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Abstract

This paper presents the results of a study on the buckling strength of glass fiber-reinforced plastic
(GFRP) equal-leg angle structural members subjected to the concentric axial compression. The angle
members were made of glass fiber reinforced with polyester resin and manufactured by a pultrusion
process. A total of 32 specimens with slenderness ratios ranging from 12 to 187 and leg width-to-thickness
ratios of 8, 12, and 16 were tested. The experimentally obtained buckling loads were also predicted by
using analytical formulas. The analytical formulas were developed by modifying a well-known elastic
flexural-torsional buckling theory with some factors concerning the orthotropic behaviors of the GFRP
material. Coupons cut from the angle specimens were tested using compression and in-plane shear
coupon test to determine necessary material properties. The analytical results were then correlated to
the test results and those calculated by the nominal buckling strength equations proposed by Zureick
and Steffen to validate the adequacy. Finally, the design equations for the angle members were proposed.

Keywords: Glass fiber reinforced plastic, GFRP, angle member, axial compression, flexural buckling,
flexural-torsional buckling, buckling strength
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Glass fiber-reinforced plastic (GFRP) composite
has emerged as an effective material for civil
engineering structures for over 20 years
(Ballinger, 1990). The GFRP material has
superior characteristics in corrosion resistance,
strength-to-weight ratio, and ease of handling in
construction over the conventional materials such
as steel and reinforced concrete. Many American,
European, and international industries are
currently producing a variety of GFRP structural
sections such as I, W, angle, channel, and box.
Among various types of manufacturing processes

that have evolved during the past four decades,
the pultrusion process appears to offer the highest
productivity-to-cost ratio (Zureick and Scott,
1997). This is because it allows a mass production
of long, straight, and constant structural sections.
While the GFRP structural sections become
readily available, designers of such components
are facing an immediate problem in the lack of
reliable design criteria. Thus, there is an urgent
need to understand the behavior and strength of
the GFRP structures and their components under
various types of loading condition.
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During the past few years, extensive
research works have been performed on the
fiber-reinforced plastic (FRP) structural
members subjected to the axial compression with
different kinds of cross-section (Lee and Hewson
1978; Mottram 1991; Barbero and Raftoyiannis
1993; Yuan and Seangatith 1996; Yuan 1997;
Zureick and Scott 1997; Seangatith and
Sriboonlue 1999). Most of these studies have
concentrated on the flexural buckling behavior
of the members having doubly symmetric cross-
sections such as box-, I-, and W-sections. The
GFRP angles are commonly used in a variety of
structures and structural components such as
trusses, frames, and bracing members because
they can be easily fabricated and erected. They,
however, have not received the same degree of
attention as the other sections. Only few works
have been reported on the study on the behavior
and design of the axially loaded GFRP equal-leg
angle members (Zureick and Steffen, 2000). In
addition, the design process of these kinds of
structural member under either the concentric
or the eccentric axial loads requires the
knowledge of concentrically compressive load
capacity of the member. This paper presents the
results of a study on the behavior and buckling
strength of the GFRP equal-leg angle structural
members under the concentric axial compression.
The analytical formulas were developed from
a well-known elastic flexural-torsional buckling
theory, incorporating some factors associated
with the orthotropic behaviors of the GFRP
material. Correlation studies between the test
results and those from the analytical formulas
and the nominal buckling strength equations
proposed in Zureick and Steffen (2000) were
conducted. The effects of effective-length factors
and material orthotropy on the buckling strength
were investigated. Finally, the design equations
are presented.

Previous Research Works

ASCE has issued a structural plastic design
manual (ASCE structural plastic design manual,
1984) which was intended to be a guideline for
engineers who work with structural plastics. The
manual recommends that the buckling resistance

of single angle member subjected to axially
compressive load can be approximated by the
lower value determined from the flexural
buckling and torsional buckling equations. For
the members failing in flexural buckling, the
flexural buckling strength, σxc,Fl, can be
calculated from Euler’s flexural buckling
equation:

(1)

where E is the modulus of elasticity for bending
in the direction of buckling, L is the length,
K is the effective-length factor, and r is the
radius of gyration in that direction. For the
members failing in torsional buckling, the
torsional buckling strength, σxc,T, can be
estimated from the torsional buckling equation
for a linearly elastic isotropic materials:

(2)

where E
L 

is the longitudinal compression
modulus, v

TL 
is the major Poisson’s ratio,

and t and  b are the leg thickness and the leg
width of the section, respectively. It is well
known that the value of the term  E

L
 / [2(1+v

LT
)]

for GFRP is always greater than that of the
in-plane shear modulus, G

LT
, by over two times

(Seangatith, 1999). Thus, Eqn. (2) always
overestimates the torsional buckling strength of
the GFRP structural members. For the members
failing in flexural-torsional buckling, the
buckling strength can be approximated by using
an interaction relationship between the flexural
and torsional buckling strength equations. A few
forms of the relationship are proposed, but is not
specified, being left to the judgement of the
designer.

Zureick and Steffen (2000) presented the
results of a study on the short term behavior of
concentrically loaded single angle members,
made of pultruded glass fiber-reinforced
polymeric materials. A total of 25 specimens
were tested with  KL / r ratios ranging from
30 to 105 and b / t ratios of 8, 10.7, 12, 16, and
24. Under axial compression, the GFRP angle
members buckle in either flexural or flexural-
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torsional mode. Analytical equations that
describe the buckling behavior of specially
orthotropic, centrally loaded, equal-leg angle
section were derived. The compression and
in-plane shear coupon tests of the material from
each specimen were also conducted. The results
were statistically analyzed to obtain the 95% lower
confidence limit on the fifth percentile strength
and modulus values. These material properties
were used in the analytical buckling equations
to correlate the test results to the analytical results
in order to obtain the design strength, φPn, of
the angle members. It is proposed that the
nominal strength, Pn, of the members, can be
taken as the lowest value determined in
accordance with the limit states of the flexural
buckling, the flexural-torsional buckling, and the
material compression strength. For the limit state
of the flexural buckling, the nominal buckling
load is determined by using the equation

(3)

where E
L
 is the longitudinal compressive

modulus of elasticity and Ag is the gross
cross-sectional area of the member. It should be
noted that Eqn. (3) is similar to Eqn. (1), except
that E is replaced by E

L
. For the limit state of the

flexural-torsional buckling, the nominal buckling
load is determined by using the equation

(4)

Eqn. (4) is similar to Eqn. (2), except that the term
E /[2(1 + v)] is replaced by the in-plane shear
modulus, G

LT
, obtained experimentally from

the in-plane shear coupon test, and the factor of
0.9 was proposed based on the approximation
that the flexural-torsional buckling load is
approximately equal to 90% of the torsional
buckling. For the limit state of the material
compressive failure, the nominal strength is
determined by

(5)

where σ L
c  is the ultimate longitudinal

compressive strength of the GFRP material. By
using Monte Carlo simulation, the resistance

factor, φ, was proposed as follows: φ = 0.65 for
the flexural buckling limit state;  for the flexural-
torsional buckling limit state; and  for the
material compressive limit state. It can be seen
that Eqns. (3) and (4) are a better-developed form
of Eqns. (1) and (2), respectively.

It is well-known that a number of design
equations for the concentrically loaded GFRP
equal-leg angle members have been proposed
by the GFRP manufacturers. Most of these
equations are practical and easy to use. They
have been developed based on full-scale test
results of the structural members and curve-
fitting. These equations are, however,
recommended to be used only for their products.

From the review of the previous research
works, it is believed that the buckling strength
equations of the GFRP equal-leg angle structural
member subjected to the concentric axial
compression can be derived in a well-developed
form without introducing any curve-fit-based
coefficients or flexural-torsional buckling related
factors. In addition, since the GFRP material has
a high  E

L 
/ G

LT
 ratio or high orthotropy, which is

usually in the range of two to four times as high
as that of the steel (Zureick and Scott 1997;
Seangatith, 1999; Mottram 2004), it exhibits
a larger effect from shear deformation when
compared with that of the isotropic material.
Therefore, the effect of the transverse shear
should be included into the buckling stress
equations, and hence a more realistic behavior
of the structural member can be determined.

Analytical Formulas

A concentrically loaded equal-leg angle
structural member can fail in by flexural or
flexural-torsional buckling. Trahair (1993)
showed that if the angle member is perfectly
straight and is subjected to only the
concentrically axial force, the resistance to
buckling depends on its resistance to bending
and torsion. The lowest buckling resistance of
the member will govern the buckling mode. In
this development, the GFRP material is assumed
to be a specially orthotropic homogeneous
material that can be characterized by using four
independent elastic constants: the longitudinal
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compressive modulus of elasticity, E
L
, the

in-plane shear modulus, G
LT

, the major Poisson’s
ratio, v

LT
, and the transverse modulus of elasticity,

E
T
.

Figure 1 shows a typical configuration of
an equal-leg angle cross-section in a fixed
Cartesian coordinate system          in
which the principal                         lie in the
plane of the cross-section and          the
coincides with the longitudinal          of the
angle member. Point C is the centroid and point
S is the shear center of the cross-section. Each
leg has the width of  b and the thickness of t.
Following the analysis developed by Trahair for
the case of the GFRP equal-leg angle member
subjected to concentric axial load, P, the
differential equations which describe the
equilibrium in its buckled configuration, i.e.
displaced laterally u in         and v in
       and twisted by ϕ in     plane
may be rewritten as

(6)

(7)

(8)

where     denotes the differential operator
         are the moment of inertia

of the cross-sectional area about    and
                respectively, J is the polar moment of

inertia,                                      , and C
w
 is the warping

constant. For the equal-leg angle, C
w 
  = A3/144.

For angle member with simply supported
boundary conditions (contrained rotation about
the    -axis and free to warp) at the coordinate
    = 0 and     = L, the boundary conditions are

u(0) = u(L) = v(0) = v(L) = ϕ(0) = ϕ(L) = 0  (9)

u"(0) = u"(L) = v" (0) = v"(L) = ϕ"(0) = ϕ" (L) = 0
(10)

Eqns. (6) to (10) can be satisfied by the buckled

shapes,                                 , if the

axial force satisfies the following determinant

(11)

Expanding the determinant, Eqn. (11) can be
rewritten as

(12)

Rearranging Eqn. (12),

(13)

The solutions of Eqn. (13) are

(14.a)

(14.b)

(14.c)

Figure 1. Typical configuration of equal-leg
angle cross-section.
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warping effective-length factor. It was shown by
Trahair (1993) that the values of these factors
vary almost linearly with the end restraint
parameters from 0.5 for a rigidly restrained end
to 1 for an unrestrained end.

The lowest of the solutions P
1
, P

2
, and P

3

is always less than or equal to the lowest of the
buckling loads           and    . By comparing
the flexural-torsional buckling loads computed
by using Eqns. (14.b) and (14.c), it can be seen
that the values of  P

3 
 is always lower than that

of P
2
 . Hence,  P

1 
and P

3
 are the flexural buckling

and flexural-torsional buckling equation of the
equal-leg angle member, respectively.

Test Specimens, Material Properties,
and Test Set-up

The GFRP equal-leg angle members used in this
study were made of E-glass fiber-reinforced with
polyester resin and manufactured by a pultrusion
process. By using the modified ignition loss
method (Ye et al., 1995), it was found that the
glass fiber volume fraction was about 35% with
the filler content about 5 to 10% by volume.
Table 1 shows the details of the geometric
properties of the GFRP equal-leg angle
specimens. The specimen number is designated
by a letter “A”, leg width, and an identification
number. The test consists of 32 specimens
with b / t ratios of 8, 12, and 16 and with
the slenderness ratios about the minor ′y -axis,
               ranging from 12 to 187. The
ratios were computed by using the overall
length,Ly′ , equals to the actual length of the
specimen plus 44 mm due to the height of the
test fixture of the supports. Two tests were
conducted on each specimen number. The initial
crookedness of each specimen was measured
prior to the test. It was found that all of the
specimens have leg out-of-straightness and leg
juncture camber well below the tolerance limit
specified by ASTM D3917, which is L / 240 and
L / 380, respectively.

To correlate the analytical results to the
obtained test results, the values of      , E

L
, and

G
LT

 are needed to be determined from the
compression and in-plane shear coupon test.
Nine compression coupons, three coupons from

where                P Px y′ ′, , and    are the

flexural buckling load about ′x -axis, the flexural
buckling load about ′y -axis, and the torsional
buckling load about    -axis, respectively.
      Since the GFRP material has a high
orthotropy or high E

L
 / G

LT
 ratio, the effect of

the shear on the flexural buckling load may need
to be considered. In addition, it should be noted
that, for the equal-leg angle with different end-
restrained conditions, the lengths for bending and
twisting may be assumed as the distances
between the inflection points of the buckled
shapes. Lee and Hewson (1978) suggested that
the flexural buckling load about ′x -axis and
′y -axis of the FRP structural member should be

estimated by using the equations:

(15)

(16)

where         and         are effective lengths
for bending about the principal axis    and    ,
respectively and n is the form factor which is
assumed to be 2 and 3 for the flexural buckling
about   - and   -axes, respectively (Lee and
Hewson, 1978). The torsional buckling load can
be calculated by using the equation:

(17)

where     is the length for twisting about the
longitudinal      -axis. It should be noted that, for
the equal-leg angle with different end-restrained
conditions, the lengths for bending and twisting
may be assumed as the distances between the
inflection points of the buckled shapes. Hence,
the lengths      ,      , and       in Eqns. (15) to (17)
can be approximated equal to the effective
lengths                             and             where
and     are the effective-length factors
about the principal axis     and    and      is the

′z

K Lx x′ ′ K Ly y′′ ′
′x ′y

′x ′y

L ′z
′z

Lx′ Ly′ L ′z

K L K Lx x y y′ ′ ′ ′, , K L′ ′z z Kx′
Ky′

′x ′y

P Px y′ ′, , 

L ry y′ ′ /  , L ry y′ ′  / ,

σ L
c

r
I I

Ao
x y

g

2 =
+′ ′ . P ′z

P
E I

L n E I L A G
x

L x

x L x x g LT
′

′

′ ′ ′

=
+













π

π

2

2 2 2

1

1 /

P
G J E C L

r
LT L w

′
′=

+
z

zπ 2 2

2
2

/

K ′z

P ′z

P
E I

L n E I L A G
y

L y

y L y y g LT
′

′

′ ′ ′

=
+













π

π

2

2 2 2

1

1  /



235Suranaree J. Sci. Technol. Vol. 11 No. 3; July-September 2004

each angle section, were tested in accordance
with ASTM D3410, in order to determine
and E

L
. All of the compression coupons were

prismatic having the width of 38 mm and
unsupported coupon lengths of 38, 58, 78 mm
for the 6.3, 9.5, and 12.7 mm thick coupon.
The coupon lengths were selected to ensure
compression failure without buckling of the
coupon specimen. Nine shear coupons, three

A75-1

A75-2

A75-3

A75-4

A75-5

Table 1. Geometric properties of the angle specimens.

Area, A
g

(mm2)
Specimen
number

Dimension (b)(t)(L)
(mm)(mm)(mm)

b / t
ratios

ry′
(mm)

Number of
specimens

8

8

8

8

8

1,340

1,340

1,340

1,340

1,340

14.9

14.9

14.9

14.9

14.9

24

64

106

146

187

2

2

2

2

2

A100-1

A100-2

A100-3

A100-4

A100-5

(100)(6.3)(305)

(100)(6.3)(607)

(100)(6.3)(1,524)

(100)(6.3)(2,134)

(100)(6.3)(2,743)

16

16

16

16

16

1,241

1,240

1,240

1,240

1,240

L ry y′ ′  /

20.1

20.1

20.1

20.1

20.1

17

32

78

108

139

2

2

2

2

2

A150-1

A150-2

A150-3

A150-4

A150-5

A150-6

(150)(12.7)(305)

(150)(12.7)(607)

(150)(12.7)(914)

(150)(12.7)(1,524)

(150)(12.7)(2,743)

(150)(12.7)(3,660)

12

12

12

12

12

12

3,690

3,690

3,690

3,690

3,690

3,690

30.1

30.1

30.1

30.1

30.1

30.1

12

22

32

52

93

123

2

2

2

2

2

2

Figure 3. Shear stress-strain curve.Figure 2. Compressive stress-strain curves.

coupons from each angle section, were also
tested in accordance with ASTM D5379, in order
to determine G

LT
. The test is in the form of

V-notched beam method under a four-point
asymmetric bending configuration. However, the
coupons used here (38 by 203 mm) were larger
than that given in the standard to reduce material
variance associated with nonuniform fiber
distributions. This shear test is essentially similar

σ L
c

(75)(9.5)(305)

(75)(9.5)(914)

(75)(9.5)(1,524)

(75)(9.5)(2,134)

(75)(9.5)(2,743)
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′x ′y

K ′z

σ L
c

K y′K x′

to that reported by Zureick and Scott (1997).
A typical compressive stress-strain curve is
shown in Figure 2. Each curve showed a linear
elastic response for 85-95% of the ultimate
compressive stress. Figure 3 shows a typical
shear stress-strain couve. The value for G

LT 
was

taken as a chord modulus between 1,000 and
6,000 microstrain. It was found that the average
value of    , E

L
,
 
 and  G

LT 
 are 293.6 MPa,

E
L
= 28.7 GPa, and G

LT  
= 4 GPa, respectively.

The typical test set-up configuration of the
angle specimens is shown in Figure 4. A screw-
type testing machine was used to apply the
concentric axial load to the angle specimens. The
specimen was placed in  the testing machine
between the pinned-pinned supports. The pinned
supports were created using an assenbly of steel
plates and hardened steel round bars. Thai
cupport configutation permits rotation in two
orthogonal directions both about the major
   -axis and the mirror    -axis. Hence, the terms
       and        in Eqn. (15) and (16) were considered
to be 1 To prevent any possible slip or kicking
out during loading and to facilitate the alignment
of the specimen, the ends of the specimen were
held to the stell plate by using four 25
mm-square steel bars which are securely bolted
to the steel plate. Due to this end-restrained
condition, the term      in Eqn. (17) was
considered to be 0.5. Before the beginning of
the test, a preload of approximately 5 kN was
applies to seat the specimen into the testing
position. The specimen was tested at a uniform
loading rate of 0.5 mm/min and loaded to the
point where the specimen was deformed
significantly with little or no increase in Load

Results and Discussions

Figure 5 shows typical axial load-displacement
curves of the angle specimens. All of the
specimens showed a linear elastic response for
80-95% of the buckling load. After reaching
the bucking load, the axial displacement
increases continuously without any increase in
the applied load. There is an exception for the
specimen number A150-1 in which the axial
load-displacement curves show linear elastic to
failure. Both of the angle specimens in this

Figure 5. Typical axial load-displacement
curves.

Figure 4. Typical configuration of the test
set-up.

σ L
c

specimen number were failed by local crushing
of the material at an end of the specimens. The
stresses at the crushing failure are about twice
as low as       . By examining the crushing areas,
it was found that the failure is due to material
defects and/or poor millng at the cutting end of
the specimens.

Table 2 shows the experimentally obtained
bucking stresses (σexp) and the modes of failure
of the angle specimens. Generally, the GFRP
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Table 2: Experimentally obtained buckling stresses and modes of failure.

A75-1

A75-2

A75-3

A75-4

A75-5

number

b / t

ratios ratios

σσσσσexp

(MPa)

Ave. σσσσσexp

(MPa)

Modes of failure

8

8

8

8

8

24

64

106

146

187

124.21
117.67
77.65
74.58
32.50
33.51
16.34
15.07
9.17
9.02

120.94

76.12

33.01

15.71

9.10

Flexural-torsional buckling
Flexural-torsional buckling
Flexural-torsional buckling
Flexural-torsional buckling
Flexural buckling
Flexural buckling
Flexural buckling
Flexural buckling
Flexural buckling
Flexural buckling

A100-1

A100-2

A100-3

A100-4

A100-5

16

16

16

16

16

17

32

78

108

139

42.30
46.26
30.14
26.48
25.20
22.95
19.49
19.35
13.72
13.70

44.28

28.31

24.07

19.42

13.71

Flexural-torsional buckling
Flexural-torsional buckling
Flexural-torsional buckling
Flexural-torsional buckling
Flexural-torsional buckling
Flexural-torsional buckling
Flexural-torsional buckling
Flexural-torsional buckling
Flexural buckling
Flexural buckling

A150-1

A150-2

A150-3

A150-4

A150-5

A150-6

12

12

12

12

12

12

12

22

32

52

93

123

136.70
119.91
68.27
68.57
46.08
51.75
34.70
39.93
32.11
32.98
18.70
19.70

128.31

68.42

48.92

37.32

32.54

19.20

Crushing of the material
Crushing of the material
Flexural-torsional buckling
Flexural-torsional buckling
Flexural-torsional buckling
Flexural-torsional buckling
Flexural-torsional buckling
Flexural-torsional buckling
Flexural-torsional buckling
Flexural-torsional buckling
Flexural buckling
Flexural buckling

angle members buckle in either flexural-torsional
buckling or flexural buckling about the minor
′y -axis. The flexural-torsional buckling, as

shown in Figure 6, was in the form of large lateral
deflection about the major ′x -axis and twisting
of the section about the axis parallel to the
longitudinal     -axis, occurred simultaneously.

The slenderness ratios at which the
flexural buckling and the flexural-torsional

buckling occur,                      , can be computed
by equating P

1 
of Eqn. (14.a) to P

3  
of Eqn. (14.c).

To study the relationship between
and b / t ratios, the values of                    ratio
were numerically calculated and plotted for b / t
ratios of 8, 12, and 16, and E

L
 / G

LT
 ratios of 2.6,

5.2, 7.2, 10.4, and 20 as shown in Figure 7.
It was found that the relationship is linear similar
to that obtained by Zureick and Steffen (2000).

′z

( / ) /L ry y ft f′ ′    

( / ) /L ry y ft f′ ′    

( / ) /L ry y ft f′ ′    

L ry y′ ′  /Specimen
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By using curve fitting, the relationship is in the
form of

(18)

For the specimens used in this study and
having E

L 
/ G

LT 
= 7.2, the               ratios

for the specimens computed by Eqn. (18)
are 82.5, 123.7, and 165 for b / t ratios of 8, 12,
and 16, respectively, which is in accordance
with the test results. They are about 1.6 times as
large as those of structural steel angles having
E

L 
/ G

LT 
= 2.6. In addition, for a given  b / t  ratio,

the  value of                         for high orthotropy
angle member (E

L 
/ G

LT 
 =  20) can be 2.7 times

as large as that of low orthotropy angle member
(E

L 
/ G

LT 
 = 2.6). It should be noted that the

obtained flexural-torsional buckling stresses in
the case of low L ry y′ ′ /  ratios (i.e., L ry y′ ′ /  <
20) was significantly less than σ L

c . This is due
to intrinsically high compressive strength-to-
modulus ratio of the GFRP material.

Table 3 presents values of the
experimentally obtained flexural-torsional
buckling stresses along with those predicted
(σpred) by Eqn. (4) and Eqn. (14.c). The σexp 

/ σpred

ratios were also presented to show the correlation
between the test results and the predicted results.
The average σexp 

/ σpred 
value for the case of Eqn.

(14.c) is 1.26 with coefficient of variation (COV)
equal to 0.17 and the average value for the case
of Eqn. (4) is 1.96 with COV equal to 0.30.
It can be seen that the predicted buckling stresses
are relatively in good agreement with the test
results. Most of the σexp 

/ σpred ratios are larger
than 1; this indicates that both equations are
conservative. Eqn. (14.c), however, generally
predicts the flexural-torsional buckling stresses
closer to the test results than Eqn. (4) since Eqn.
(4) is a simplified nominal flexural-torsional
buckling strength equation (Zureick and Steffen,
2000).

Table 4 presents values of the
experimentally obtained flexural buckling
stresses along with those predicted by Eqn. (3)
and Eqn. (14.a). The average σexp 

/ σpred value
for the case of Eqn. (14.a) is 0.96 with COV
equal to 0.08 and the average value for the case
of Eqn. (3) is 1.15 with COV of 0.24. Therefore,

the test results are quite in good agreement with
the predicted results and, in general, Eqn. (14.a)
predicts the flexural buckling stresses closer to
the test results than Eqn. (3). The lower than
predicted experimental buckling stresses is due
to many unavoidable factors such as material
property variation, load eccentricity, member
misalignment, shear effect, and member’s out-
of-straightness.

Figure 8 presents the plot of the
dimensionless ratios of P

1
 / P

1 
(no shear effect)

for a wide range of L ry y′ ′ / , for b / t ratios of 8,
12, and 16, and for E

L
 / G

LT
 ratios of 2.6, 7.2, and

20. By neglecting the transverse shear term
from Eqn. (15),  Eqn. (14.a) give higher predicted
flexural buckling loads in the range of 2.2 to
9.3% with the maximum increasing observed at

. The average value
of σexp 

/ σpred  
in this case is 0.92 with a COV

of 0.09. This average value of σexp 
/ σpred   

is lower
than the value that is computed using Eqn. (14.a);
indicating that, in general, including the effect
of transverse shear into the flexural buckling
equations gives a more realistic flexural buckling
of the angle member compared to the test results.

Based on the results of this study, the
design strength, φPn, for the flexural-torsional
buckling and flexural buckling of the equal-leg
angle structural members subjected to the
concentric axial loads can be taken as the lower
of the flexural-torsional buckling and flexural
buckling limit state. For a practical angle length,
the nominal strength  Pn  

equal to the lower of
P

1 
and P

3
, determined from Eqn. (14.a) and Eqn.

(14.c), respectively. Due to the lack of enough
testing data for the GFRP materials and the angle
members produced by different manufacturers,
the target reliability indices for the flexural-
torsional buckling and flexural buckling should
be at least 3 for the load combination
1.2D+1.6L where D and L are the dead and live
loads, respectively. The random variables
defining the sectional properties were assumed
to be normal distribution and those of the
material properties were assumed to be Weibull
distribution. Following the component reliability
analysis using Monte Carlo simulation, the
values of the resistant factor, φ, for the flexural-
torsional buckling and flexural buckling limit


