one
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is that the true Hessian may be indefinite at the solution which lies in a feasible
region defined by bounds of variables or is subject to more general constraints.
However, the SR1 update has to implemented within a setting different from
the line search framework. The trust region which is another practical approach
for solving an unconstrained minimization problem provides the right setting for

implementing the SR1 update.

2.1.4 Conjugate Gradient Directions

The development of the conjugate gradient direction is based on
solving the convex quadratic problem. Later it is modified to cover a more general
class of unconstrained minimization problems, in particular, it works well for large
scale and smooth problems.

For the convex quadratic problem, that is, @) is positive definite in (2.4),

the search directions d; are required to satisfy the conjugacy condition
d/Qd; =0, forall i# j. (2.37)

For the formulation of conjugate gradient direction, the gradient of ¢ in (2.4) is

refered to as the residual of the linear system, that is
Vo(zr) = Qr —b=r(z). (2.38)
The first direction for solving (2.4) is the steepest descent direction,
do = —19 = =V f(x0), (2.39)
where 1z, is any starting point in R”. The iterates then taken the form

T1 = Tg + Qgdy, (2.40)
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where qy is the scalar which solves the exact minimization of ¢(z) along xy + ady.

The directions dj, for £ > 1, have the form

dy = =Tk + Brdi—1, (2.41)
where 7, = V() and
TRTk
= _————. 2.42
Br Tore (2.42)

The direction di in (2.41) is refered to as the linear conjugate gradient direction.

The end result is that the minimizer * of ¢ is obtained in n iterations, that is
Tt = Ty + Oéodo + C¥1d1 —+ 4 an—ldn—l- (243)

This is the so-called, finite termination property.

Next, some interesting theoretical results are reviewed without the proof,
the finite termination property, the conjugacy condition, the subspace relations
and the Krylov subspace relations etc. The detailed discussions can be found in

Luenberger, D.G. (1984) and Nocedal, J. and Wright, S.J. (1999).

Definition 2.1. (Conjugacy Condition)
A set of nonzero wvectors {dy, di, ..., dp} is said to be conjugate with

respect to the symmetric positive definite matriz Q if
dfQd; =0, forall i+ j. (2.44)

From this result, it follows that for any set of nonzero vectors which satisfies (2.44)

then these vectors are linearly independent.

Theorem 2.5. (Finite Termination Property)
For any xy € R™ the sequence {zy} generated by (2.40) converges to the

solution x* in at most n steps.
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Theorem 2.6. (Ezpanding Subspace Minimization)
Let o € R™ be any starting point and suppose that the sequence {xy} is

generated by (2.40). Then
rid; =0, fori=0,1,2,... k-1,
and xy, is the minimizer of (2.4) over the linear variety
{x‘x = zo + span{dy,di, ... ,dk 1}}.

Theorem 2.7. (Krylov Subspace Relations)
Suppose that the k—th iterate generated by the linear conjugate gradient

direction is not the solution point x*. The follounng four properties hold:

1) riri=0, fori=0,1,2,... k-1,

(1)
(2) span{ro,T1,... 71} = span{ry, Qry, Qry, ... ,Q*r},
(3) span{dy, dy, ... ,dy} = span{ry, Qro, Qry, ... ,Q*ro},
(4) dfQd; =0, for i=0,1,,2,... ,k—1.

Therefore, the sequence x) converges to x* in at most n steps.

Simple geometrical interpretation of the linear conjugate gradient direction
is also given in Nocedal, J. and Wright, S.J.(1999). If the matrix @ in (2.4) is
diagonal, the contours of the functions ¢(z) are elliptical with axes parallel to the
coordinate axes. The linear conjugate gradient directions are simply the coordi-
nate directions and therefore the one-dimensional minimization in each iteration
is carried out along the coordinate direction. If () is not diagonal, () can be trans-
formed into a diagonal matrix and the one-dimensional minimization occurs in the
transformed coordinate directions. The finite termination can then be achieved.

The amount of computation in each iteration of the conjugate gradient

direction is not greater than n?, because there is one computation of the matrix



23

and vector product, Qdj, two calculations of the dot product, d;Qdy and 7.7y,
and three vector sums. In fact, the linear conjugate gradient method is equivalent
to the Gaussian elimination for solving the linear system.

In general cases, the form of linear conjugate gradient directions can still
serve as the form of the search direction with some modifications on the scalar [y

n (2.41). The general forms of the conjugate gradient directions are as follows,

di = =V f(zk) + Brdp1, (2.45)

where [y, is a scalar subject to various choices due to Fletcher-Reeves (FR), Polak-

Ribiere (PR) and Hestenes-Stiefel (HS). These choices are

FR  _ (xk)TVf(xlc)
P V(e 1)TVf($k 1)’
PR Vf .Tk;)T(V Vf(.’Ek 1))

v VI xk)T(Vf(xk Vf(xk_l)).
’ (VF(zx) = V(zp1)) "o

However, all of ;’s in the above formulas coincide in the case where the objective
function is convex quadratic and the line search is exact. The performance of con-
jugate gradient directions in (2.45) depend on the these choices. The PR choice,
as discussed in Nocedal, J. and Wright, S.J. (1999) gives better performance than
the FR choice and not significantly different when compared with the HS choice.

In a large scale problem, it may be necessary to refresh the information as
the bad effects may accumulate. The restart is therefore recommended and the
simple choice is to restart by the steepest descent direction. That is, the search
direction (2.45) is replaced by the negative of the gradient at the current iterate.

The condition used to test when the restart is necessary is

‘vf(xk)va(fEk—l)‘
Vi) Vi) -

(2.47)
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where p is usually taken to be 0.1. The inequality (2.47) simply tries to detect
when the two consecutive gradients tend not to be orthogonal.

Another choice of restart was also proposed by Buckley, A.G. (1978). That
is, instead of the steepest descent direction, the BFGS update was used to generate
the search direction. The relationship between the BFGS and CG directions was
also investigated in Buckley, A.G. (1978) and Nazareth, L. (1979).

The convergence results for general nonlinear objective functions of the
conjugate gradient method with the FR choice are given in the following theorem

(Detailed proof can be found in Nocedal, J. and Wright, S.J.(1999)).

Assumption 2.1.
1. The level set £ = {z|f(z) < f(xo)} is bounded.

2. In some neighbourhood N of L, the objective f is Lipschitz continuously

differentiable, that is, there exists a constant L > 0 such that

IVf(z) = Vil < Lllw —yll, forallz,yeN. (2.48)

Theorem 2.8.
Suppose that Assumption 2.1 holds, and that the sequence of iterates {xy}
1s generated by conjugate gradient directions and the Fletcher-Reeves formula is

implemented with a line search that satisfies strong Wolfe conditions (2.53). Then
lim inf ||V f(zx)]| = 0.
k—o0

The above theorem can be applied to the conjugate gradient method with
the PR choice under the assumption that the function f is strongly convex and

the line search is exact.
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2.2 Conditions on the Step Lengths

There are two main approaches in selecting a step length along the search
directions in the line search framework.
2.2.1 Exact Line Search

The exact line search is to choose Ap > 0 which solves the exact
minimization of f(x) along xx+ Adg. That is, find A > 0 which solves the following

problem,

I§1>1(I)1f($k + Adg). (2.49)

2.2.2 Inexact Line Search

There are important conditions which are widely used in practical

implementation for selecting the step length along the search direction.

(1) The Armijo’s Conditions

The Armijo’s conditions require A to satisfy

where 0 < £ < 1. This inequality guarantees that ) is not too large and the next

condition is to ensure that A is not be too small. That is, choose A to satisfy
flze +nAdy) > f(ze) + EAV f(ax) "dy, (2.51)

where 7 is a positive integer. In practice, n = 2 or n = 10 and £ = 0.2 are usually

used (Luenberger, D.G. (1984)).

(2) The Wolfe Conditions

The Wolfe conditions are known as the sufficient decrease condition and
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ensure that the step length is not small along the search direction. The Wolfe

conditions require the step length A\ along the search direction dj, to satisfy

fxk 4+ Ady) < fag) + AV f(x) T di, (2.52a)

Vf(zy + Mdp)Tdy > BV f(zr) T dy, (2.52b)

where 0 < o < f < 1. The Wolfe conditions are used in most line search proce-
dures, and are particularly important when implemented with the quasi-Newton

search directions.

(3) The Strong Wolfe Conditions

The strong Wolfe conditions require A to lie in a broad neighbourhood of
a local minimizer or stationary point of f(zy + Ady). The step length A under the

strong Wolfe conditions has to satisfy

flar 4+ Ady) < flax) + @AV f(ax) T dy, (2.53a)

|V f(zr, + M) "die| < B|V f ()" dy

: (2.53b)

where 0 < o < 8 < 1. The only difference with Wolfe conditions is that the
derivative f'(A\x) = Vf(zx + M\edi)?dy, is not allowed to be too positive. The
strong Wolfe conditions is used in the implementation with the conjugate gradient
directions.

In practice, a is chosen to be 107%, S is chosen to be 0.9 when the
search directions d; are Newton or quasi-Newton directions, and 0.1 when dj

is a nonlinear conjugate gradient direction.

(4) The Goldstein Conditions

The Goldstein conditions are similar to the Wolfe conditions. They guar-

antee that the step length A provides sufficient decrease and A is not too small.
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The Goldstein conditions can be stated as the following pair of inequalities,
f(:vk) + (1 — C))\ka(JTk)Tdk < f(l‘k + )\kdk) < f(.’l?k) + C)\ka(.Tk)Tdk, (254)

where 0 < ¢ < %

However, the first inequality in (2.54) may exclude all minimizers of
f(zg + Adg). The Goldstein conditions are often used with the Newton directions,
but not quite suitable for the quasi-Newton directions which are obtained from

the positive definite Hessian approximation.

(5) Backtracking Techniques

The backtracking technique is an approach to choose the suitable step
length so that the sufficient decrease (2.52a) condition is satisfied but the
reasonable progression of the step length (2.52b) is not directly implemented.

The general form of the backtracking technique is as follows:

Choose A\; >0, p,a € (0,1)
While f(zg + Mdi) > () + o\ V f(2) "dy, do
Ak = pAk; (2.55)

Set Th41 = Tk + )\kdk,

A strategy was given in Dennis, J.E., JR. and Schnabel, R.B. (1983) for
setting the new step length or the backtracking in (2.55). If the sufficient decrease
condition is not satisfied, then the quadratic fit is used and if necessary the cubic
fit, by using the interpolation of the function values and gradients available in
the iteration step. Usually, the value Ay is first assigned to be 1 and if after the
first backtrack, Ay is too small, i.e., )y is less than 0.1 (see Dennis, J.E., JR. and

Schnabel, R.B. (1983)), then ) is taken to be 0.1.
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Hybrid Directions

In this chapter, some combinations of the search directions mentioned in
Chapter II are taken as the new search directions for the line search procedures
with the usual conditions for selection the scalars along these new combined
directions. However, the condition for checking the search direction whether it is
descent or not will be maintained throughout the implementation. If the descent
condition is not satisfied, then a restart with the steepest descent direction will
be used.

First, some theoretical considerations of the combined directions are given.

3.1 Descent Property

Consider the unconstrained minimization problem

min f(z), (3.1)
where f is twice continuously differentiable on R™. Let dgy, dy, ..., dy € R,

k < n, be the search directions at some location x. in R”. Suppose that each

d; (1 <1i<k)isa descent direction of f at z.. That is,
Vf(ze)"d; <0, (3.2)

for : = 1,2,..., k. By taking a linear combination of these directions with

positive scalars, the resulting search direction is also a descent direction of f at
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Z¢, or the combined direction satisfies
Vf(l‘c) T(Oéld1 + O!de + -+ Oékdk) < O, (33)

for any positive scalar aq, as, ..., q.

3.2 Expanding Subspace Property

It is worth to stress the important properties of the expanding subspace
property which is related to the conjugate directions for the following convex

quadratic problem,

flz) = %xTQx —bTx 4+, (3.4)

where () € R™™™ is a symmetric positive definite matrix, b is a fixed vector in
R" and c is a real number. It is well-known that for any given set of nonzero

directions {dy, di, ..., dx_1} which satisfy the conjugacy condition

d/Qd; =0, for i j (3.5)
and for any zy € R", the sequence {z;} defined by

Ty = Tp_1 + Qp_1dp_1, (3.6)

where «y_1 is the minimizer of f(zy_1+ adg_1). Then the minimizer of f is found
in at most n iterations. Moreover, x;, is the minimizer of f over the linear variety
o + Vi, where V} is the subspace spanned by dy, di, ..., dp_1. That is, the line
minimizer zy of f(z) along xx ;1 + ady ; is the global minimizer of f(x) over

o + Vi. This can be expressed as

min f(z) = m(jn f(zp—1 + adk_1). (3.7)

TETO+Vg
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The expanding subspace properly based on the conjugate directions
minimizing (3.4) motivates the idea of the possibility of combining a collection of
search directions and solve for a minimizer of a more general class of problems.

Let {dy, di, ..., dx_1} be a collection of search directions in R" for solving

(3.1). The approach for the investigation is based on taking a linear combination
vg = Bodo + Srdy + - - + Brdi—1, (3.8)

where By, (1, - .., B, are some scalars. Then find an estimate of the minimizer
of f(x) along vg. That is, the estimate of the minimizer takes the similar form as

given in (3.6), with dj, replaced by vy,
Tg+1 = Tk + Q. (39)
The approach can now be outlined in the general form as follows:

Algorithm 3.1.
Given f :R* - R, f € C! and a starting point zo € R™.

At iteration 7, j =0,1,2,....
Step A. Generate a set of linearly independent search directions
dy, di, ..., d,_4,

where k < n.
(The superscript denotes the iteration number and the subscript

denotes the search direction number.)

Step B. Take a linear combination of the directions from Step A. Set

v = Bodd + Bid] + -+ Bradl_,.



31

Step C. Perform the line search from z; along v’ to obtain the admissible

scalar A\; and set the new iterate as
L — ayJ
Tjp1 = T; + A

Step D. Test the admissibility of x;41. If xj41 15 admissible then stop, else go
back to Step A.

Some behaviours or properties of the combined directions in Step A. can
be investigated based on the problem (3.4). First, some definitions and theorems
necessary for the development in this section are reviewed (Luenberger, D.G.

(1984)).

Definition 3.1. Let f : Q@ C R* — R. For any given x € §, a vector d is a

feasible direction at x if there is an o > 0 such that x+ad € Q for all o, 0 < a < a.

Theorem 3.1. (First-order necessary condition)
Let f: QCR* = R and let f € C' on Q. If z* is a relative minimum
point of f over Q, then for any d € R™ which is a feasible direction at x*, it

follows that
Vf(x*)"d > 0.
If follows from Theorem 3.1 that if z* is the interior point of €2 then
Vf(z*) =0.

Theorem 3.2.
Let f be given as in (3.4) and let dy, dy, ..., dx—1 be a sequence of nonzero
vectors in R™ which satisfy the conjugacy condition in (3.5). Then for any xy € R"

the sequence {xx} generated by

Tpt1 = Tk + oyedy,
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where oy 1s the minimizer of f along the line xp + ady, has the property that

flzy) = wegti—?Vk flz) = 361]}@% fzr—1 + adg_y), (3.10)
where xo + Vi is the linear variety with Vi, = span{do, d1, ..., d_1}.
Proof. See Luenberger, D.G. (1984). O

The idea of the expanding subspace theorem can be extended to investigate

the combined directions.

Theorem 3.3.
Let f : R®* — R be continuously differentiable and conver on R™. Let
dy, di, ..., di_1 be a set of nonzero vectors in R" which are linearly independent,

and let Vi, be the subspace spanned by these vectors. Therefore,
= i 3.11
floe) = min f(z) (3.11)

if and ony if V f(zx) is orthogonal to V.

Proof. First suppose that x; minimizes f over the linear variety xq+ Vj. Since for
any z in zg + Vi, both z, —x and z — x; are in V}, and they are feasible directions

at z,. Therefore by the necessary condition in Theorem 3.1,
Vf(ax) (k=) 2 0

and
Vf(zy) (@ — z3) > 0.

If follows that
Vf(ak) (2x — 2) =

which implies that
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For proving the “only if ”part, by the convexity of f, and for any = € xy + V,
f@) = flae) 2 Vfzn) (@ — o).
Since x — xzy € Vi, and V f(zg) L Vi,
Vf(zr) (@ —z) = 0.
Therefore, f(z) > f(xx) which proves the “only if ”part. O

The ideas on searching for the minimizer on a larger region are moti-
vated by the expanding subspace property based on the conjugate directions and
Theorem 3.3. Instead of performing a line search along one single direction in
each iteration, a linear combination of some linearly independent directions can
be taken as a search direction and perform the line search along this combined
direction. A global minimizer can then be attained on a larger region, in particu-
lar, the subspace spanned by these linearly independent directions. The extension

of searching along one single direction is shown in the following theorem.

Theorem 3.4. (Minimization on the linear variety)
Let f be given as in (3.4) and let {dy, d1, ..., dx 1} be a collection of
linearly independent vectors in R* with k < n. Let Vi be the subspace spanned by

{do, d1, ..., dx—1}. For any xy € R", let
Ty = Xg + )\’Uk,

where vy be any nonzero vector in Vi. Therefore,

flov) = _min 12 (312)
if and only if
_ V f(x0)"d;
A\ = T dTOu (3.13)

fori=0,1,..., k—1.
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Proof. Since
Ty = Xg + Avg,
therefore,

Vf(zv) = Vf(zo) + AQug.

Using Theorem 3.3, it follows that xy is the minimizer of f on x4+ Vj if and only

if V f(zy) L Vi. Then
Vf($v) sz' = Vf(l'()) sz‘ + )\d,LTQUk = 0,

fori=0,1, ..., k— 1. Hence,

_ Vf(wo)"d;

A=
diTQUk ’

fori=0,1,...,k—1. O

It is clear that if V' = span{d}, a one-dimensional subspace, then with

vg = d and (3.13) gives

N = — Vf (fEO)Td
N dTQd
which is the same as obtained from the exact minimization of f(z) along x¢ + Ad.

Also, it follows from (3.13) that if the collection {dy, di, ..., dx—1} is a mutually

conjugate set, with respect to @, then with vy = dy + - - - + dg—1, (3.13) gives

_Vf(xo)Td,-

A=
dfQd;

(3.14)

fore=0,1,...,k—1.
The question now is how to further extend Theorem 3.4 to cover a more

general class of functions. Consider the following two cases.
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Case 1. The class of strictly convex and continuously differentiable
functions f : R* — R. The basic approach is to approximate f locally by a

quadratic model, say at the current estimate of the minimizer x.,
1
f(x) = fze) + V() d+ 5(3: — 1) VA f(x) (x — ). (3.15)
Since V2f(z.) is positive definite, @ in (3.13) can be replaced by V2f(x.).

Case 2. The class of twice continuously differentiable functions
f:R* - R As in Case 1., some approximations on the Hessian can replace @
in (3.13), in particular, some quasi-Newton updates with positive definiteness
preservation property.

However, the approach to be taken for the implementation in this thesis is
to perform the inexact line search with the properly chosen step length satisfying

the criteria for convergence.

3.3 Hybrid Directions

Some combinations of the existing and widely used directions will be taken
to test numerically on the standard test problems from Moré, J.J. et al. (1981).
Based on the approach in Section 3.2 and at the same time to fit the line search
framework, the descent properly is checked for the combined directions. Since the
combined directions are taken from the existing directions, They are called the

hybrid directions.
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The hybrid directions taken here are the following choices,

(1) v=>0—7)d™ +~d?, ~=0,01,...,1, (3.16)
(2) v=7d™® +d"", ~=0,01,...,1, (3.17)
(3) v=d +d" +d"", (3.18)
(4) v =d + (1 — y)d™ +vd™, 4 =0,01,...,1. (3.19)

Algorithm 3.2. (Hybrid Direction Algorithm)
Given f:R* = R, f € C!, a starting point vy € R*, andtol, € > 0.
At iteration j, 7 =0, 1, ....
Step A. Generate the search directions dg, d]l', ey d?;_l.
( For the implementation in this thesis, k = 2 or 3, and the choices

of the directions are
&) = d5P = =V f(z;),
&) = di* = =V f(z;) + B"d;_1,

V£ ()T (V f(z)) = VF(zj-1))
Vf(wj1)"V f(x-1) .

dj = d}*® = —H;V f(x;),

where 37 =

1 .
pj = %, with yj's; > 0. )

Step B. Take a linear combination of the directions from Step A. Set
v = ﬁodg) + 5161{ + -+ 519_16&71.
( The four choices used in the implementation in this thesis are

J

U('1) = (1- V)d{ + ’Yd%a
vy = d +d,
vy = dy+di +d,

)

vy = &+ 0—nd +d.)



Step C.

Step D.

Step E.
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Check the descent property of the combined direction in Step B, v?. If
V f(z;)TvI < 0 goto next step, if not, restart with the steepest descent

direction. Set
vl =~V f(x;).

Perform the line search from x;_, along ng') to obtain the admissible

scalar \; and set the new iterate as
Tjy1 =T+ )‘j”gz‘)'

Obtain the scalar A by using the Armijo’s conditions, backtracking

techniques, Wolfe or strong Wolfe conditions.
Test the admissibility of ;11 by checking the conditions,
IVf(zj)l <€
and
|21 — 25| < tol.

If these conditions are satisfied then stop, else go back to Step A.

3.4 Standard Test Problems

To test the performances of the proposed hybrid directions described in

Section 3.3, Algorithm 3.2 is implemented with the test functions taken from the
standard test problems for unconstrained minimization of Moré, J.J. et al. (1981).

These selected test functions are listed as follows:

1. The Variably Dimensioned Function

fz) = fo(x), m=n+2,
i=1



where 7 is the number of variables and
filz) =2, —1, 1<i<n,

fnti(z) = Zj(iﬂj — 1),

Joi2(z) = (Z](% - 1)) :

2. The Penalty Function I

m

@)= f2a), m=n+1,

=1

where 7 is the number of variables and

filz) =a(z; —1), 1<i<n,
frs1(z) = (Z 33?) Bk
7=1
where a = 1075.

3. The Penalty Function II

i i—1
where ¢ = 107® and y; = e10 +e 10 .

4. The Biggs EXP6 Function
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where 7 is the number of variables and

fi(z) = e 4™ — 24752 4+ pge BT —
where ¢; = (0.1)i and y; = e™% — 5e~ 104 + 3=,
. The Brown Badly Scaled Function

f(z) = (21 — 10%)% + (25 — 2-107%)% + (2125 — 2)°.

. The Brown and Dennis Function

m

f(z) = fo(x), m>n, n=4,

i=1

where 7 is the number of variables and
fi(x) = (21 + timy — e7") + (w3 + 245in(t;) — cos(t;))?

where t; = i/5.
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Chapter 1V

Numerical Results

In Chapter III, some choices of hybrid directions are presented for investi-
gation within the line search framework. Algorithm 3.2 described in Section 3.3
has been implemented by using some standard test problems stated in Section 3.4,
as the test cases. Performances of these proposed hybrid directions are illustrated

by the numerical results obtained from the implementation of Algorithm 3.2.

4.1 Implementation of the Hybrid Direction Algorithm

The implementation of Algorithm 3.2 aims at the following.

1. To compare the performances based on the hybrid directions with those based
on a single direction, i.e., the steepest descent direction, the PR-CG direction
and BFGS direction.

2. To compare the efficiency of the different conditions used to obtain the scalar
along the search direction.

3. To compare the performances between the choices of the hybrid directions.
The details for implementing Algorithm 3.2 can be described as follows.

1. The line search routines satisfying the Wolfe and strong Wolfe conditions are
coded as given in Algorithms 3.2 and 3.3, pp.59-60 in Nocedal, J. and Wright,
S.J. (1999) with 0 < @ < 8 < 1. The values for @ and 3 are set to be 107*

and 107!, respectively.
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2. The backtracking techniques is taken from Numerical Recipes in Fortran 77:
The Art of Scientific Computing (Press, W.H., Teukolsky, S.A., Vetterling,
W.T. and Fiannery, B.P. (1986-1992)).

3. The Armijo line search is coded according to Algorithm 1. for the modified
steepest descent method in Vrahatis, M.N. et al. (2000).

4. The computer codes are written in Fortran 90 and implemented in double
precision arithmetic. The codes are run on a FORTRAN PowerStation4.0 at
the Computer Laboratory, School of Mathematics, Suranaree University of
Technology.

5. The stopping conditions: ||V f(zy)|| < 107° and ||z — x| < 1071.

The descriptions of the parameters presenting in Tables 4.1-4.6 are as

follows.

n = dimension of the test problems,

xo = (%1, T2, ... ,T,) is the starting point,

1T = the number of iterations,

FE = the total number of function evaluations including the gradient
components,

MAXFE = the maximum number of function evaluations(rg),

v = constants used in the linear combination of the search directions,

0=1-7,

Diverge : indication of divergence after 3000 iterations or re > 90000,

PR : conjugate gradient direction based on Polak-Ribiere formula,

sD : steepest descent direction,

BFGS : quasi-Newton directions based on the BFGS update,

0PR +yBFGS : Hybrid direction (1) between PR and BFGS directions with

v=0,0.1,...,09,1,
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+PR+BFGS : Hybrid direction (2) between PR and BFGS directions with
~=0,0.1,...,009,1,
sp+PR+BFGS : Hybrid direction (3) between SD, PR, and BFGS directions
with scalar multiple = 1,
SD +6PR +Bras @ Hybrid direction (4) between SD and Hybrid direction
(1),
Backtracking : the backtracking techniques,
Strong Wolfe : the line search with the strong Wolfe conditions,
wolfe : the line search with the Wolfe conditions,
Armijo : the line search based on the adaptive step length of the modified

steepest descent method given by Vrahatis, M.N. et al. (2000).

4.2 Numerical Results

The performances of the hybrid directions (1)-(4) described in Section
3.3 can be expressed in 3 cases based on the numerical results obtained from
implementing Algorithm 3.2 with the standard test problems described in Section

3.4.

Case 1. The hybrid directions give better performances than the single
direction. The objective functions are the Variably dimensioned function and the
Penalty function I. The dimensions of these selected problems can be varied as
shown in Examples 4.1 and 4.2. The numerical results for these 2 functions are

given in Tables 4.1 and 4.2.
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Example 4.1. Variably Dimensioned Function, (Moré, J.J., et al., 1981). The

function f is given by

fn+2 (Z .
= (¢

The standard starting point is x i), where §§ =1 — (j/n). The numerical

results are shown in Table 4.1.

Table 4.1. Results for the Variably Dimensioned Function

Backtracking  Strong Wolfe Wolfe Armijo

Directions n o
IT/FE IT/FE IT/FE IT/FE
SD 4 1.00 5 /61 5 /89 123 /1257 13 /185
PR .00 5 /61 5 /89 123 /1257 13 /185
BFGS 1.00 9 /59 4 /77 5 /78 13 /84
(1) 6PR+yBFGS .10 8 /83 8 /164 35 /373 14 /195
.20 9 /98 6 /140 20 /220 15 /199
.30 6 /64 6 /119 15 /168 18 /232
.40 14 /128 6 /118 11 /132 22 /276
.50 11 /104 5 /85 314 /2854 12 /163
.60 12 /108 6 /135 22 /219 15 /185
.70 147 /903 7 /113 12 /131 21 /245
.80 15 /116 6 /112 26 /230 14 /162
.90 7 /64 6 /117 43 /324 13 /141
(2) YPR+BFGS .10 7 /64 6 /107 49 /366 13 /141
.20 16 /122 7 /131 29 /254 14 /162
.30 259 /1575 7 /113 13 /140 21 /245
.40 6 /67 6 /123 23 /228 15 /185
.50 12 /111 4 /67 10 /120 26 /320
.60 7 /80 6 /118 12 /142 21 /265
.70 6 /64 7 /139 16 /178 18 /232

continued on next page
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Backtracking  Strong Wolfe Wolfe Armijo
Directions n o
IT/FE IT/FE IT/FE IT/FE
.80 14 /139 6 /140 21 /230 15 /199
.90 8 /83 5 /111 42 /443 14 /195
(3) SD+PR+BFGS .00 14 /131 5 /93 193 /2149 12 /185
(4) SD+9PR+yBFGS .10 15 /143 7 /125 66 /747 13 /196
.20 9 /93 8 /171 35 /407 14 /208
.30 14 /136 5 /116 31 /362 15 /220
.40 10 /102 6 /145 20 /239 15 /213
50 9 /86 8 /172 18 /216 17 /237
.60 9 /86 6 /124 15 /182 18 /249
.70 13 /136 6 /117 16 /203 20 /273
.80 9 /97 6 /123 11 /142 22 /297
.90 12 /125 7/95 12 /153 24 /321
SD 8  1.00 8 /141 4 /135 32 /564 20 /447
PR .00 8 /141 4 /135 32 /564 20 /447
BFGS 1.00 16 /168 4 /173 4 /164 18 /192
(1) PR+yBFGS .10 9 /152 7 /248 20 /360 23 /501
.20 11 /191 6 /189 13 /241 24 /508
.30 10 /176 5 /156 9 /173 28 /580
.40 10 /178 5 /148 157 /2534 17 /378
50 5 /96 4 /132 32 /533 20 /428
.60 23 /291 6 /184 13 /229 24 /485
.70 18 /254 5 /144 176 /2663 17 /362
.80 5 /90 5 /154 13 /217 24 /462
.90 12 /172 5 /150 14 /219 24 /439
(2) YPR+BFGS .10 17 /227 5 /150 14 /219 24 /439
.20 5 /90 5 /154 14 /232 24 /462
.30 19 /267 5 /144 189 /2858 17 /362
.40 24 /302 6 /184 13 /229 24 /485
.50 5 /96 4 /132 33 /549 20 /428
.60 11 /190 5 /148 168 /2710 17 /378
.70 11 /188 5 /156 9 /173 28 /580
.80 12 /203 6 /189 13 /241 24 /508
.90 10 /164 7 /248 20 /360 23 /501
(3) SD+PR+BFGS .00 8 /140 4 /138 32 /595 20 /466
(4) SD+0PR+YBFGS .10 5 /98 6 /244 25 /469 22 /504
.20 9 /173 7 /254 20 /379 23 /523
.30 9 /169 5 /182 16 /307 24 /542
.40 6 /119 6 /194 13 /253 24 /531
.50 9 /168 7 /213 11 /217 26 /569
.60 8 /146 5 /160 9 /181 28 /607
.70 10 /179 6 /137 7 /145 30 /645
.80 13 /225 5 /152 157 /2690 17 /394
.90 8 /141 5 /190 44 /769 18 /411
SD 12 1.00 15 /331 6 /250 17 /448 27 /752

continued on next page
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Backtracking  Strong Wolfe Wolfe Armijo
Directions n ol
IT/FE IT/FE IT/FE IT/FE
PR .00 15 /331 6 /250 17 /448 27 /752
BFGS 1.00 19 /278 5 /295 9 /322 23 /339
(1) 6PR+vyBFGS .10 12 /272 4 /188 10 /275 30 /824
.20 15 /345 7 /231 9 /268 32 /860
.30 7 /166 7 /300 57 /1325 19 /542
.40 16 /379 8 /430 30 /719 23 /634
.50 9 /213 6 /245 17 /432 27 /726
.60 7 /171 7 /225 9 /260 32 /829
.70 14 /323 8 /423 30 /690 23 /612
.80 10 /247 7 /219 9 /252 32 /798
.90 21 /409 7 /213 9 /244 32 /767
(2) YPR+BFGS .10 19 /378 7 /213 9 /244 32 /767
.20 10 /247 7 /219 9 /252 32 /798
.30 17 /372 8 /423 30 /690 23 /612
.40 7 /171 7 /225 9 /260 32 /829
.50 9 /213 6 /245 17 /432 27 /726
.60 14 /344 8 /430 30 /719 23 /634
.70 7 /166 7 /300 57 /1325 19 /542
.80 15 /347 7 /231 9 /268 32 /860
.90 12 /272 4 /188 10 /275 30 /824
(3) SD+PR+BFGS .00 15 /362 6 /255 17 /464 27 /778
(4) SD+6PR++vyBFGS .10 14 /364 8 /356 14 /389 28 /803
.20 10 /248 4 /191 10 /284 30 /853
.30 10 /244 8 /262 10 /280 31 /878
.40 10 /242 7 /237 9 /276 32 /891
.50 151 /2505 8 /309 125 /2952 19 /561
.60 48 /906 7 /306 57 /1381 19 /560
.70 28 /542 8 /378 39 /951 21 /608
.80 17 /368 8 /437 30 /748 23 /656
.90 20 /410 7 /336 23 /583 25 /704
SD 16 1.00 6 /185 9 /519 26 /796 26 /891
PR .00 6 /185 9 /519 26 /796 26 /891
BFGS 1.00 21 /395 10 /519 10 /450 28 /527
(1) 6PR++BFGS .10 8 /232 7 /330 14 /447 29 /978
.20 10 /302 6 /348 17 /558 32 /1065
.30 14 /418 8 /337 10 /342 35 /1138
.40 41 /910 9 /506 33 /946 22 /754
.50 17 /419 9 /511 26 /771 26 /866
.60 9 /233 6 /343 17 /542 32 /1034
.70 7 /211 9 /498 33 /914 22 /733
.80 11 /295 6 /338 17 /526 32 /1003
.90 10 /265 6 /333 17 /510 32 /972
(2) YPR+BFGS .10 10 /265 6 /333 18 /535 32 /972
.20 11 /295 6 /338 17 /526 32 /1003
.30 7 /211 9 /498 33 /914 22 /733

continued on next page
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Backtracking  Strong Wolfe Wolfe Armijo
Directions n Y
IT/FE IT/FE IT/FE IT/FE
.40 9 /233 6 /343 17 /542 32 /1034
.50 17 /419 9 /511 26 /771 26 /866
.60 41 /910 9 /506 33 /946 22 /754
.70 14 /420 8 /337 10 /342 35 /1138
.80 10 /302 6 /348 17 /558 32 /1065
.90 8 /232 7 /330 14 /447 29 /978
(3) SD+PR+BFGS .00 7 /213 9 /527 26 /821 26 /916
(4) SD+6PR+YBFGS .10 9 /300 8 /481 22 /716 27 /946
.20 8 /258 7 /336 14 /460 29 /1006
.30 9 /279 8 /380 17 /557 30 /1036
.40 13 /395 6 /353 17 /574 32 /1096
.50 11 /311 6 /269 11 /380 33 /1112
.60 7 /233 8 /344 10 /351 35 /1172
.70 12 /342 9 /436 123 /3508 21 /747
.80 8 /242 9 /514 33 /978 22 /775
.90 12 /337 7 /369 38 /1119 24 /833
SD 32 1.00 20 /955 9 /836 22 /1116 32 /1759
PR .00 20 /955 9 /836 22 /1116 32 /1759
BFGS 1.00 26 /918 12 /1220 13 /1055 28 /992
(1) 6PR+YBFGS .10 12 /605 10 /823 21 /1090 35 /1903
.20 52 /2055 9 /678 13 /694 38 /2047
.30 28 /1241 7 /622 300 /13953 24 /1353
.40 17 /877 9 /830 45 /2202 28 /1540
.50 14 /676 9 /828 22 /1095 32 /1728
.60 9 /459 9 /670 13 /682 38 /2010
.70 16 /764 9 /822 50 /2385 28 /1513
.80 12 /596 9 /662 13 /670 38 /1973
.90 10 /492 9 /654 13 /658 38 /1936
(2) YPR+BFGS .10 10 /492 9 /654 13 /658 38 /1936
.20 12 /598 9 /662 13 /670 38 /1973
.30 16 /767 9 /822 48 /2293 28 /1513
.40 9 /459 9 /670 13 /682 38 /2010
.50 13 /640 9 /828 22 /1095 32 /1728
.60 22 /1059 9 /830 48 /2340 28 /1540
.70 29 /1282 7 /622 322 /14965 24 /1353
.80 52 /2055 9 /678 13 /694 38 /2047
.90 13 /643 10 /823 21 /1090 35 /1903
(3) SD+PR+BFGS .00 13 /663 9 /844 22 /1137 32 /1790
(4) SD+6PR+YBFGS .10 9 /462 9 /693 22 /1158 33 /1839
.20 13 /644 10 /832 21 /1110 35 /1937
.30 10 /518 9 /847 18 /971 37 /2035
.40 7 /368 9 /686 13 /706 38 /2084
.50 15 /766 9 /508 9 /508 39 /2115
.60 13 /674 7 /628 300 /14252 24 /1376
.70 13 /675 10 /812 69 /3359 26 /1471

continued on next page
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Backtracking  Strong Wolfe Wolfe Armijo
Directions n ¥
IT/FE IT/FE IT/FE IT/FE
.80 9 /470 9 /838 45 /2246 28 /1567
.90 15 /757 10 /1148 29 /1445 30 /1663
SD 64  1.00 13 /1154 11 /1884 27 /2371 38 /3495
PR .00 13 /1154 11 /1884 27 /2371 38 /3495
BFGS 1.00 32 /2178 15 /2901 18 /2838 44 /2979
(1) 6PR+yBFGS .10 13 /1093 13 /1673 21 /1870 41 /3744
.20 9 /787 12 /1250 13 /1201 44 /3993
.30 20 /1701 10 /1256 159 /13000 29 /2721
40 14 /1208 11 /1808 38 /3220 33 /3048
.50 11 /996 11 /1874 32 /2749 38 /3458
.60 11 /972 12 /1239 13 /1189 44 /3950
.70 14 /1259 11 /1798 38 /3183 33 /3016
.80 12 /1045 12 /1228 13 /1177 44 /3907
.90 25 /1933 11 /1138 13 /1165 44 /3864
(2) YPR+BFGS .10 35 /2629 12 /1217 13 /1165 44 /3864
.20 13 /1117 12 /1228 13 /1177 44 /3907
.30 16 /1418 11 /1798 38 /3183 33 /3016
.40 11 /973 12 /1239 13 /1189 44 /3950
.50 11 /997 11 /1874 31 /2669 38 /3458
.60 12 /1070 11 /1808 38 /3220 33 /3048
.70 22 /1846 10 /1256 159 /13000 29 /2721
.80 9 /787 12 /1250 13 /1201 44 /3993
.90 15 /1233 13 /1673 21 /1870 41 /3744
(3) SD+PR+BFGS .00 10 /912 11 /1894 27 /2397 38 /3532
(4) SD4+6PR+YBFGS .10 11 /991 9 /1393 25 /2260 39 /3616
.20 10 /886 13 /1685 21 /1890 41 /3784
.30 18 /1608 10 /1748 24 /2146 42 /3868
.40 18 /1595 12 /1261 13 /1213 44 /4036
.50 12 /1082 9 /929 11 /1031 45 /4098
60 19 /1657 10 /1265 159 /13158 29 /2749
.70 11 /1002 7 /1344 57 /4843 31 /2914
.80 13 /1195 11 /1818 38 /3257 33 /3080
.90 201 /14330 13 /2565 32 /2791 35 /3246
SD 128  1.00 21 /3248 9 /2949 20 /3171 41 /6657
PR .00 21 /3248 9 /2949 20 /3171 41 /6657
BFGS 1.00 34 /4583 17 /6272 14 /5110 56 /7565
(1) 6PR+yBFGS .10 15 /2432 13 /3436 24 /3821 44 /7107
.20 13 /2049 11 /2617 16 /2632 47 /7557
.30 22 /3412 10 /2588 143 /21396 34 /5575
.40 14 /2283 10 /3238 41 /6312 37 /6021
.50 14 /2229 9 /2941 20 /3152 41 /6617
.60 14 /2242 11 /2607 16 /2617 47 /7511
.70 15 /2351 10 /3229 40 /6125 37 /5985
.80 16 /2539 11 /2597 16 /2602 47 /7465

continued on next page



48

continued from previous page

Backtracking  Strong Wolfe Wolfe Armijo
Directions n ¥
IT/FE IT/FE IT/FE IT/FE
.90 16 /2495 11 /2587 16 /2587 47 /7419
(2) YPR+BFGS .10 24 /3590 11 /2587 16 /2587 47 /7419
20 18 /2823 11 /2597 16 /2602 47 /7465
.30 14 /2217 10 /3229 41 /6272 37 /5985
.40 15 /2384 11 /2607 16 /2617 47 /7511
.50 13 /2095 9 /2941 20 /3152 41 /6617
.60 17 /2719 10 /3238 41 /6312 37 /6021
.70 18 /2865 10 /2588 144 /21545 34 /5575
.80 12 /1920 11 /2617 16 /2632 47 /7557
.90 18 /2871 13 /3436 24 /3823 44 /7107
(3) SD+PR+BFGS .00 12 /1949 9 /2957 20 /3190 41 /6697
(4) SD+6PR++vyBFGS .10 15 /2418 11 /3142 22 /3585 42 /6848
20 13 /2092 13 /3448 24 /3844 44 /7150
.30 17 /2755 8 /2562 19 /3106 45 /7301
.40 15 /2425 11 /2627 16 /2647 47 /7603
.50 13 /2114 10 /2105 17 /2821 48 /7728
.60 17 /2714 10 /2597 143 /21538 34 /5608
.70 18 /2895 13 /4350 44 /6772 35 /5757
.80 18 /2825 10 /3247 41 /6352 37 /6057
.90 18 /2897 10 /4136 33 /5193 39 /6357

In Table 4.1, the numerical results show that as the dimension gets higher,
0.5d"® + 0.5d""%% and 0.2d"® + 0.8d”"%° when implemented with backtracking
technique give significant reduction in the number of iterations and number of
function evaluations in comparison with the performances based on the single
direction d*”, d** and d?"“S. The hybrid direction(2), 0.5d*® + d®7° also gives
better performance in comparison with the performances based on d*”, d** and
d?7e5 similarly for d” + 0.8d"% 4 0.2d?"°S. For the dimension 16, even the d®"%*
gives worse performances than the d°. For the dimensions 32, 64 and 128, it
can be seen that the hybrid directions(1)—(4), with the backtracking technique,
give better performances and significant reduction in the number of iterations and

function evaluations in almost all choices of the scalar multiples presented.
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Example 4.2. Penalty Function I, (Moré, J.J., et al., 1981). The function f is

given by

m

f@)=) fi@), m=n+1,

i=1
where n s the number of variables and

filz) = al/Q(xi —-1), 1<i<n,
" 2

fn—l—l(x) = Zx? - Z’

7j=1
where a = 107°. The starting point is xog = (&;), where & = j. The numerical

results are shown in Table 4.2.

Table 4.2. Results for the Penalty Function I

Backtracking  Strong Wolfe Wolfe Armijo

Directions n o
IT/FE IT/FE IT/FE IT/FE
SD 4 1.00 Diverge Diverge Diverge Diverge
PR .00 Diverge 20 /445 Diverge Diverge
BFGS 1.00 181 /977 31 /604 116 /1197 56 /319
(1) 9PR++yBFGS .10 171 /879 76 /1446 173 /1005 81 /483
.20 63 /327 37 /721 101 /634 75 /465
.30 212 /1134 31 /531 81 /584 46 /294
.40 56 /293 19 /404 73 /556 36 /244
.50 36 /200 23 /452 62 /501 54 /360
.60 40 /216 22 /371 46 /428 49 /306
.70 172 /909 16 /335 112 /1070 58 /364
.80 185 /984 29 /571 33 /347 60 /372
.90 158 /862 18 /411 19 /219 32 /204
(2) YPR+BFGS .10 176 /958 19 /411 30 /314 40 /252
.20 179 /987 25 /536 43 /376 48 /300
.30 172 /957 24 /488 37 /333 50 /315
.40 31 /178 21 /392 69 /397 37 /266
.50 38 /221 25 /508 308 /1620 45 /345
.60 34 /204 31 /547 33 /292 57 /392
.70 166 /982 17 /289 33 /262 43 /307
.80 41 /238 27 /458 48 /358 43 /311
.90 37 /220 21 /364 58 /397 48 /352
(3) SD+PR+BFGS .00 33 /210 21 /327 38 /304 55 /498

continued on next page
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Backtracking  Strong Wolfe Wolfe Armijo
Directions n v
IT/FE IT/FE IT/FE IT/FE
(4) SD+6PR++vyBFGS .10 117 /658 15 /348 340 /2048 69 /496
.20 96 /545 56 /858 169 /1025 49 /343
.30 21 /128 28 /506 315 /1882 63 /445
.40 31 /197 62 /646 113 /679 54 /371
.50 32 /188 45 /682 99 /598 51 /351
.60 31 /189 43 /690 91 /566 30 /231
.70 159 /918 41 /734 168 /1193 47 /346
.80 24 /142 19 /368 68 /468 42 /312
.90 24 /145 38 /523 62 /459 38 /284
SD 8 1.00 Diverge Diverge Diverge Diverge
PR .00 Diverge 175 /7590 Diverge Diverge
BFGS 1.00 147 /1382 25 /842 112 /2020 59 /580
(1) 9PR+yBFGS .10 174 /1599 71 /2577 161 /1712 91 /956
.20 89 /824 57 /1459 212 /2404 85 /947
.30 173 /1635 27 /938 165 /2210 59 /624
.40 152 /1428 89 /3021 167 /2366 39 /427
.50 136 /1268 87 /2958 162 /2273 59 /630
.60 144 /1373 30 /983 118 /1880 55 /593
.70 44 /422 87 /2914 110 /1767 54 /571
.80 146 /1383 30 /992 110 /1760 53 /567
.90 46 /444 25 /838 93 /1617 52 /550
(2) YPR+BFGS .10 39 /382 19 /637 98 /1614 64 /669
.20 155 /1449 16 /632 120 /1748 52 /559
.30 37 /357 74 /2441 113 /1717 52 /554
.40 161 /1577 14 /497 183 /1762 49 /536
.50 313 /2919 93 /2966 172 /2136 48 /530
.60 134 /1324 99 /3089 109 /1378 56 /624
70 134 /1314 31 /967 94 /1321 53 /606
.80 34 /341 24 /648 111 /1381 53 /609
.90 35 /360 31 /1068 60 /692 52 /589
(3) SD+PR+BFGS .00 32 /336 145 /4146 132 /1653 59 /727
(4) SD4+6PR++vyBFGS .10 465 /4435 23 /1006 295 /2964 82 /921
.20 37 /372 71 /2124 178 /1839 67 /743
.30 47 /4T3 28 /784 149 /1516 59 /675
40 46 /459 61 /1121 237 /2409 62 /719
.50 39 /388 24 /766 222 /2279 58 /662
.60 34 /342 20 /735 159 /1799 47 /553
70 136 /1332 164 /5413 135 /1739 54 /625
.80 43 /437 107 /3207 134 /1679 39 /465
.90 44 /442 105 /3038 144 /1775 AT /547
SD 16 1.00 Diverge Diverge Diverge Diverge
PR .00 Diverge 155 /12213 Diverge Diverge
BFGS 1.00 159 /2769 7T /4877 100 /3392 69 /1244
(1) 9PR+yBFGS .10 282 /4851 89 /4656 185 /3530 96 /1828

continued on next page
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Backtracking  Strong Wolfe Wolfe Armijo
Directions n Y
IT/FE IT/FE IT/FE IT/FE
.20 187 /3264 193 /12300 95 /1982 76 /1470
.30 68 /1201 114 /6171 145 /3515 60 /1157
.40 158 /2794 77 /4556 64 /1669 63 /1232
.50 54 /969 85 /5225 138 /3661 54 /1059
.60 144 /2548 88 /5393 110 /3321 60 /1178
.70 134 /2348 33 /2131 45 /1287 52 /1004
.80 147 /2584 74 /4831 35 /1114 60 /1152
90 128 /2267 79 /4738 15 /372 43 /834
(2) YPR+BFGS .10 43 /786 85 /5318 81 /2267 60 /1135
.20 48 /863 83 /5100 100 /2662 57 /1099
.30 131 /2324 22 /1434 102 /2919 47 /926
.40 56 /1020 76 /4516 162 /3134 56 /1089
50 131 /2362 91 /5180 121 /2963 37 /761
.60 116 /2078 30 /1793 45 /1137 55 /1098
.70 41 /756 83 /4539 34 /827 50 /1020
.80 119 /2139 79 /4646 100 /2509 56 /1137
.90 120 /2180 20 /988 62 /1217 52 /1062
(3) SD+PR+BFGS .00 33 /629 153 /7574 116 /2602 50 /1049
(4) SD+6PR++yBFGS 10 403 /7112 79 /6090 489 /8829 81 /1593
.20 236 /4200 64 /3405 205 /3738 65 /1291
.30 170 /3065 182 /8955 238 /4316 64 /1292
.40 39 /722 183 /10542 106 /1959 62 /1253
.50 40 /740 105 /5552 90 /1702 51 /1031
.60 131 /2356 118 /6418 149 /3059 54 /1095
.70 135 /2433 180 /10310 115 /2614 52 /1053
.80 44 /804 94 /4869 122 /2847 38 /796
.90 128 /2305 32 /1699 54 /1182 52 /1055
SD 32 1.00 Diverge Diverge Diverge Diverge
PR .00 Diverge 39 /5967 Diverge Diverge
BFGS 1.00 158 /5315 64 /7206 84 /5968 70 /2407
(1) 6PR++BFGS 10 138 /4659 188 /19692 171 /6297 97 /3466
.20 76 /2573 149 /13362 186 /7515 70 /2535
.30 65 /2227 90 /9909 125 /6080 58 /2131
.40 142 /4784 33 /3298 52 /2822 57 /2088
.50 52 /1778 31 /3467 133 /6832 59 /2155
.60 54 /1873 75 /8600 48 /2609 58 /2138
.70 112 /3811 25 /2726 35 /2057 51 /1861
.80 123 /4147 76 /8752 37 /2240 55 /1998
90 125 /4228 28 /3277 89 /4971 56 /2023
(2) YPR+BFGS 10 117 /3953 26 /3186 81 /4874 48 /1760
.20 131 /4414 70 /8036 94 /5303 56 /2034
.30 46 /1597 29 /3268 40 /2087 50 /1833
.40 137 /4642 70 /7338 137 /5430 46 /1712
.50 36 /1263 23 /2671 100 /5088 50 /1857
.60 104 /3559 28 /2647 51 /2335 54 /2008

continued on next page
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Backtracking  Strong Wolfe Wolfe Armijo
Directions n ol
IT/FE IT/FE IT/FE IT/FE
.70 109 /3746 87 /8976 99 /4606 51 /1918
.80 37 /1312 76 /8037 45 /1965 48 /1810
.90 109 /3784 81 /9153 130 /4973 53 /2005
(3) SD+PR+BFGS .00 35 /1249 30 /3134 102 /4279 53 /2046
(4) SD+6PR+vyBFGS .10 154 /5229 100 /9332 455 /15591 93 /3364
.20 59 /2058 163 /16022 184 /6355 73 /2680
.30 51 /1778 164 /14674 234 /8015 66 /2464
.40 40 /1415 151 /11175 206 /7076 65 /2405
.50 143 /4876 121 /11862 166 /6191 58 /2178
.60 133 /4563 102 /10381 134 /5247 55 /2052
.70 116 /3980 58 /6055 64 /2502 48 /1805
.80 107 /3662 31 /2880 62 /2458 50 /1891
.90 105 /3585 30 /3380 55 /2267 52 /1951
SD 64 1.00 Diverge Diverge Diverge Diverge
PR .00 Diverge 38 /10093 Diverge Diverge
BFGS 1.00 74 /4905 78 /18619 44 /7725 116 /7700
(1) PR+yBFGS .10 228 /15017 86 /17675 163 /11892 94 /6436
.20 166 /10954 47 /11276 166 /13282 73 /5065
.30 44 /2986 78 /17969 122 /11250 61 /4260
.40 144 /9520 23 /4743 50 /5057 57 /3998
.50 116 /7684 71 /14866 123 /12331 55 /3877
.60 141 /9313 26 /5143 90 /9853 50 /3534
.70 126 /8346 22 /4875 34 /3734 58 /4036
.80 117 /7775 21 /4621 71 /8611 54 /3768
.90 89 /5975 24 /5649 83 /9856 45 /3162
(2) YPR+BFGS .10 81 /5456 21 /4925 72 /8620 63 /4359
.20 115 /7641 24 /5200 85 /9006 56 /3917
.30 123 /8161 26 /5533 87 /9235 52 /3648
.40 124 /8236 24 /5143 151 /10459 54 /3826
.50 153 /10104 66 /14205 139 /11453 54 /3807
.60 110 /7347 34 /6327 81 /7490 51 /3612
.70 42 /2868 70 /15775 85 /8097 47 /3345
.80 103 /6881 27 /5090 82 /7535 55 /3896
.90 109 /7327 29 /5535 53 /4070 52 /3693
(3) SD+PR+BFGS .00 93 /6244 36 /6173 101 /8135 56 /4009
(4) SD+6PR+vyBFGS .10 117 /7806 69 /19155 406 /26915 95 /6571
.20 178 /11796 40 /7623 181 /12175 78 /5458
.30 51 /3480 138 /25588 217 /14812 67 /4720
.40 48 /3265 53 /7896 182 /12444 68 /4782
.50 116 /7773 47 /8811 92 /6163 58 /4086
.60 44 /3000 81 /15577 128 /9707 50 /3569
.70 41 /2803 26 /4354 127 /9545 54 /3823
.80 119 /7930 31 /5407 51 /3915 53 /3759
.90 42 /2860 61 /11486 61 /4392 57 /4035

continued on next page
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Backtracking  Strong Wolfe Wolfe Armijo
Directions n Y

IT/FE IT/FE IT/FE IT/FE

SD 128  1.00 Diverge Diverge Diverge Diverge
PR .00 Diverge 124 /67087 Diverge Diverge
BFGS 1.00 171 /22252 116 /53541 127 /35438 121 /15887
(1) OPR+yBFGS .10 148 /19327 77 /30936 143 /20466 91 /12176
.20 174 /22686 52 /17860 78 /12449 74 /9983

.30 138 /18024 38 /14395 62 /10304 61 /8266

.40 139 /18165 72 /28648 98 /20891 60 /8157

.50 99 /12983 63 /27253 51 /10400 51 /6976

.60 107 /14031 21 /8582 39 /7930 56 /7628

.70 110 /14415 61 /27762 71 /16227 53 /7219

.80 46 /6104 24 /10783 26 /6513 60 /8130

.90 38 /5087 22 /9998 25 /7284 55 /7455

(2) YPR+BFGS .10 44 /5855 24 /10148 32 /8071 61 /8250
.20 37 /4944 24 /9223 30 /6643 51 /6967

.30 50 /6659 57 /24785 71 /14957 51 /6959

.40 145 /18925 26 /10391 41 /7677 52 /7142

.50 108 /14164 63 /25844 71 /10518 54 /7375

.60 103 /13555 69 /26233 102 /17040 57 /7792

.70 97 /12774 31 /11706 41 /7353 50 /6864

.80 46 /6168 22 /9103 41 /6531 55 /7553

.90 43 /5793 31 /11214 45 /7065 52 /7150

(3) SD+PR+BFGS .00 44 /5966 119 /43626 45 /7092 58 /7968
(4) SD+IPR-+yBFGS 10 128 /16797 67 /33413 351 /45814 127 /16929
.20 74 /9793 52 /19234 148 /19429 68 /9256

.30 137 /17955 62 /21778 109 /14506 74 /10035

.40 48 /6413 39 /15078 92 /12131 68 /9260

.50 43 /5810 42 /15060 141 /19725 61 /8318

.60 48 /6421 40 /15201 70 /9452 58 /7932

.70 43 /5797 48 /16918 115 /17102 52 /7147

.80 38 /5129 68 /25487 112 /16804 55 /7541

.90 34 /4595 31 /11851 57 /8266 55 /7548
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In Table 4.2, the numerical results show that the performances of the

hybrid directions(1)—(4), when implemented with the backtracking technique are

better than those single directions, for example, the divergence occurs in the case

of d’?. Even when the dimension is 4, the hybrid directions(1)—(4) with almost all

choices of scalars give better performances, for instance, 0.5d”* + 0.5d?"“°. When

the dimension is high, for instance in the case n = 128, it is very interesting

to see that when the single direction d”? is implemented alone, the divergence
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occurs, but when it is combined with d”"“®; the hybrid direction really gives

satisfactory results.

Case 2. In this case, it is observed that when the single direction is im-
plemented alone, the divergence occurs; but when it is combined, the resulting
direction behaviour improves. This behaviour is observed from the results ob-
tained from the two standard test problems, the Penalty function II, as given in

Example 4.3 and the Biggs EXP6 function, as given in Example 4.4.

Example 4.3. Penalty Function II, (Moré, J.J., et al., 1981). The function f

s given by

fla) =" f2a), m=2n,

where n s the number of variables and

fl(LE) =T — 02,
i1

fi(z) =q'/? (e%—FeT —yi>, 2<i<n,

zq;fn-b—l -1

fi(a:):al/2(e 10 —eﬁ), n <i<2n,

fon(x) = zn:(n —J+ 1):1:?) -1,

j=1

where a = 1075 and y; = e + e . The starting point is xy = (%, . ,%) The

numerical results are shown in Table 4.3.



Table 4.3. Results for the Penalty Function II

Backtracking  Strong Wolfe Wolfe Armijo
Directions Y

IT/FE IT/FE IT/FE IT/FE

SD 1.00 67 /408 35 /489 64 /531 49 /422
PR .00 31 /192 11 /178 41 /346 35 /299
BFGS 1.00 18 /103 12 /156 13 /101 10 /64
(1) 6PR++BFGS .10 34 /209 17 /300 118 /955 29 /250
.20 23 /143 20 /336 53 /443 22 /185

.30 45 /275 17 /281 55 /456 23 /191

40 32 /195 29 /441 47 /360 26 /209

50 39 /239 39 /610 45 /342 33 /258

60 16 /98 35 /543 21 /162 22 /168

.70 19 /114 27 /430 34 /249 28 /207

.80 26 /161 26 /398 18 /130 20 /144

.90 15 /92 19 /269 19 /132 16 /108

(2) YPR+BFGS .10 16 /97 17 /255 22 /146 16 /109
20 22 /136 25 /435 20 /147 19 /139

.30 25 /157 21 /330 45 /333 17 /133

.40 32 /198 30 /483 284 /2003 22 /175

.50 32 /202 32 /509 44 /356 21 /171

.60 21 /132 24 /342 38 /298 26 /216

.70 31 /195 28 /401 42 /340 19 /159

.80 41 /253 21 /372 23 /194 26 /221

90 32 /198 34 /533 34 /291 20 /181

(3) SD+PR+BFGS .00 27 /184 22 /363 33 /306 25 /248
(4) SD+0PR+yBFGS .10 11 /77 17 /266 39 /369 23 /222
20 19 /129 21 /362 267 /2405 29 /275

.30 24 /158 19 /345 126 /1138 23 /219

.40 25 /164 32 /551 53 /489 23 /214

.50 23 /151 17 /284 66 /601 23 /212

60 19 /125 32 /539 39 /362 24 /221

.70 21 /138 42 /663 60 /538 34 /312

.80 17 /112 40 /721 47 /406 39 /351

.90 68 /415 47 /877 50 /437 39 /351

SD 1.00 Diverge 173 /5491 Diverge 96 /1274
PR .00 Diverge 13 /295 Diverge 59 /776
BFGS 1.00 502 /4691 7 /184 259 /4245 152 /1509
(1) 6PR++BFGS 10 2639 /27733 15 /378 Diverge 27 /361
.20 580 /6102 17 /468 1971 /25318 45 /590

.30 509 /5306 13 /395 1820 /23264 35 /455

.40 652 /6599 15 /361 1153 /14770 40 /515

.50 687 /6907 89 /2590 892 /11220 42 /533

.60 506 /5081 584 /15708 799 /9717 16 /210

.70 276 /2797 420 /10712 615 /7354 45 /548

80 401 /4061 271 /6408 408 /5001 21 /261
.90 263 /2569 125 /3356 550 /6110 147 /1647

continued on next page
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Backtracking  Strong Wolfe Wolfe Armijo
Directions n ol
IT/FE IT/FE IT/FE IT/FE
(2) YPR+BFGS .10 266 /2632 12 /308 530 /6021 29 /340
.20 278 /2853 229 /6020 484 /5765 31 /375
.30 274 /2793 293 /8005 797 /9421 152 /1805
.40 580 /5836 284 /7666 792 /9654 23 /295
.50 562 /5781 36 /757 525 /6640 40 /523
.60 226 /2387 56 /1526 743 /9428 44 /572
.70 261 /2795 80 /2042 852 /10990 31 /412
.80 402 /4247 41 /1093 797 /10421 18 /249
.90 376 /3974 49 /1303 1169 /15449 28 /409
(3) SD+PR+BFGS .00 942 /10371 946 /25920 1207 /17408 31 /469
(4) SD4+6PR+YBFGS .10 Diverge 18 /433 Diverge 42 /596
.20 2023 /22231 16 /396 Diverge 37 /522
.30 1770 /19473 18 /436 2445 /33924 23 /327
.40 1608 /17465 24 /600 1937 /26746 36 /505
.50 1190 /13068 28 /814 1703 /23429 48 /669
.60 1241 /13459 43 /1182 1899 /26170 43 /598
.70 1305 /13854 540 /14085 1396 /19221 61 /837
.80 1052 /11150 60 /1778 1537 /21152 70 /955
.90 983 /10465 106 /2949 1386 /19053 73 /991
SD 16 1.00 Diverge Diverge Diverge Diverge
PR .00 Diverge 158 /8066 Diverge 776 /17079
BFGS 1.00 1237 /21445 248 /13495 710 /22227 127 /2371
(1) 6PR+YBFGS .10 Diverge 2915 /144570 Diverge 1001 /22505
.20 Diverge 2132 /110312 2857 /62753 404 /9120
.30 Diverge 67 /3263 Diverge 56 /1192
40 1399 /25917 1905 /87373 Diverge 74 /1621
.50 841 /15639 1195 /53253 2890 /62548 515 /11090
.60 1289 /23874 1160 /55050 1471 /31305 57 /1256
.70 460 /8693 569 /26031 1194 /25186 82 /1728
.80 936 /16878 383 /18777 808 /16654 269 /5603
.90 281 /5095 439 /21137 499 /10098 214 /4242
(2) YPR+BFGS .10 535 /9727 425 /19987 745 /15149 193 /3802
.20 812 /14663 468 /21378 567 /11779 234 /4921
.30 644 /11944 678 /32779 1129 /23802 106 /2225
.40 335 /6417 886 /42094 926 /19669 177 /3892
.50 45 /865 742 /35730 1455 /31482 441 /9513
.60 712 /13198 1211 /57778 2485 /54358 79 /1758
.70 933 /17744 955 /43873 874 /19527 61 /1355
.80 408 /7792 910 /43260 1514 /33583 77 /1774
.90 1763 /33525 693 /32380 1776 /39670 125 /2852
(3) SD+PR+BFGS .00 2923 /55566 2383 /124738 Diverge 673 /15831
(4) SD4+6PR++vyBFGS .10 Diverge Diverge Diverge 1855 /43776
.20 Diverge Diverge Diverge 820 /19261
.30 Diverge Diverge Diverge 635 /14904

continued on next page
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Backtracking  Strong Wolfe Wolfe Armijo
Directions n ¥
IT/FE IT/FE IT/FE IT/FE
.40 Diverge 2634 /137245 2793 /64124 330 /7754
.50 2723 /51769 2188 /115314 1072 /24593 106 /2439
.60 Diverge 1187 /59308 Diverge 85 /1933
.70 Diverge 759 /37302 Diverge 98 /2215
.80 2017 /38354 1356 /64624 Diverge 196 /4418
90 1917 /36453 826 /39726 2494 /56399 317 /7177

o7

Example 4.4. Biggs EXP6 Function, (Moré, J.J., et al., 1981). The function

f is given by

where n s the number of variables and

where t; = (0.1)i and y; = e b

filw) = e " —wye BT 4 age B — vy,

_ 56—10?57; + 36_4ti.

zo = (1,2, 1,1, 1, 1). The numerical results are shown in Table 4.4.

Table 4.4. Results for the Biggs EXP6 Function

Backtracking  Strong Wolfe Wolfe Armijo
Directions n 07

IT/FE IT/FE IT/FE IT/FE

SD 6 1.00 Diverge Diverge Diverge Diverge
PR .00 Diverge 660 /14462 1036 /11030 Diverge
BFGS 1.00 51 /375 21 /557 25 /431 40 /306
(1) 6PR+YBFGS .10 287 /2197 536 /10286 598 /5481 346 /3244
.20 185 /1424 315 /6534 409 /3778 131 /1200

.30 236 /1890 254 /4660 328 /3077 83 /720

.40 162 /1295 175 /3199 259 /2298 109 /958

continued on next page
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Backtracking  Strong Wolfe Wolfe Armijo
Directions n 0

IT/FE IT/FE IT/FE IT/FE

.50 121 /964 112 /1971 151 /1318 109 /950

.60 100 /796 97 /1893 126 /1090 74 /637

.70 62 /481 66 /1204 110 /979 56 /465

.80 50 /379 50 /904 72 /591 49 /400

.90 41 /308 31 /680 71 /650 42 /329

(2) YPR+BFGS .10 110 /785 32 /600 63 /543 41 /325
.20 47 /357 37 /748 63 /556 49 /415

.30 56 /439 55 /1182 96 /811 45 /373

.40 63 /501 51 /886 79 /694 58 /512

.50 82 /654 63 /1179 110 /978 72 /642

.60 87 /695 87 /1727 212 /1912 61 /573

.70 86 /693 92 /1982 148 /1359 57 /530

.80 86 /690 95 /1953 137 /1332 72 /683

.90 109 /880 94 /1816 138 /1313 96 /921
(3) SD+PR+BFGS .00 110 /924 143 /3110 236 /2478 149 /1585
(4) SD4+6PR+YBFGS .10 757 /6091 1232 /26067 1409 /14418 690 /7237
.20 469 /3780 567 /11833 670 /6814 369 /3833
.30 521 /4179 392 /7960 433 /4385 240 /2476

.40 396 /3182 274 /6341 356 /3628 138 /1429

.50 319 /2566 248 /4880 314 /3172 99 /995

.60 233 /1873 211 /4146 330 /3360 118 /1171

.70 196 /1577 169 /3728 316 /3154 131 /1302

.80 154 /1241 173 /3620 259 /2556 115 /1127

.90 156 /1256 152 /3047 205 /2001 110 /1077

o8

In Table 4.3, the interesting behaviour can be seen from the hybrid

directions (1), (2) and (4). That is, the d°” and d"* when performed alone, cause

divergence, but they are combined with

dBFGS'

, some reduction in the function

evaluation occurs. This can be seen from the case n = 4 with 0.1d"? + 0.9d?7¢%

and d°” + 0.9d"* + 0.1d?"%® with backtracking technique. Similarly for the cases

n = 8 and 16, 0.1d"* + 0.9d”7%° and 0.6d"* + d?"°° give some reduction in the

number of function evaluations. The similar behaviour can also be seen in Table

4.4. The d°® or d*® cause divergence, but the hybrid direction can help reduce

the number of function evaluations also. This can be seen from 0.1d*% + 0.9d?7%°

with backtracking technique.
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Case 3. The hybrid directions give worse performances than the

performance based on the single direction. The divergence occurs when the test

cases are taken from the Brown badly scaled function and the Brown and Dennis

function, as shown in Examples 4.5 and 4.6. The coefficients of the variables of

the functions used for these test cases are very much different in the magnitude.

The numerical results are shown in Tables 4.5 and 4.6. They suggest that for cases

in which the coefficients of the variables are too much different in magnitude the

hybrid direction cannot handle the case successfully and some scaling has to be

done.

Example 4.5. Brown Badly Scaled Function, (Moré, J.J., et al., 1981). The

function f is given by

f(@) = (21 —10%)% + (29 — 2107 %) + (2125 — 2)°.

The starting point is xo = (1,1). The numerical results are shown in Table 4.5.

Table 4.5. Results for the Brown Badly Scaled Function

Backtracking  Strong Wolfe Wolfe Armijo

Directions o4
IT/FE IT/FE IT/FE IT/FE
SD 1.00 7 /83 Diverge Diverge Diverge
PR .00 120 /1829 65 /2873 Diverge Diverge
BFGS 1.00 13 /95 16 /390 12 /205 43 /416
(1) 8PR+yBFGS .10 Diverge 810 /38318 Diverge Diverge
.20 Diverge Diverge Diverge  Diverge
.30 24 /386 Diverge Diverge Diverge
40 Diverge Diverge Diverge Diverge
.50 67 /1046 Diverge Diverge Diverge
.60 Diverge Diverge Diverge  Diverge
.70 13 /203 Diverge Diverge Diverge
.80 Diverge Diverge Diverge  Diverge
.90 Diverge Diverge Diverge Diverge

continued on next page
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Backtracking  Strong Wolfe Wolfe Armijo
Directions n o
IT/FE IT/FE IT/FE IT/FE
(2) YPR+BFGS .10 Diverge Diverge Diverge  Diverge
.20 2531 /45557 Diverge Diverge Diverge
.30 934 /16410 Diverge Diverge Diverge
.40 1163 /19106 Diverge Diverge Diverge
.50 Diverge Diverge Diverge Diverge
.60 28 /447 Diverge Diverge Diverge
.70 Diverge Diverge Diverge Diverge
.80 Diverge Diverge Diverge Diverge
.90 Diverge Diverge Diverge Diverge
(3) SD+PR+BFGS .00 15 /256 Diverge Diverge Diverge
(4) SD4+6PR++YBFGS .10 Diverge 2588 /119837 Diverge Diverge
.20 Diverge Diverge Diverge Diverge
.30 Diverge Diverge Diverge Diverge
.40 Diverge Diverge Diverge Diverge
.50 Diverge Diverge Diverge Diverge
.60 Diverge Diverge Diverge Diverge
.70 Diverge Diverge Diverge Diverge
.80 Diverge Diverge Diverge Diverge
.90 Diverge Diverge Diverge Diverge

Example 4.6. Brown and Dennis Function, (Moré, J.J., et al.,1981).

case the function f is given by

where n is the number of variables and

fi(®) = (w1 + tivg — e7%)? + (23 + 348in(t;) — cos(t;))

2
)
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In this

where t; = i/5. The starting point is zo = (25,5, —5, —1). The numerical results

are shown in Table 4.6.
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Table 4.6. Results for the Brown and Dennis Function

Backtracking  Strong Wolfe Wolfe Armijo
Directions n ¥
IT/FE IT/FE IT/FE IT/FE
SD 4 1.00 380 /4472 Diverge Diverge 495 /10242
PR .00 50 /686 Diverge Diverge 406 /8587
BFGS 1.00 20 /148 14 /223 16 /195 27 /272
(1) PR+yBFGS .10 109 /1378 Diverge Diverge 305 /6407
.20 54 /655 Diverge Diverge 109 /2180
.30 60 /706 Diverge 1881 /37722 101 /2047
.40 85 /1014 Diverge Diverge 185 /3667
.50 92 /1141 Diverge Diverge 317 /6259
.60 115 /1375 Diverge Diverge 219 /4347
.70 91 /1090 Diverge Diverge 215 /4084
.80 418 /4604 Diverge Diverge 136 /2507
.90 332 /3396 Diverge Diverge 229 /4042
(2) YPR+BFGS .10 272 /2652 Diverge Diverge 173 /2992
.20 229 /2247 Diverge Diverge 253 /4851
.30 147 /1689 Diverge Diverge 278 /5342
.40 82 /1052 Diverge Diverge 243 /4693
.50 110 /1356 Diverge Diverge 886 /17615
.60 79 /973 Diverge Diverge 685 /13783
.70 77 /958 Diverge 1665 /33402 50 /1002
.80 49 /626 Diverge Diverge 333 /6924
.90 98 /1288 Diverge Diverge 122 /2516
(3) sp+PR+BFGS 00 103 /1269 Diverge Diverge 145 /3157
(4) sp+0pPR+yBFGS 10 110 /1290 Diverge Diverge 138 /3009
.20 109 /1199 Diverge Diverge 568 /12356
.30 173 /1976 Diverge Diverge 514 /11058
.40 319 /3509 Diverge Diverge 108 /2279
.50 154 /1760 Diverge Diverge 165 /3526
.60 268 /2940 Diverge Diverge 101 /2118
.70 431 /4845 Diverge Diverge 544 /11450
.80 464 /5236 Diverge Diverge 1320 /27522
.90 386 /4411 Diverge Diverge 363 /7543

4.3 Discussion

From the implementation of Algorithm 3.2, using the four choices of hybrid
directions,

(1) (1 —5)d?® +~d?"°5, ~=0,01,...,1,

(2) vd™® +dPF5, 4 =0,0.1,...,1,
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(3) dSD+dPR+dBFGS’

(4) d°° + (1 — v)d?® + vd?"®, ~=0,0.1,...,1,
the following points can be made corresponding to the aims stated in Section 4.1.

1. For this preliminary investigation, the hybrid directions, in particular,
the combinations between the conjugate gradient and BFGS directions (Hybrid
direction(1)) show some trends for the possibility of speeding up the process of

locating the minimizer, in comparison to the search based on a single direction.

2. The backtracking technique shows numerically to be the suitable and

efficient way in obtaining the admissible step length along the hybrid directions.

3. The hybrid direction (1) gives the better performances over all especially
when it is implemented with the backtracking technique and as the dimension of
the problem is higher, the reduction in the number of function evaluations becomes

more evident.



Chapter V

Conclusion

This thesis presents an approach for solving an unconstrained minimization
problem, min f(z), f : R* — R. The approach is based on the theoretical results
on the expanding subspace property of the conjugate gradient method for the
convex quadratic function and also the idea of locating a minimizer on the linear
variety. The investigation utilizes the line search framework, i.e., for any given

zo € R" the sequence of estimates of the minimizer of f, {z;} has the form
Tp+1 = Tg + /\kdka

where dj is a descent direction of f at z; and A, is an admissible step length
along di. The approach in constructing the search direction in this thesis is to
take a linear combination of some independent search directions. The line search
is then carried out along this combined direction. The aim here is to be able to
locate a minimizer in a larger region, in particular, on a linear variety, o + V/,
where V' is a subspace spanned by the independent search directions in the linear
combination.

The preliminary choices of the combined directions in this thesis are
limited to the combination of the existing and well-known directions. The two
main directions used are the BFGS quasi-Newton and Polak-Ribiere conjugate
gradient directions. The steepest descent direction is also combined with these
two directions to observe the behaviour. Some linear combinations of these

directions, or the hybrid directions, are tested on some standard test problems of
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Moré, J.J. et al. (1981).

The relative numerical results show some promising trends of the hybrid
directions in speeding up the process of locating the minimizer. However, this
preliminary investigation is limited to choices of the search directions and the
scalar multiples in the linear combination. This suggests further investigation
and development of a good representative direction in the subspace.

Finally, the approach developed in this thesis can be used as the
basis for establishing a parallel numerical method for solving an unconstrained

minimization problem, as the search directions can be independently constructed.
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Appendix A

Terminology

A.1 Types of Solution

Definition A.1. Let € be a subset of R*. A point x*1is said to be a local

minimizer of f on Q if there is a neighbourhood N (z*) C Q such that
f(z) > f(z*) forall x € N(z%).

Definition A.2. Let Q) be subset of R*". A point z* is said to be a global

mainimizer of f over Q if

f(x) > f(z*) forall xz €.

A.2 Necessary Conditions

Theorem A.1l. (First-Order Necessary Condition)

Let x* is a local minimizer and f is continuously differentiable on an open

neighbourhood N (z*), then V f(z*) = 0.

Theorem A.2. (Second-Order Necessary Conditions)
Let x* s a local minimizer and f is twice continuously differentiable on

open neighbourhood N (z*), then
1.) Vf(z*) =0,

2.) V2f(z*) >0 (positive semidefinite).
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Theorem A.3. (Second -Order Sufficient Conditions)

Let f be twice continuously differentiable on an open neighbourhood

1) Vf(z") =0,
2.) V2f(z*) > 0 (positive definite).

Then x* is a strict local minimizer of f.

A.3 Convex Functions

Definition A.3. A function f defined on a conver set Qis said to be conver if,

for every x1,z5 € Q and every 0 € [0,1] there holds

(1 =0)x1 +0x2) < (1—0)f(x1) + 0f(x2).
If, for every 6 € (0,1), and x, # xo there holds

F((1=0)xy 4+ 0z2) < (1 —0)f(x1) + 0f(x2),
then f 1is said to be strictly convex.

Theorem A .4.

Let f and g be convex functions on the convex set 2. Then the function

1.) 0f, for all 8 >0

2) f+g.

are conver on §).

Theorem A.5.
Let [ be a convex function on a conver set ). Then the set L = {:c‘x € Q,

f(z) <c¢,ceR} is conver.
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Theorem A.6.
Let f be continuously differentiable and conver on the convexr set €. If
there is a point z* € Q such that, for all y € Q, Vf(z*)"(y — 2*) > 0, then z*

15 a global minimazer.

A.4 Types of Convergence

1) Convergence of the sequence {z;} in R"
Let 2 € Ry, € R,k = 0,1,2,.... Then the sequence

{z} = {1, 29, 23,...} is said to converge to z* if
lim ||z — 2| = 0.
k—o00
2) Q-linear convergence
The sequence {zy} = {z1,x9,23,...} is said to be g¢-linearly convergent to

x* if there exists a constant ¢ € [0,1) and an integer k > 0 such that for

allk > k,

21 = 2% < eflzi — 2]].

3) Q-superlinear convergence
The sequence {z;} = {z1,x9,23,...} is said to be g-superlinearly convergent

to x* if for some sequence {cy} that converges to 0,

261 = 27| < exlly — 27

4) Q-quadratic convergence
The sequence {zy} = {1, x9,23,...} is said to be ¢-quadratically convergent

to z* if there exist constants ¢ > 0 and k > 0 such that for all & > l%,

k1 — 27| < ellz — 2|
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A.5 Sherman-Morrison-Woodbury formula

If the square nonsingular matrix A in R**" is updated in the following

form
A=A+ ab?,
where a and b are vectors in R, if A is nonsingular, then
., A7labTA!

L
A=A T T, (A1)

This formula can be extended to higher rank updates. Let U and V be

matrices in R"*? for some p between 1 and n. If
A=A+UVT,
and A is nonsingular, then

At =A AU+ VTAT D)V TATL (A.2)



Appendix B

Fortran Program

The FORTRAN codes of Algorithm 3.2 are presented in this section. The

descriptions of the subroutines used in this program are as follows.

e The paBs, pDOT, DFLOAT and DNRM2 subroutines compute the absolute values,
dot product and Euclidean norm. They are called from the Sun Performance
Library Reference, Basic Linear Algebra Subprograms, Level 1 (BLASI).

e The mITPT, OBJFCN and GRDFCN subroutines compute the initial point,
objective function and its gradient from the standard test problems of Moré,

J.J., et al. (1981).

e The EXPSLNS, LNSRCH, LINESRCH and LINESRCH1 subroutines compute the step
length A according to the Armijo’s conditions, backtracking technique,
strong Wolfe and Wolfe conditions, respectively.

e The Ncc and Brags subroutines compute the search direction in the form
(2.45) based on the PR choice and (2.31) based on the BFGS update,
respectively.

FORTRAN CODES OF ALGORITHM 3.2

THIS PROGRAM IS FOR FINDING THE MINIMIZER OF A GIVEN OBJECTIVE FUNCTION OF

N VARIABLES. THE METHOD USED IS TO COMBINE THE QUASI-NEWTON DIRECTIONS(BFGS)
AND CONJUGATE GRADIENT (POLAK-RIBIERE) DIRECTIONS AND FIT THIS COMBINED DIRECTION
INTO THE LINE SEARCH FRAMEWORK.

N : NUMBER OF VARIABLES(DIMENSION)

ITS : NUMBER OF ITERATIONS,

ITMAX:MAXIMUM OF ITERATIONS ALLOWED

FE : TOTAL NUMBER OF FUNCTION EVALUATIONS AND COMPONENT OF THE GRADIENT
XO0LD,X : CURRENT AND NEW ITERATES

GOLD, D :CURRENT AND NEW GRADIENTS

DOLD,D : CURRENT AND NEW DIRECTIONS

DCG : CONJUGATE GRADIENT DIRECTIONS(POLAK RIBIERE)

DBFGS : QUASI-NEWTON DIRECTIONS USING THE BFGS UPDATE

DSD : STEEPEST DESCENT DIRECTIONS

DCOMB : HYBRID DIRECTIONS



! FXO0,FX : FUNCTION VALUES AT CURRENT AND NEW ITERATES

! GAMMA : SCALAR MULTIPLES DIRECTIONS OF THE DIRECTIONS IN THE HYBRID DIRECTIONS.

! VALUES OF GAMMA ARE BETWEEN O AND 1

! a =1- GAMMA, b = GAMMA

! NRM* : NORM OF ANY VECTOR *

! H : INVERSE HESSIAN APPROXIMATIONS

! S : THE VARIABLE WHICH CONTAINING THE DIFFERENCE BETWEEN THE NEW AND CURRENT ITERATES
! YY,SS : DOT PRODUCT BETWEEN TWO VECTORS Y AND S RESPECTIVELY.

! NLNS : CHOICES OF LINE SEARCH 1 BACKTRACKING LINE SEARCH (LNSRCH SUBROUTINE)

2 STRONG WOLFE CONDITIONS (LINESRCH SUBROUTINE)

3 WOLFE CONDITIONS (LINESRCH1 SUBROUTINE)

4 EXPONENTIAL SCHEDULE LINE SEARCH (EXPSLNS SUBROUTINE)

1
1
1
1
1
1
1
1
1
1
1
1
!
! NPROB : PROBLEM NUMBER
!
1
1
1
1
1
1
1
1
1
1
1
1
1

1 HELICAL VALLEY FUNCTION(3) 10 BROWN BADLY SCALED FUNCTION(2)

2 BIGGS EXP6 FUNCTION(6) 11 BROWN AND DENNIS FUNCTION(4)

3 GAUSSIAN FUNCTION(3) 12 GULF RESEARCH AND DEVELOPMENT FUNCTION(3)
4 POWELL BADLY SCALED FUNCTION(2) 13 TRIGONOMETRIC FUNCTION

5 BOX 3-DIMENSIONAL FUNCTION(3) 14 EXTENDED ROSENBROCK FUNCTION

6 VARIABLY DIMENSIONED FUNCTION 15 EXTENDED POWELL SINGULAR FUNCTION

7 WATSON FUNCTION 16 BEALE FUNCTION(2)

8 PENALTY FUNCTION I 17 WOOD FUNCTION(4)

9 PENALTY FUNCTION II 18 CHEBYQUAD FUNCTION

! NCOMB : COMBINATION NUMBER 1 aPR + bBFGS
2 aPR + bSD
3 DbPR +BFGS
! 4 SD + PR + BFGS
! 5 SD + aPR + bBFGS
PROGRAM HYBRIDDIRECT
USE MSFLIB
IMPLICIT NONE
INTEGER  :: N,NMAX,I,ITS,ITMAX,MAXFE,OQUT,QUT1,LDH,FAIL,FE,GE,NPROB,NLNS,T
INTEGER(2):: IDIREC,ILINE,NDIREC,NLINE,ALLN,NCOMB,IRET*4,SIG*4
INTEGER(2):: STATUS,CONTROL,LENGTH,RETCODE
RECORD /MTH$E_INFO/ INFO
CHARACTER*4 :: NAME
PARAMETER (NMAX = 200)
PARAMETER (LDH = NMAX)
PARAMETER (OUT = 13)
PARAMETER (0UT1= 14)
PARAMETER (ITMAX = 3000,MAXFE=90000)
PARAMETER (NDIREC= 31)
PARAMETER (NLINE = 4)
INTEGER :: IT(NDIREC,NLINE),F(NDIREC,NLINE)
DOUBLE PRECISION :: EPS,TOLX,ALPHA,GAMMA,ZERO,ONE,FACTOR,DCOMB(NMAX)
DOUBLE PRECISION :: FX,FX0,NORMX,NRMG,DDOT,DNRM2,SLOPE,DOLD(NMAX)
DOUBLE PRECISION :: H(LDH,NMAX),GOLD(NMAX),G(NMAX),X0OLD(NMAX) ,X(NMAX)
DOUBLE PRECISION :: D(NMAX),DCG(NMAX),DBFGS(NMAX),DX(NMAX) ,DSD(NMAX)
PARAMETER (TOLX=1.0D-10,EPS=1.0D-05)
PARAMETER (NPROB = 13)
EXTERNAL INITPT
EXTERNAL OBJFCN
EXTERNAL GRDFCN
EXTERNAL NCG
EXTERNAL BFGS
EXTERNAL LNSRCH
EXTERNAL LINESRCH
EXTERNAL LINESRCH1
EXTERNAL EXPSLNS
EXTERNAL DNRM2
EXTERNAL DDOT
INTRINSIC DABS
INTRINSIC DFLOAT
DATA ZERO,ONE,FACTOR /0.0D0,1.0D0,1.0D0/
]

INTERFACE
FUNCTION HAND_FPE (SIGID, EXCEPT)
IMS$ATTRIBUTES C :: HAND_FPE
INTEGER*4 HAND_FPE
INTEGER*2 SIGID, EXCEPT
END FUNCTION
END INTERFACE
1
OPEN(13,FILE=’allresult.dat’)
OPEN(14,FILE=’output_x.dat’)
1

75



WRITE(13,%)
GO TO (401,402,403,404,405,406,407,408,409,410,411,412,%
& 413,414,415,416,417,418), NPROB
401 CONTINUE
WRITE(13,*) ’Results for the Helical Valley function’
GOTO 419
402 CONTINUE
WRITE(13,*)’Results for the Biggs EXP6 function’
GOTO 419
403 CONTINUE
WRITE(13,%*) ’Results for the Gaussian function’
GOTO 419
404 CONTINUE
WRITE(13,*) ’Results for the Powell Badly Scaled function’
GOTO 419
405 CONTINUE
WRITE(13,*) ’Results for the Box 3-dimensional function’
GOTO 419
406 CONTINUE
WRITE(13,%*)’Results for the Variably Dimensioned function’
GOTO 419
407 CONTINUE
WRITE(13,*) ’Results for the Watson function’
GOTO 419
408 CONTINUE
WRITE(13,*) ’Results for the Penalty function I’
GOTO 419
409 CONTINUE
WRITE(13,%*)’Results for the Penalty function II’
GOTO 419
410 CONTINUE
WRITE(13,*) ’Results for the Brown Badly Scaled function’
GOTO 419
411 CONTINUE
WRITE(13,%*) ’Results for the Brown and Dennis function’
GOTO 419
412 CONTINUE
WRITE(13,%)’Results for the Gulf Research and Development function’
GOTO 419
413 CONTINUE
WRITE(13,%)’Results for the Trigonometric function’
GOTO 419
414 CONTINUE
WRITE(13,*) ’Results for the Extended Rosenbrock function’
GOTO 419
415 CONTINUE
WRITE(13,*) ’Results for the Extended Powell Sigular function’
GOTO 419
416 CONTINUE
WRITE(13,*) ’Results for the Beale function’
GOTO 419
417 CONTINUE
WRITE(13,*)’Results for the Wood function’
GOTO 419
418 CONTINUE
WRITE(13,*) ’Results for the Chebyquad function’
419 CONTINUE
1
WRITE(13,%)
WRITE(13,203)° &

& )

WRITE(13,200) ’Backtracking’,’Strong Wolfe’,’Wolfe’,’Armijo’
WRITE(13,201) ’Directions’,’n’,’gamma’
WRITE(13,202)°IT’,’FE’,’IT’,’FE’,’IT’,’FE’,’IT’,’FE’

WRITE(13,203)’ &

0,
&

WRITE(13,%)

]

! DIMENSION LOOP
!

ALLN = 2
T=0
10 CONTINUE
T = T+1
ALLN = 2*%ALLN
IF(NPROB == 4 .OR. NPROB == 10 .0OR. NPROB == 16)THEN
ALLN = 2



ELSE IF(NPROB == 1 .OR. NPROB == 3 .0R. NPROB == 5 .0R. NPROB == 12)THEN

ALLN = 3
ELSE IF(NPROB == 11 .OR. NPROB == 17)THEN
ALLN = 4
ELSE IF(NPROB == 2)THEN
ALLN = 6
ELSE
ENDIF
IF(NPROB == 7)THEN
IF(ALLN > 16)ALLN = 30
ENDIF

DIRECTION LOOP

N = ALLN
IDIREC = 0
ALPHA = ZERO

20 CONTINUE
IDIREC =IDIREC + 1
IF(IDIREC == 1)THEN

NCOMB = 2
GAMMA = ONE
ELSE IF (IDIREC == 2)THEN
NCOMB = 1
GAMMA = ZERO
ELSE IF (IDIREC == 3)THEN
GAMMA = 1
ELSE
IF(IDIREC == 4)THEN
GAMMA = 0.1
ELSE

GAMMA = GAMMA + 0.1
IF(IDIREC == 13)THEN

NCOMB = 3
GAMMA = 0.1

ENDIF

IF(IDIREC == 22)THEN
GAMMA = ZERO
NCOMB = 4

ENDIF

IF(IDIREC == 23)THEN
NCOMB = 5
GAMMA = 0.1

ENDIF

ENDIF
ENDIF

LINE SEARCH LOOP

DO ILINE = 1,4,1
NLNS = ILINE

INITIAL DATA

ITS= 0
FE = 0
GE =0

CALL INITPT(N,X,NPROB,FACTOR)
CALL OBJFCN(N,X,FX,NPROB)
CALL GRDFCN(N,X,G,NPROB)
FX0= FX
FE = FE + 1
GE = GE + N
DO I =1,N

D(I) = -G(I)

XOLD(I)= X(I)

GOLD(I)= G(I)
ENDDO

CHECK NORM OF GRADIENT G(I)
NRMG = DNRM2(N,G,1)
IF(NRMG <= EPS) GOTO 30

MAIN LOOP

DO ITS = 1,ITMAX,1

7



THE NEW FUNCTION EVALUATION OCCURS IN LINE SEARCH SUBROUTINE; SAVE THE FUNCTION
VALUE IN FX FOR THE NEXT LINE SEARCH.

SLOPE = DDOT(N,G,1,D,1)
IF(SLOPE > ZERQ)THEN

DOI=1,N
D(I)=-G(I)
ENDDO
SLOPE = DDOT(N,G,1,D,1)
ENDIF

! SELECTION OF CONDITION ON THE SCALARS ALONG THE SEARCH DIRECTION

IF(NLNS >= 1 .AND. NLNS <= 4)THEN
G0T0(1010,1020,1030,1040) ,NLNS
ELSE
WRITE(*,%) °’CHOOSE SELECTION OF THE CONDITIONS ON THE SCALARS &
%ALONG THE SEARCH DIRECTION 1-4°
WRITE(*,%)
STOP
ENDIF
1010 CONTINUE
CALL LNSRCH(N,X,FX,D,G,SLOPE,FE,GE,NPROB,FAIL)
GOTO 1000
1020 CONTINUE
CALL LINESRCH(N,X,FX,D,G,SLOPE,FE,GE,NPROB,FAIL)
GOTO 1000
1030 CONTINUE
CALL LINESRCHi(N,X,FX,D,G,SLOPE,FE,GE,NPROB,FAIL)
GOTO 1000
1040 CONTINUE
CALL EXPSLNS(N,X,FX,D,G,SLOPE,NPROB,FE,GE,FAIL)
1000 CONTINUE
DX(I) = ZERD
DO I=1,N
DX(I)= X(I) - XOLD(I)
ENDDO
NORMX = DNRM2(N,DX,1)
NRMG = DNRM2(N,G,1)
CALL MATHERRQQ( NAME, LENGTH, INFO, RETCODE)
IRET = SIGNALQQ(SIG, HAND_FPE)
CALL GETCONTROLFPQQ (CONTROL)
]

'IF NOT ROUNDING DOWN
!

IF(IAND(CONTROL, FPCW$DOWN) /= FPCW$DOWN) THEN

CONTROL = IAND(CONTROL, NOT(FPCW$MCW_RC)) ! CLEAR ALL
! ROUNDING
CONTROL = IOR(CONTROL, FPCW$DOWN) ! SET TO
! ROUND DOWN

CALL SETCONTROLFPQQ(CONTROL)
ENDIF
CALL GETSTATUSFPQQ(STATUS)
!
! CHECK FOR DIVISION BY ZERO
!
IF(IAND(STATUS, FPSW$INVALID) /= 0) THEN
WRITE (*,*) ’INVALID. LOOK &
&FOR NAN OR SIGNED INFINITY IN RESULTANT DATA.’

ENDIF

IF(IRET /= -1)THEN
WRITE(*,*) °’SET EXCEPTION HANDLER. RETURN = ’, IRET
GOTO 30

ENDIF

IF(NORMX <= TOLX)THEN
WRITE(*,*)N,” *,ITS,’ ’,NLNS,’ ’,NCOMB
WRITE(*,*)’ | |X_(k+1)-X_k|| =’,NORMX
GOTO 30

ENDIF

IF(NRMG <= EPS)GOTO 30

DO I=1,N
DOLD(I) = D(I)
DBFGS(I) = D(I)
DCG(I) = D(I)

ENDDO

78
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! TEST FOR ALL CHOICES OF COMBINED DIRECTIONS
]
IF(NCOMB >= 1 .AND. NCOMB <= 5)THEN
GOT0(1001,1002,1003,1004,1005) ,NCOMB
ELSE
WRITE(#*,%) ° CHOOSE CHOICES FO FOR ALL COMBINED DIRECTIONS 1-5’
WRITE(*,%)
STOP
ENDIF
1001 CONTINUE
IF(GAMMA == ZERQ)THEN
CALL NCG(N,G,GOLD,DCG)
ELSEIF(GAMMA == ONE)THEN
CALL BFGS(N,ITS,LDH,H,X,X0LD,G,GOLD,DBFGS)
ELSE
CALL BFGS(N,ITS,LDH,H,X,X0LD,G,GOLD,DBFGS)
CALL NCG(N,G,GOLD,DCG)
ENDIF
DO I =1,N
DCOMB(I)=(ONE-GAMMA)*DCG(I) + GAMMA*DBFGS(I)
ENDDO
GOTO 2000
1002 CONTINUE
IF(GAMMA == ZERQ)THEN
CALL NCG(N,G,GOLD,DCG)
ELSEIF(GAMMA == ONE)THEN
DO I =1,N
DSD(I)=-G(I)
ENDDO
ELSE
DO I =1,N
DSD(I)=-G(I)
ENDDO
CALL NCG(N,G,GOLD,DCG)
ENDIF
DO I =1,N
DCOMB (I)=(0ONE-GAMMA)*DCG(I) + GAMMA*DSD(I)
ENDDO
GOTO 2000
1003 CONTINUE
CALL BFGS(N,ITS,LDH,H,X,X0OLD,G,GOLD,DBFGS)
CALL NCG(N,G,GOLD,DCG)
DO I =1,N
DCOMB(I)= GAMMA*DCG(I) + DBFGS(I)
ENDDO
GOTO 2000
1004 CONTINUE
CALL BFGS(N,ITS,LDH,H,X,X0LD,G,GOLD,DBFGS)
CALL NCG(N,G,GOLD,DCG)
DO I =1,N
DSD(I)=-G(I)
ENDDO
DO I =1,N
DCOMB(I)= DSD(I) + DCG(I) + DBFGS(I)
ENDDO
GOTO 2000
1005 CONTINUE
IF(GAMMA == ZERO)THEN
CALL NCG(N,G,GOLD,DCG)
ELSE IF(GAMMA == QONE)THEN
CALL BFGS(N,ITS,LDH,H,X,X0LD,G,GOLD,DBFGS)
ELSE
CALL BFGS(N,ITS,LDH,H,X,X0LD,G,GOLD,DBFGS)
CALL NCG(N,G,GOLD,DCG)
ENDIF
DO I =1,N
DSD(I)=-G(I)
ENDDO
DO I =1,N
DCOMB(I) = DSD(I) + (ONE-GAMMA)*DCG(I) + GAMMA*DBFGS(I)
ENDDO
]

| UPDATE NEW DIRECTION
]
2000 CONTINUE
DO I =1,N
D(I) = DCOMB(I)
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X0LD(I) = X(I)
GOLD(I) = G(I)
ENDDO
FX0 = FX
ENDDO

! END MAIN LOOP

30 CONTINUE
WRITE(14,204)NLNS,GAMMA,ITS, (X(I),I=1,N),NRMG,FX

IF(ITS > ITMAX .OR. F(IDIREC,ILINE) > MAXFE)THEN
IT(IDIREC,ILINE)= ’Div’
F(IDIREC,ILINE) = ’Div’
ELSE IF(IRET /= -1)THEN
IT(IDIREC,ILINE)= ICHAR(’0’)
F(IDIREC,ILINE) = ICHAR(’0’)
WRITE(13,%)
WRITE(13,205)GAMMA, IT(IDIREC,1) ,F(IDIREC,1),IT(IDIREC,2),F(IDIREC,2), &
& IT(IDIREC,3),F(IDIREC,3),IT(IDIREC,4),F(IDIREC,4)
GOTO 113
ELSE
IT(IDIREC,ILINE) = ITS
F(IDIREC,ILINE) = FE + GE
ENDIF
ENDDO
]

! END LINE SEARCH LOOP
!

IF(IDIREC <= 4)THEN
GOT0(100,102,104,106) , IDIREC
100 CONTINUE
WRITE(13,%)
WRITE(13,101)ALLN,GAMMA, IT(IDIREC,1) ,F(IDIREC,1),IT(IDIREC,2) ,F(IDIREC,2), &
& IT(IDIREC,3),F(IDIREC,3),IT(IDIREC,4),F(IDIREC,4)
GOTO 113
102 CONTINUE
WRITE(13,%)
WRITE(13,103)GAMMA, IT(IDIREC,1) ,F(IDIREC,1),IT(IDIREC,2),F(IDIREC,2), &
& IT(IDIREC,3),F(IDIREC,3),IT(IDIREC,4),F(IDIREC,4)
GOTO 113
104 CONTINUE
WRITE(13,%)
WRITE(13,105)GAMMA, IT(IDIREC,1) ,F(IDIREC,1),IT(IDIREC,2),F(IDIREC,2), &
& IT(IDIREC,3),F(IDIREC,3),IT(IDIREC,4),F(IDIREC,4)
GOTO 113
106 CONTINUE
WRITE(13,%)
WRITE(13,107)GAMMA, IT(IDIREC,1) ,F(IDIREC,1),IT(IDIREC,2),F(IDIREC,2), &
& IT(IDIREC,3),F(IDIREC,3),IT(IDIREC,4),F(IDIREC,4)
GOTO 113
ELSE
IF(IDIREC == 13)THEN
WRITE(13,%)
WRITE(13,108)GAMMA,IT(IDIREC,1) ,F(IDIREC,1),IT(IDIREC,2),F(IDIREC,2), &
& IT(IDIREC,3),F(IDIREC,3),IT(IDIREC,4),F(IDIREC,4)
GOTO 113
ELSE IF(IDIREC == 22)THEN
WRITE(13,%)
WRITE(13,109)GAMMA,IT(IDIREC,1) ,F(IDIREC,1),IT(IDIREC,2),F(IDIREC,2), &
& IT(IDIREC,3),F(IDIREC,3),IT(IDIREC,4),F(IDIREC,4)
GOTO 113
ELSE IF(IDIREC == 23)THEN
WRITE(13,%)
WRITE(13,111)GAMMA,IT(IDIREC,1) ,F(IDIREC,1),IT(IDIREC,2),F(IDIREC,2), &
& IT(IDIREC,3),F(IDIREC,3),IT(IDIREC,4),F(IDIREC,4)
GOTO 113
ELSE
ENDIF
WRITE(13,112)GAMMA, IT(IDIREC,1) ,F(IDIREC,1),IT(IDIREC,2),F(IDIREC,2), &
& IT(IDIREC,3),F(IDIREC,3),IT(IDIREC,4),F(IDIREC,4)
GOTO 113
ENDIF
113 CONTINUE
IF(IDIREC >= 31)GOTO 40
GOTO 20
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! END DIRECTION LOOP

!
40

CONTINUE

WRITE(13,%)

IF(NPROB == 4 .OR. NPROB == 10 .OR. NPROB == 16)THEN
IF(ALLN >= 2)GOTO 50

ELSE IF(NPROB == .OR. NPROB == 3 .0R. NPROB == 5 .0R. NPROB == 12)THEN
IF(ALLN >= 3)GOTO 50

ELSE IF(NPROB == 11 .OR. NPROB == 17)THEN
IF(ALLN >= 4)GOTO 50

ELSE IF(NPROB == 7)THEN
IF(ALLN >= 30)GOTO0 50

ELSE IF(NPROB == 2)THEN
IF(ALLN >= 6)GOTO 50

ELSE
IF(ALLN >= 4000)G0T0 50

ENDIF

GOTO 10

! END DIMENSION LOOP

!
50

205

CONTINUE
WRITE(13,203)’ &
& )
FORMAT(2X, ’SD’,9X,13,2X,F4.2,2X,15,2X,17,3X,15,2X,17,3X,15,2X,17,3X,15,2X,I7)

FORMAT(2X, ’'PR’,14X,F4.2,2X,15,2X,17,3X,15,2X,17,3X,15,2X,17,3X,15,2X,I7)
FORMAT(2X, ’BFGS’,12X,F4.2,2X,15,2X,17,3X,15,2X,17,3X,15,2X,17,3X,15,2X,17)
FORMAT(2X, ’aPR+bBFGS’,7X,F4.2,2X,15,2X,17,3X,15,2X,17,3X,15,2X,17,3X,15,2%X,17)
FORMAT(2X, 'bPR+BFGS’,8X,F4.2,2X,15,2X,17,3X,15,2X,17,3X,15,2X,17,3X,15,2X,17)
FORMAT(2X, ’ SD+PR+BFGS’ ,6X,F4.2,2X,15,2X,17,3X,15,2X,17,3X,15,2X,17,3X,15,2X,I7)
FORMAT(2X, ’ SD+aPR+bBFGS’ ,4X,F4.2,2X,15,2X,17,3X,15,2X,17,3X,15,2X,17,3X,15,2X,1I7)
FORMAT(18X,F4.2,2X,15,2X,17,3X,15,2X,17,3X,15,2X,17,3X,15,2X,1I7)
FORMAT(27X,A12,5X,A12,8X,A5,11X,A6)
FORMAT(A10,5X,A1,2X,A5)
FORMAT(27X,A2,7X,A2,6X,A2,7X,A2,6X,A2,7X,A2,6X,A2,7X,A2)
FORMAT(A90)
FORMAT(3X,I2,2X,D10.3,1X,I5,1X,100(D15.8),1X,D15.8,1X,D15.8,/)
FORMAT(2X,’PR’,10X,F4.2,1X,A5,1X,A7,1X,1X,A5,1X,A7,1X, &

& 1X,A5,1X,A7,1X,1X,15,1X,A7,1X,F5.2)

CLOSE(13)
CLOSE(14)

STOP

END
1

! END HYBRIDDIRECT PROGRAM

FUNCTION HAND_FPE (SIGNUM, EXCNUM)
IMS$ATTRIBUTES C :: HAND_FPE

USE MSFLIB

INTEGER*2 SIGNUM, EXCNUM

WRITE(*,%) ’IN SIGNUM HANDLER FOR SIG$FPE’
WRITE(*,%) °’SIGNUM = ’, SIGNUM

WRITE(*,%) ’EXCEPTION = ’, EXCNUM

SELECT CASE(EXCNUM)

CASE(FPE$INVALID )

STOP ’ FLOATING POINT EXCEPTION: INVALID NUMBER’
CASE( FPE$DENORMAL )

STOP ’ FLOATING POINT EXCEPTION: DENORMALIZED NUMBER’
CASE( FPE$ZERODIVIDE )

STOP ’ FLOATING POINT EXCEPTION: ZERO DIVIDE’
CASE( FPE$OVERFLOW )

STOP ’ FLOATING POINT EXCEPTION: OVERFLOW’
CASE( FPE$UNDERFLOW )

STOP ’ FLOATING POINT EXCEPTION: UNDERFLOW’
CASE( FPE$INEXACT )

STOP ’ FLOATING POINT EXCEPTION: INEXACT PRECISION’
CASE DEFAULT

STOP ’ FLOATING POINT EXCEPTION: NON-IEEE TYPE’

END SELECT
HAND_FPE = 1
RETURN

END

! COMPUTATION ERROR DETECTION

SUBROUTINE MATHERRQQ( NAME, LENGTH, INFO, RETCODE)
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USE MSFLIB

INTEGER*2 LENGTH, RETCODE
CHARACTER(LENGTH) NAME
RECORD /MTH$E_INFO/ INFO

RETURN

WRITE(*,*) "ENTERED MATHERRQQ"

WRITE(*,*) "FAILING FUNCTION IS: ", NAME
WRITE(*,*) "ERROR TYPE IS: ", INFO.ERRCODE

IF((INFO.FTYPE == TY$REAL4 ).OR.(INFO.FTYPE == TY$REAL8)) THEN
WRITE(*,*) "TYPE: REAL"
WRITE(*,*) "ENTER THE DESIRED FUNCTION RESULT: "
READ(*,*) INFO.R8RES
RETCODE = 1
ELSEIF ((INFO.FTYPE == TY$CMPLX8 ).OR.(INFO.FTYPE == TY$CMPLX16)) THEN
WRITE(*,*) "TYPE: COMPLEX"
WRITE(*,*) "ENTER THE DESIRED FUNCTION RESULT: "
READ(*,*) INFO.C16RES
RETCODE = 1
ENDIF
END

START BFGS SUBROUTINE
THIS SUBROUTINE COMPUTE NEW BFGS DIRECTIONS

SUBROUTINE BFGS(N,ITS,LDH,H,X,X0LD,G,GOLD,DBFGS)
IMPLICIT INTEGER(I)

INTEGER N,NMAX,I,J,LDH,ITS

PARAMETER (NMAX = 200)

DOUBLE PRECISION TOLX,ZERO,ONE

DOUBLE PRECISION DDOT,RHO,YHY,SS,YS,YY,DABS
DOUBLE PRECISION G(N),GOLD(N),HY(NMAX),DBFGS(N)
DOUBLE PRECISION H(LDH,N),S(NMAX),Y(NMAX),X(N),XOLD(N)
PARAMETER (TOLX = 1.0D-8)

EXTERNAL DDOT

EXTERNAL DSYMV

INTRINSIC DSQRT

INTRINSIC DMAX1

INTRINSIC DABS

DATA ZERO,ONE /0.0D0,1.0D0/

IF(ITS == 1)THEN

DO I=1,N
DO J = 1,N
H(I,J) = ZERO
ENDDO
H(I,I)= ONE
ENDDO
ENDIF
COMPUTE THE DIFFERENCE OF NEW AND CURRENT ITERATES
DO I=1,N
S(I) = X(I) - XOLD(I)
ENDDO
COMPUTE THE DIFFERENCE OF NEW AND CURRENT GRADIENTS
DOI=1,N
Y(I) = G(I) - GOLD(I)
ENDDO

CALL DSYMV(’UPPER TRIANGULAR H’,N,ONE,H,LDH,Y,1,ZERQO,HY,1)
CALCULATE DOT PRODUCTS FOR THE DENOMINATORS.

YS = DDOT(N,Y,1,S,1)
YY = DDOT(N,Y,1,Y,1)
ss = DDOT(N,S,1,S,1)

YHY= DDOT(N,Y,1,HY,1)
SKIP UPDATE IF YS IS NOT SUFFICIENTLY POSITIVE.
IF(YS > DSQRT(TOLX*YY*SS))THEN
RHO = ONE/YS
THE BFGS UPDATING FORMULA:
DO I=1,N
DO J =1I,N
H(I,J)= H(I,J)-RHO*(S(I)*HY(J)+HY(I)*S(J)) &
&+ (YHY*RHO**2+RH0O) *S(I)*S(J)
ENDDOQ
ENDDO
ELSE
D0 I =



H(I,I) = ONE
ENDDO
ENDIF
NOW CALCULATE THE NEXT DIRECTION TO GO, AND GO BACK FOR ANOTHER ITERATION.
CALL DSYMV(’UPPER TRIANGULAR H’, N,-ONE,H,LDH,G,1,ZERO,DBFGS,1)

RETURN
END

END BFGS SUBROUTINE
START CG SUBROUTINE
NONLINEAR CONJUGATE GRADIENT DIRECTION(POLAK-RIBIERE)

SUBROUTINE NCG(N,G,GOLD,DCG)
IMPLICIT INTEGER(I)
INTEGER N,NMAX,I
PARAMETER (NMAX = 200)
DOUBLE PRECISION BETA,SCALE,PONE,RST
DOUBLE PRECISION DDOT,GNEWG,GGOLD,NRMGOLD, NRMGNEW
DOUBLE PRECISION G(N),GOLD(N),GLC(NMAX),D(NMAX),DCG(N)
EXTERNAL DDOT
EXTERNAL DAXPY
INTRINSIC DABS
DATA PONE,SCALE /1.0D-1,-1.0D0/
DOI =1,N

D(I) = DCG(I)

GLC(I) = G(I)

DCG(I)=-G(I)
ENDDO
NRMGOLD = DDOT(N,GOLD,1,GOLD,1)
NRMGNEW = DDOT(N,G,1,G,1)
GGOLD = DDOT(N,G,1,GOLD,1)
RESTARTED WHEN RST >= 0.1
RST = DABS(GGOLD)/NRMGNEW
IF(RST >= PONE)RETURN
CALL DAXPY (N,SCALE,GOLD,1,GLC,1)
GNEWG = DDOT(N,G,1,GLC,1)
BETA = GNEWG/NRMGOLD
COMPUTE NEW DIRECTION NEXT TO GO,
CALL DAXPY (N,BETA,D,1,DCG,1)

RETURN
END

END CG SUBROUTINE

BACKTRACKING LINE SEARCH SUBROUTINE

SUBRQUTINE LNSRCH(N,X,FX,DL,G,SLOPE,FE,GE,NPROB,FAIL)
IMPLICIT NONE

INTEGER I,N,NMAX,K,FE,GE,NPROB,FAIL

PARAMETER (NMAX = 200)

DOUBLE PRECISION Ci,ZERO,PONE,HALF,ONE,TWO,THREE
DOUBLE PRECISION LAMBDA,LAMBLO,LAMBDAO,LAMBDAQ2
DOUBLE PRECISION A,B,DISC,RHS1,RHS2,SLOPE,FX,FX0,FX1
DOUBLE PRECISION G(N),DL(NMAX),X(N),XLC(NMAX)
EXTERNAL OBJFCN

EXTERNAL GRDFCN

INTRINSIC DSQRT

INTRINSIC DMAX1

DATA ZERO,PONE,HALF,ONE,TWO,THREE,C1 /0.0DO,1.0D-1,0.5D0,1.0D0,2.0D0,3.0D0,1.0D-4/

FX0 = FX
DOI=1,N
XLC(I)= X(I)
ENDDO
LAMBLO = PONE
LAMBDAO = ONE
FAIL = 0
K=0
1 CONTINUE
K=K+ 1
IF(K >= 50)THEN
LAMBDAO = LAMBLO
FAIL = 1

83



ENDIF
DO I =1,N
X(I) = XLC(I) + LAMBDAO*DL(I)
ENDDO
CALL OBJFCN(N,X,FX,NPROB)
FE = FE + 1
IF(FAIL == 1)THEN
CALL GRDFCN(N,X,G,NPROB)
GE = GE + N
RETURN
ENDIF
IF(FX <= FXO + C1*LAMBDAO*SLOPE)THEN
CALL GRDFCN(N,X,G,NPROB)

GE = GE + N
RETURN
ELSE

IF(LAMBDAO == ONE)THEN
LAMBDA = (-SLOPE)/(TWO*(FX -FXO -SLOPE))
ELSE
RHS1 = FX -FXO -LAMBDAO*SLOPE
RHS2 = FX1 -FX0 -LAMBDAO2%SLOPE
A = (RHS1/LAMBDAO**2-RHS2/LAMBDAO2+%2) /(LAMBDAO-LAMBDAO2)
B = (-LAMBDAO2+RHS1/LAMBDAO**2+LAMBDAO*RHS2/LAMBDAO2**2)/ &
& (LAMBDAO-LAMBDAO2)
IF(A == ZERQ)THEN
LAMBDA = (-SLOPE)/(TW0*B)
ELSE
DISC = B*B -THREE*A*SLOPE
IF(DISC < ZERO)THEN
LAMBDA = HALF*LAMBDAO
ELSE IF(B <= ZERO)THEN
LAMBDA = (-B+DSQRT(DISC))/(THREE*A)

ELSE
LAMBDA = (-SLOPE)/(B+DSQRT(DISC))
ENDIF
IF(LAMBDA > HALF*LAMBDAO) LAMBDA=HALF*LAMBDAO
ENDIF
ENDIF

ENDIF

LAMBDAO2 = LAMBDAO

FX1 = FX

LAMBDAO = DMAX1(LAMBDA,PONE*LAMBDAO)

GOTO 1

END

END BACKTRACKING LINE SEARCH SUBROUTINE

START LINESRCH SUBROUTINE SATISFIES STRONG WOLFE CONDITIONS WITH BISECTION
INTERPOLATION

SUBRQUTINE LINESRCH(N,X,FX,D,G,SLOPE,FE,GE,NPROB,FAIL)
IMPLICIT NONE
INTEGER I,J,FAIL,N,NMAX,FE,GE,NPROB
PARAMETER (NMAX = 200)
DOUBLE PRECISION DDOT,C1,C2,ZERO,ONE,TW0,LAMBLO
DOUBLE PRECISION LO,HI,FX,FX0,FL0,FHI,SLOPE,GHI,PONE
DOUBLE PRECISION X(N),XLC(NMAX),D(N),G(N),GLC(NMAX)
EXTERNAL DDOT
EXTERNAL OBJFCN
EXTERNAL GRDFCN
EXTERNAL ZOOM
INTRINSIC DSQRT
DATA C1,C2,ZERO,PONE,ONE,TWO /1.0D-04,1.0D-01,0.0D0,1.0D-01,1.0D0,2.0D0/
DO I=1,N
XLC(I)
GLC(I)
ENDDO
FAIL = 0
LO = ZERO
LAMBLO = PONE
FX0 = FX
FLO = FX0
HI = ONE
J=0
2 CONTINUE
J=J+1

X(D
G(D)
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DO I =1,N
X(I) = XLC(I) + HI*D(I)
ENDDO
CALL OBJFCN(N,X,FX,NPROB)
FHI= FX
FE = FE + 1
IF(FAIL == 1)THEN
CALL GRDFCN(N,X,G,NPROB)
GE = GE + N
RETURN
ENDIF
IF((FHI > FXO + C1#HI*SLOPE) .OR. (FHI >= FLO .AND. J > 1) )THEN
FX = FXO
DOI=1,N
X(I)
G(I)
ENDDO
CALL ZOOM(N,LAMBLO,LO,HI,X,FX,D,G,SLOPE,FE,GE,NPROB,FAIL)
RETURN
ENDIF
CALL GRDFCN(N,X,G,NPROB)
GHI = DDOT(N,G,1,D,1)
GE = GE + N
IF(DABS(GHI) <= -C2*SLOPE)THEN
RETURN
ENDIF
IF(GHI >= ZERO)THEN
FX = FX0
DO I =1,N
X(I)
G(I)
ENDDO
CALL ZOOM(N,LAMBLO,LO,HI,X,FX,D,G,SLOPE,FE,GE,NPROB,FAIL)
RETURN
ENDIF
L0 = HI
FLO = FHI
HI = TWO*HI
IF(J >= 50)THEN
HI = LAMBLO
FAIL = 1
ENDIF
GOTO 2
END

XLC(I)
GLC(I)

XLC(D)
GLC(I)

END LINESRCH SUBROUTINE

SUBROTUINE Z0OM COMPUTE STEP LENGTH WITH BISECTION INTERPOLATION

SUBROUTINE ZOOM(N,LAMBLO,LO,HI,X,FX,D,G,SLOPE,FE,GE,NPROB,FAIL)
IMPLICIT NONE
INTEGER I,K,N,NMAX,FAIL,FE,GE,NPROB
PARAMETER (NMAX = 200)
DOUBLE PRECISION C1,C2,ZERO,TW0,LO0,HI,ATRY,BISECT,LAMBLO
DOUBLE PRECISION FX,FX0,FTRY,FLO,DABS,DDOT,SLOPE,GTIRY
DOUBLE PRECISION X(N),XLC(NMAX),D(N),G(N)
EXTERNAL DDOT
EXTERNAL OBJFCN
EXTERNAL GRDFCN
INTRINSIC DABS
INTRINSIC DSQRT
DATA C1,C2,ZER0,TW0 /1.0D-04,1.0D-01,0.0D0,2.0D0/
FAIL = 0
FX0 = FX
FLO = FX0
DO I =1,N
XLC(I) = X(D)
ENDDO
K=0
3 CONTINUE
K=K+1
IF(L0 .NE. HI) THEN
BISECT = (LO + HI)/TWO
ATRY = BISECT
IF(K >= 50)THEN
ATRY = LAMBLO
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FAIL = 1
ENDIF
DOI=1,N

X(I) = XLC(I) + ATRY*D(I)
ENDDO
CALL OBJFCN(N,X,FX,NPROB)
FTRY = FX
FE = FE + 1

IF(FAIL == 1)THEN
CALL GRDFCN(N,X,G,NPROB)

GE = GE + N
RETURN

ENDIF

IF((FTRY > FXQ + C1*ATRY*SLOPE) .0R. (FTRY >= FLO) )THEN
HI = ATRY

ELSE

CALL GRDFCN(N,X,G,NPROB)

GTRY = DDOT(N,G,1,D,1)

GE = GE + N

IF(DABS(GTRY) <= -C2*SLOPE)THEN
RETURN

ENDIF

! CHECK WHICH WAY TO LOOK NEXT

IF(GTRY*(HI - LO) >= ZERO)THEN

HI = LO

L0 = ATRY
FLO = FTRY

END Z0OM SEARCH SUBROUTINE

START LINESRCH1 SUBROUTINE SATISFIES STRONG WOLFE CONDITIONS WITH BISECTION
INTERPOLATION

SUBROUTINE LINESRCH1i(N,X,FX,D,G,SLOPE,FE,GE,NPROB,FAIL)
IMPLICIT NONE
INTEGER I,J,FAIL,N,NMAX,FE,GE,NPROB
PARAMETER (NMAX = 200)
DOUBLE PRECISION DDOT,C1,C2,ZERO,ONE,TW0,LAMBLO
DOUBLE PRECISION LO,HI,FX,FX0,FLO,FHI,SLOPE,GHI,PONE
DOUBLE PRECISION X(N),XLC(NMAX),D(N),G(N),GLC(NMAX)
EXTERNAL DDOT
EXTERNAL OBJFCN
EXTERNAL GRDFCN
EXTERNAL ZOOM
INTRINSIC DSQRT
DATA C1,C2,ZER0,PONE,ONE,TWO /1.0D-04,1.0D-01,0.0D0,1.0D-01,1.0D0,2.0D0/
DO I =1,N
XLC(I)
GLC(I)
ENDDO
FAIL = 0
LO = ZERO
LAMBLO = PONE
FX0 = FX
FLO = FX0
HI = ONE
J=0
4 CONTINUE
J=J+1
DO I=1,N
X(I) = XLC(I) + HI*D(I)
ENDDO
CALL OBJFCN(N,X,FX,NPROB)
FHI= FX
FE = FE + 1
IF(FAIL == 1)THEN
CALL GRDFCN(N,X,G,NPROB)

X(D
G(D

GE = GE + N
RETURN
ENDIF

IF((FHI > FXO + C1*HI*SLOPE) .0R. (FHI >= FLO .AND. J > 1) )THEN
FX = FX0



DOI=1,N
X(I) = XLC(ID)
G(I) = GLC(I)
ENDDO
CALL z0OM(N,LAMBLO,LO,HI,X,FX,D,G,SLOPE,FE,GE,NPROB,FAIL)
RETURN
ENDIF

CALL GRDFCN(N,X,G,NPROB)

GHI = DDOT(N,G,1,D,1)

GE = GE + N

IF(DABS(GHI) <= -C2+SLOPE)THEN
RETURN

ENDIF

IF(GHI >= ZERO)THEN
FX = FX0
DO I = 1,N

X(I)
G(I)

ENDDO
CALL ZOOM(N,LAMBLO,LO,HI,X,FX,D,G,SLOPE,FE,GE,NPROB,FAIL)
RETURN

ENDIF

L0 = HI

FLO = FHI

HI = TWO*HI

IF(J >= 50)THEN
HI = LAMBLO
FAIL = 1

ENDIF

GOTO 4
END

XLC(I)
GLC(I)

END LINESRCH1 SUBROUTINE

SUBROTUINE Z0OM1 COMPUTE STEP LENGTH WITH BISECTION INTERPOLATION

SUBROUTINE Z0OM1(N,LAMBLO,LO,HI,X,FX,D,G,SLOPE,FE,GE,NPROB,FAIL)
IMPLICIT NONE

INTEGER I,K,N,NMAX,FAIL,FE,GE,NPROB

PARAMETER (NMAX = 200)

DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION

Cc1,C2,ZERO,TWO0,LO0,HI,ATRY,BISECT, LAMBLO
FX,FX0,FTRY,FLO,DABS,DDOT,SLOPE,GTRY
X(N) ,XLC(NMAX) ,D(N),G(N)

EXTERNAL DDOT
EXTERNAL OBJFCN
EXTERNAL GRDFCN
INTRINSIC DABS
INTRINSIC DSQRT
DATA C1,C2,ZER0,TW0 /1.0D-04,1.0D-01,0.0D0,2.0D0/
FAIL = 0
FX0 = FX
FLO = FX0
DOI =1,N
XLC(I) = X(D
ENDDO
K=0
5 CONTINUE
K=K+ 1
IF(LO .NE. HI) THEN
BISECT = (LO + HI)/TWO
ATRY = BISECT
IF(K >= 50)THEN
ATRY = LAMBLO
FAIL = 1
ENDIF
DO I=1,N
X(I) = XLC(I) + ATRY=*D(I)
ENDDO
CALL OBJFCN(N,X,FX,NPROB)
FTRY = FX
FE = FE + 1
IF(FAIL == 1)THEN
CALL GRDFCN(N,X,G,NPROB)
GE = GE + N
RETURN
ENDIF



IF((FTRY > FXO + C1xATRY*SLOPE) .OR. (FTRY >= FLO) )THEN
HI = ATRY
ELSE
CALL GRDFCN(N,X,G,NPROB)
GTRY = DDOT(N,G,1,D,1)
GE = GE + N
IF(DABS(GTRY) >= C2+SLOPE)THEN
RETURN
ENDIF
CHECK WHICH WAY TO LOOK NEXT
IF(GTRY*(HI - LO) >= ZERO)THEN
HI = LO

END ZOOM1 SEARCH SUBROUTINE
START EXPONENTIAL SCHEDULE LINE SEARCH SUBROUTINE

SUBROUTINE EXPSLNS(N,X,FX,DL,G,SLOPE,NPROB,FE,GE,FAIL)
IMPLICIT NONE
INTEGER I,M,N,NMAX,K,FE,GE,NPROB,FAIL
PARAMETER (NMAX = 200)
DOUBLE PRECISION PONE,ONE,TWO,LAMBDA,LAMBDAO
DOUBLE PRECISION FX,FX0,SLOPE,LAMBLO
DOUBLE PRECISION G(N),DL(N),X(N),XLC(NMAX)
EXTERNAL QOBJFCN
EXTERNAL GRDFCN
DATA PONE,ONE,TWO /1.0D-01,1.0D0,2.0D0/
FX0 = FX
DO I=1,N
XLC(I)= X(I)
ENDDO
LAMBLO = PONE
LAMBDAO= ONE
LAMBDA = LAMBDAO
FAIL = 0
K=0
M=1
6 CONTINUE
K=K+ 1
DO I=1,N
X(I) = XLC(I) + LAMBDA*DL(I)
ENDDO
CALL OBJFCN(N,X,FX,NPROB)
FE = FE + 1
IF(FAIL == 1)THEN
CALL GRDFCN(N,X,G,NPROB)

GE = GE + N
RETURN
ENDIF

IF(FX <= FX0 + (ONE/TWQ)*LAMBDA*SLOPE) THEN
CALL GRDFCN(N,X,G,NPROB)
GE = GE + N
RETURN
ELSE
M=M+1
LAMBDA = LAMBDAO/(TWO**(M-1))
IF(K >= 50)THEN
LAMBDA = LAMBLQ
FAIL = 1
ENDIF
ENDIF
GOTO 6
END
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