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CHAPTER 1
INTRODUCTION

1.1 Background and History

Many physical phenomena are described by differential equations. Ordinary
differential equations play a significant role in the theory of differential equations.
In the 19th century, one of the most important problems in analysis was the
problem of classification of ordinary differential equations.

One type of classification problem is the equivalence problem: a differential
equation is said to be equivalent to another equation, if there exists an invertible
transformation of the independent and dependent variables (point transformation)
which transforms one equation into the another. The linearization problem is a
particular case of the equivalence problem, where one of the equations is a linear
equation.

In mathematical history, Sophus Lie (1883) was the first who studied the
linearization problem of second-order ordinary differential equations. He gave the
criteria for a second-order ordinary differential equation to be linearizable. He
showed that every linearizable second-order ordinary differential equation has the
form

y' 4 alz,y)y® +b(z,y)y”? + clz, y)y' + d(z,y) = 0, (1.1)

where

r_ @ 1" d2y

y_dx’ T A2

To see this, notice that the general form of a linear second-order ordinary differ-



ential equation is

u" +e(t)u + f(t)u+g(t) =0, (1.2)
where
du d*u
;G n_ %Y
S Y T e

Equation (1.2) can be also reduced to the equation
u” = 0. (1.3)

Assume that equation (1.1) is obtained from (1.3) by an invertible transformation

of the independent and dependent variables,

t=op(z,y), u="v(z,y) (1.4)

It is assumed that D, = ¢, + y'p, # 0 and A = @00, — b, # 0. The
derivatives are transformed by formulae

D _ Vy + ylwy

Do o+,

Dag 92+ 995+ "9y
D,y Oe + Y 0y

u' =g(z,y,y) =

1
u =

p(z,y.y,y") =

x_'_/ -3
:gi_%fﬁ—w”+aaywa+dmywﬂ+d%wd+d@W%

where

a= A_l(Swayy — Pyythy),
b= A_l(@x¢yy — @yyww + 2(4,0:1/,4/}303/ - Soxyd]y))a
c = A_1(¢y¢$$ - Sozx1/}y + 2(‘;0a:¢$y - @xy¢z))7

d= Ail(@:ﬂ/}wx - Spmﬂd}w)

(1.5)

Substituting v’ and «” into (1.3), one obtains (1.1). Thus, if a second-order ordi-

nary differential equation is linearizable, then it has the form (1.1). Notice that
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not every equation of form (1.1) is linearizable. For finding linearizing transfor-
mation (1.4), one has to solve the overdetermined system (1.5) with respect to
the functions ¢(z,y) and ¥(z,y). Hence, the linearization problem is to obtain
conditions which guarantee the existence of functions (1.4) satisfying system (1.5).
Lie found that equation (1.1) can be transformed into equation (1.3) by transfor-
mation (1.4) if and only if the coefficients a(x,y), b(x,y), ¢(z,y) and d(z, y) satisfy

the conditions

H = 3a,, — 2byy + cyy — 3azc + 3a,d + 20,0 — 3cya — cyb + 6dya = 0,
(1.6)

K = byy — 2¢4y + 3dyy — 6a,d + byc + 3byd — 2¢cya — 3dya + 3d,b = 0.

The function H and K are called relative invariants. Notice that the functions
H and K are relative invariants with respect to invertible transformation of inde-
pendent and dependent variables.

There are other approaches for solving the linearization problem, for ex-
ample, one was developed by E.Cartan (1924). He used differential geometry for
solving this problem.

These two approaches (Lie’s approach and Cartan’s approach) were also ap-
plied to third-order ordinary differential equations, for examples, by Chern (1943),
G.Grebot (1996), M.Petitot and S.Neut (2002), N.Ibragimov and S.Meleshko

(2004, 2005).

1.2 Statement of the Problem

This thesis is devoted to the study a system of two second-order ordinary

differential equations

v = filz,un, e, v vh) s Ys = fal, yn, v, Y1, Yh). (1.7)
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The problem considered is part of the linerization problem. For system (1.7) the
linearization problem is to find an invertible transformation of independent and

dependent variables

t= @(x7y17y2)7 Uy = 1/11(1’791792)7 Ug = wQ(xaylayQ)v (18)

which transforms system of equations (1.7) into a linear system of equations

W'+ B(t)u =0, (1.9)
where
. uy (t) B - bia(t) Dia(t)
us(t) bar(t)  baa(t)

Notice that any system of linear equations

u' + C(t)u' + D(t)u+ E(t) =0,

where
C(t _ Cll(t) Clg(t) 7 D(t) _ dll(t) dlg(t) ’
Co1 (t) Co2 (t) dQl (t) d22 (t)
Y () B = ex(t) |
Ug(t) GQ(t)

can be reduced to the form (1.9).
Similar to Lie’s case of a single second-order ordinary differential equation,
in order to obtain necessary conditions, we assume that system (1.7) is obtained

from the linear system of differential equations (1.9) by an invertible transforma-



tion (1.8). Since the derivatives are changed by formulae

ull = gl(xaylay%y/l?yé) = wal )
D,y
ngl
ulll:pl(xvylay%y/layéay/l/ayg) = D © ’
Dby
ul 292(x7y17y27y17y/): - ’
2 VI Dap
DmQQ
U/QI :p2(x7y17y2,y/173/§ay¥73/g> = D SO,

_ 0 /9 e e "m0 : / " / "o
where D, = - + Yigy t Y2, T Vigy T V2g, , replacing uy, ui ,uy, and ug in

system (1.9), it becomes

Py =y + any;” + a1y vh + arsyis” + arayi’®
Faisyiyh + aisyh’ + arry; + aisyy + arg = 0, (1.10)
Fy = i + arzyh” + anows”yi + anyhyy” + azuyy’”
Fassyhyy + azeyh” + asryl + assyh + as = 0,
where the coefficients a;; are expressed through the functions ¢, 11, 1, their
partial derivatives and functions b;;. Thus, if system (1.7) is linearizable, then it
has the form (1.10).

The computational calculations show that form (1.10) is not changed by
any transformation (1.8). The main goal of this thesis is to find other invariants
and to obtain some necessary conditions for the linearization problem.

For solving the problem of the thesis, Lie’s approach was used. This ap-
proach contains of the following steps.

1. Find the equivalence group of transformations for system (1.10).
2. Obtain equations for invariants.
3. Solve the equations defining invariants.

Since each step needs a huge amount of analytical calculations, it is necessary

to use a computer for these calculations. A brief review of computer systems of
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symbolic manipulations can be found, for example, in Davenport (1993). In our
calculations the system REDUCE (cf. Hearn (1999)) was used.

This thesis is provided as follows. Chapter II introduces some background
knowledge of elementary Lie group analysis, which is necessary for our study.
Chapter III presents the equivalence group of transformations for system (1.10).
Chapter IV presents relative invariants. The source code of the Reduce computer
program can be obtained by contacting the author by e-mail at the address shown

in the Curriculum Vitae.



CHAPTER 11
GROUP ANALYSIS

Group analysis is a powerful method for analyzing differential equations.
A part of the group analysis method is devoted to equivalence transformations.
A Lie group of equivalence transformations can be applied for finding invariants
of equations. These invariants are not changed during any change of the inde-
pendent and dependent variables. An introduction to this method can be found
in textbooks (cf. Ovsiannikov (1978), Olver (1984), Ibragimov (1999). Many re-
sults obtained by this method are collected in the Handbook of Lie group analysis

(1994), (1995), (1996)).

2.1 Local Lie Group

In this section, we review some background knowledge of elementary Lie
group analysis, which is necessary for our study.

We consider invertible point transformations

Z' = g'(z;a), (2.1)

where i = 1,2,..., N,z € V C RY and a is parameter, a € A. The set V is an
open set in RV, and A is an symmetrical interval in R' w.r.t. zero.

For differential equations the variable z is separated into two parts, z =
(x,u) € V.C R"x R™, N = n+m. Here x = (21, 29, ...,x,) € R" is considered as

the independent variable, u = (u', u?,...,u™) € R™ is considered as the dependent,



variable. For the transformations we use

X; = @i($au;a)a ﬂj = ¢j($7u;a)7 (22)

where i = 1,2,...,n, j=1,2,...,m, (z,u) € V C R" x R™, and the set V' is open

in R™ x R™.

2.1.1 One-Parameter Lie Group of Transformations

Definition 1. A set of transformation (2.1) is called a local one-parameter Lie
group if it has the following properties

1. g(%,0) =z forallz€ V.

2. 9(g(z;a),b) = g(z;a+0b) for alla,b,a+be A, z€ V.

3. If for a € A we have g(z;a) = z for all z € V', then a = 0.

4. g€ C=(V,A).

On definition of Lie group is a local, one because we only require that V is

an open neighborhood of some zy and A is a small symmetrical interval around

Zero.
Define
i 0¥ (w,u;a) i 0 (x,u5a)
g(fE,U)— aa azovn(‘rau)_ aa azoa
and,
X = (2, u)0,, + 1 (2,u)0,;. (2.3)

The operator X is called an infinitesimal generator or a generator of the Lie group
of transformations (2.2). The coefficients £¢, 77 are called the coefficients of the
generator.

A local Lie group of transformations (2.2) can be completely determined

by the solution of the Cauchy problem of ordinary differential equations, which



are called Lie equations:

dz;
da

— /(2. 7) (2.4)

with the initial data

ji|a: o — Zi, ﬂjla: 0 = uj. (25)

Theorem 1 (Lie). Given a vector field ¢ = (£,n) : V — RY of class C=(V)
with ((z0) # 0 for some zg € V.. Then the solution of the Cauchy problem (2.4),
(2.5) generates a local Lie group with the infinitesimal generator X = £'(x,u)d,, +
1 (z,u)0,5. Conversely, let functions o'(z,u;a), i =1,...,n and V(x,u;a), j =

1,...,m satisfy the properties of a Lie group and have the expansion
7 = ¢'(,usa) = 2+ € (2, u)a,
w = (z,u;a) = u + 10 (2, u)a

where

9" (x,u; a)
Oa

o (x, u; a)
oa ’

a= 0

777]'(%’“) =
a= 0

§'(x,u) =

then the functions p'(x,u;a), ¥ (x,u;a) solve the Cauchy problem (2.4), (2.5).

Precisely, the Lie’s theorem establishes a one-to-one correspondence between Lie

group of transformations and infinitesimal generator.

2.1.2 Prolongation of a Lie Group

Given Z = R™ x R™, consider when space Z is prolonged by intro-
ducing the variables p = (p¥). Here a = (ay,ay, ..., ;) is a multi-index. For a
multi-index the notations |a| = a3 + as + ... + o, and o, i = (ay, g, ..., @1, @; +
1,41, ..., ) are used. The variable p¥ plays a role of the derivative,

L OledyF ool
p = = .
¢ Oae 0z 0x5?...0xon
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The space J! of the variables

v = (2;),u = (u),p = (p5)
(1=1,2,..n; k=1,2,...m; |a] <I)

is called the [-th prolongation of the space Z. This space can be provided with a

manifold structure. For convenience we agree that J° = Z.

Definition 2. The generator

X=X +Y 0o, (G=1L..m, o <1),
7,

with the coefficients
Mo = Dy = D vk Dh€'s (18] <1-1), (2.6)

1s called the l-th prolongation of the generator X.

Here the operators

Dy = a%k —|—jzap£7k% , (k=1,2,..,n),
are operators of the total derivatives with respect to x; and ) = 17, where £, 7/
are defined as in (2.3).

For a simple illustration of using the prolongation formulae (2.6), let us

study the first prolongation of the generator X with n = m = 1. In this case, the

generator X! induces a local Lie group of transformations in the space J!:

T =p(z,u;a), u=1y(x,u;a), p= f(z,u,p;a), (2.7)
with the generator

X' = €, u)d, + 7" (v, ), + (P, 1, p) (2.8)
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where

du da

Notice that the coefficients &%, n* are defined as in (2.3). Let us show in the
following why coefficient (? must be of this form. Let a function wuy(z) be given.

Substituting it into the first equation of (2.7), one obtains
7 = (e, up(2); ).

Since ¢(z,up(z);0) = x, the Jacobian at a = 0 is

= Geraea)l =t

Thus, by virtue of the inverse function theorem, in some neighborhood of a = 0

oz
ox|,_

one can express r as a function of Z and a,

x = ¢(Z,a). (2.9)

Note that after substituting (2.9) into the first equation (2.7), one has the identity

7 = ({7, a), uo(6(7, 0)); a). (2.10)

Substituting (2.9) into the second equation of (2.7), one obtains the transformed

function
1a(®) = B(6(7, 0), uo(6(7, 0)); ). (2.11)

Differentiating the function u,(z) with respect to z, one gets

Oua(T) 3¢3¢+5¢0UO5¢ (3@/} o, ) o
or 8u

Y= "oz or 0t | Ou Or 0T oz’

9¢

where the derivative 5

can be found by differentiating equation (2.10) with re-

spect to x,

= 6‘s08¢+8_90%% dp 6‘90, ¢
Ooxr 0x  Ou Ox O or 8u o
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Since

02 (602, 0),w(9(7,0)):0) = 1, T2(6(7,0),w(6(2,0);0) =0, (212

one has g—i + %ug # 0 in some neighborhood of a = 0. Thus,

00 _ (09, 05,
or \ox Ou ° ’

and

i oW o N\ (0 O N\
Uz = <8_a: + %UO) (— + —uu6 =: g(x, ug, ugy; a). (2.13)

Transformation (2.7) together with

Uy = g2, u, Us; )

is called the prolongation of (2.7). Now, we define the coefficient (? as follows:

dg(z,u,p;a)
Oa

Cp(x,u,p) = ) g|a:0 =D (214>

a=0

Equation (2.13) can be rewritten

g(x,u, p;a) (&p(gxu; ) +p890<°2;“?a>> _ (aw(fg;cu; a) +p0w(gum a)) |

Differentiating this equation with respect to the group parameter a and substi-

tuting a = 0, one finds

dg (0o Oy D¢ Py
(8@ (83: +p8u> + g(@x@a +p8u8a

B 0% n 0%
 \ Oxda pauﬁa

a=0 a=0
or
Jg do Dy . dp Oy
P = = — +p— by (2.12) | == + p—— =1
¢"(@,u,p) dal,_. (a:p +pau) v sinee y (2.12) (&B P )|
_ 0% N 0% g 0% N 0
N 8z0a | L duda . Ta=0 \ 9zoa " P ouda 00

B anu 8nu B 85:1: agx
B (8:{: +p6u) p(&x +p8u)
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where

_9
- da

v 00

Jg
= p:—
=5, ¢

0 0 0
Dy= dpe ot Pty € -

ox ou dp

) ) *
a=0 a=0 a=0

Thus, the first prolongation of the generator (2.3) is given by
XU = X + P(x,u,p)0).

Similarly one can obtain prolongation formulae for any order prolongation of an
infinitesimal generator.
Admitted Lie groups of transformations are related with differential equa-

tions by the following.

2.1.3 Lie groups admitted by differential equations

Consider a manifold M which is defined by a system of partial dif-
ferential equations

FF(z,u,p) =0, (k=1,2,..,5). (2.15)

Hence

M = {(z,u,p) | F*(z,u,p) =0, (k=1,..,5)}

Here z is the independent variable, u is the dependent variable and p are arbitrary

partial derivatives of u with respect x. The manifold M is assumed to be regular,

(3 e)

Definition 3. A manifold M s said to be invariant with respect to the group of

1.e.

transformations (2.2), if these transformations carry every point of the manifold

M along this manifold, i.e.
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Accordingly, it is said that equations (2.15) are not changed under the Lie group

of transformations or, in the other word, the Lie group of transformations (2.2) is
admitted by equations (2.15).

In order to find an infinitesimal generator of a Lie group admitted by dif-

ferential equations (2.15) one can use the following theorem.

Theorem 2. A system of equations (2.15) is not changed with respect to the Lie
group of transformations (2.2) with the infinitesimal generator
if and only if

XOF o =0, (k=1,...,5). (2.16)
Equations (2.16) are called determining equations.

Definition 4. A function J(x,u) is called an invariant of a Lie group if
J(z,u) = J(x,u).

Theorem 3. A function J(x,w) is an invariant of the Lie group with the generator
X if and only if,
XJ(x,u) = 0. (2.17)

Definition 5. A vector function J(z,u) defines a relative invariant if the manifold

—

defined by the equation J(x,u) =0 is an invariant manifold.
Using theorem 2, one obtains the following theorem.

Theorem 4. The functions J*(x,u) are relative invariant of Lie group with the
generator X if and only if,

XJ* |7, =0,

where J* are all components of J.
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2.2 Equivalence Group

Consider a system of differential equations
F¥(z,u,p,0) =0, (k=1,2,..,5). (2.18)

Here § = 0(x,u) are arbitrary elements of system (2.18), (z,u) € V. C R™™™ and
0:V — R

A nondegenerate change of dependent and independent variables, which
transforms a system of differential equations (2.18) to a system of equations of the
same class or same differential structure is called an equivalence transformation.

The problem of finding a Lie group of equivalent transformations consists
of the construction a transformation of the space R™™™**(z, u,#) that preserves
the equations, only changing their representative § = 0(x,u). For this purpose a
one parameter Lie group of transformations of the space R+ with the group

parameter a is used. Assume that the transformations
v = f*(z,u,6;a),
u = fU(x,u,0;a), (2.19)
0 = f%(x,u,0;a),

compose a Lie group of equivalence transformations. So the infinitesimal generator

of this group (2.19) has the form:
X = €50, + ¢V + ¢ O,

with the coefficients:

Of*i(x,u,0;a)

g = ST,
v Of"(z,u,6;0)
v = SRR
ok 8f9k(:v,u,9;a)
¢ = la=0

da
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where (i =1,...n;j=1,..m;k=1,..,t).

We use the main requirement for the Lie group of equivalence transfor-
mations that any solution ug(x) of the system (2.18) with the functions 6(x, u) is
transformed by (2.19) into the solution u = u,(z’) of the system (2.18) of the same
equations F* but with another (transformed) functions 6,(z,u). The functions

0,(z,u) are defined as follows. Solving the relations
= f(x,u,0(x,u);a), u=f"(v,u,0(zx,u);a),
for (z,u), one obtains
r=g"("u5a), u=g"(x, u';a). (2.20)
The transformed function is
0o (2, ') = fO(x,u,0(x,u); a),

where, instead of (x,u) we have to substitute their expressions (2.20). Because of
the definition of the function 6(z,u), there is the following identity with respect

to x and w:
(00 (f*, )@, u,0(x,u);a) = f*(z,u,0(x, u); a).
The transformed solution T}, (u) = u,(x) is obtained by solving the relations

v = fz(xa UO(ZL'), Q(ZE, UO([B)); a):

with respect to x, then obtaining z = ¢*(2’;a). Substituting = = *(2’;a) into

the second equation in (2.19), one obtains the transformed function

ua(‘r/> - fu(x7 UO(I)7 Qa(l’, Uo(l’)); CL).

Notice that, there is the identity with respect to x:

(ta 0 f*) (2, uo(2), ba(x, uo(2)); @) = f*(2,u0(2), Oalz, uo(z)); ). (2.21)
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Formulae for transformations of partial derivatives are obtained by differentiating

(2.21) with respect to z’.
Lemma 1. The transformations T,(u) constructed in this way form a Lie group.

Because the transformed function u,(2’) is a solution of system (2.18) with

transformed arbitrary elements 6,(z’,u’), then the equations
FRa ug (), pl (), 0a (2 ug(2)) = 0, (k = 1,2,...,5)

must be satisfied for an arbitrary /. Because of a one-to—one correspondence

between x and 2’ one has
Fk(fz(z(x)a (l), f“(z(x), CL), fp(zp(x)v CL), fe(z(x)))) =0, (k =12,..., S) (2'22)

where z(z) = (x,uo(z), 0(z, up(x))), 2p(x) = (z,uo(x),0(x, up(z)), po(x), . ..).
After differentiating equations (2.22) with respect to the group parameter
a, we obtain an algorithm for finding equivalence transformations (2.19). The
differences in the algorithms for obtaining an admitted Lie group and equivalence
group are only in the prolongation formulae of the infinitesimal generator.
In agreement with the construction, after differentiating equations (2.22)

with respect to the group parameter a, one obtains the determining equations
XeF* (2, u,0) |[p—g =0, k=1,2,..,s, (2.23)
with the prolonged operator X €,
X¢=X°+ gui-iauéi + gefiiag;;i + Ceﬁjaeij .

Here the coefficients C“'Z”i ,C o, ,C 95]’, ... are expressed by the following :

J

¢ = D5CY -, D5 £
¢ = D" — ok Diem — ok D

"o = D&¢" - 0F DEgt — 05, DE ¢
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where

D;i = (3% + U;lauj + (gil + QZ]u;l)ﬁgk + ...
Dt = Oy 408 O + ...
EZJ' — auj + eﬁjagk +

The solution of determining equations (2.23) gives us the coefficients of an in-
finitesimal generator. By solving the Lie equations, one can obtain the equivalence

group of transformations (2.19).



CHAPTER III
COMPUTATIONAL PROCEDURE

We consider a system of two second-order ordinary differential equations
in the following form,
Py =y + any;” + a1yl *vh + arsyiys” + arayy’®
Faisyiyh + aieyh’ + arryh + aisyh + arg = 0, (3.1)
Fy =y + a13yh” + anoyh”yi + anhyy” + asuyy’
Fassyhyy + assyy” + asry; + assyy + az = 0,
where the coefficients a;; are expressed through the functions z,y;,y.. We have

known from the details given in Chapter I, that the form of system(3.1) is not

changed by any transformation

t =@z, y1,92), w1 = U1(x,y1,Y2), U2 = Va(x,y1,Yy2). (3.2)

This thesis is devoted to find other invariants of transformation (3.2).

3.1 Method of Solving

For seeking invariants, Lie’s approach is used. This approach contains the
following steps.

First, we have to find an equivalence group of transformations for system
(3.1), that is to find a Lie group of transformations, which transforms system (3.1)
into a new system with the same differential structure. For constructing this Lie

group one has to find an infinitesimal generator

X =0, + (" 0y, + (0, + (Y0y,
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with the coefficients

é-:c = €$($ay17y279)7cy1 = Cyl(xaylvy%e)a Cyz = Cy2($ay1>y279)7CZj = CZj(x>y17y2a9)a

by solving the equations

XFysy =0, (i=1,2). (3.3)

Here 01 = a11, 0y = a1z, 03 = a13, 04 = aws, 05 = a15, 0 = ass, 07 = a1y, O =
aig, Oy = aig, 010 = ag, 011 = ags, 012 = ag, by = agr, 014 = ags, 015 =
asg, the coefficients &2, ¢¥, (%, ¢%, (j=1,2,...,15) depend on x, 1, s, 0 and 0 =
(01,05, ...,615). Here we also used the agreement that there is a summation with
respect to a repeat index j.

The next step consists of solving equations which define differential invari-
ants of the equivalence group

XeJ =0. (3.4)

Here J depends on the coefficients a;; and their derivatives, X is the prolongation
of the generator X up to the maximal order of derivatives involved in the invariant
J.

Notice that for relative invariants J*, (k= 1,2,...,w), one has to solve the
equations

X°Jjisy=0, (1=1,2,...5), (3.5)

where the manifold (S) is defined by the equations J* =0, (k=1,2,...,w).
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3.2 Equivalence Group of System (3.1)

The prolonged operator is

’“e e / / " " . 9. 0
X=X+ 0y + ("0, + (M0 + (20 + CQ]I@GJ@ + ¢ aejyl +¢ ]y289a'y2
+C9jxy1 89jzy1 + Cejm a9jzy2 + Cejyl'” 89jy1y2 + C9jzzﬁajm + CGjylyl Oy,

Jy1y1

_|_C9jy2y2 89_

Jyoys

The coefficients of the prolonged operators are show as the follows

(M= D" -y Dy
("2 = D" =y Dig”

/!

M = D -y DeE”.
(¥ = DICY —yiDoE"
(Ue = D¢ —0;,D5E" —6;, DsE — 6, Deg.

¢ = Dy (%~ 0;,D5 6" —6;, Dy, € —6;, Dy €.

Jui Jys ™y

Cej” _ EZ2<0]- . ejxﬁgjzfm o ijl E§2§y1 — 9ij ﬁ;zgw.

ine = Dechn —0,, Do —0,, Bren —6, Den
i = DiC%e —0;  DSE"—0; D" —0; De”.
Cej”yl = 551 Cej” - ejygmﬁ51€$ - gjyzyl 551{5/1 - ij2y25;1§y2.

ggjzl _ 5;g0]-z 'y begm o ‘gjxylﬁ;é'yl — 0. Egglﬂ.

Jrxx—x Jxys

ngylyl = _5;1 Cejzﬂ — 0.

JleC

Dg & —0;, D& —0; D&

Y1 jy1 Y2 Y1

9] _ ~6 6] _ . ~€ X _ i ~€ Y1 _ i ~€ Y2
C vz = Dy2< 2 63y2mDy2€ 93y2y1Dy2 93y2y2D92£ :
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Here the operators are

DS = 0, +y10y1 + y50y2 + y{0yy + y50y5 + (05, + ejyly’l + ejwyg)agj
+<6jy1x + Hf'ylyzyé + 0jy1y1y/1)89jy1 + (0, + ijyQyé + ej:cylyll)aejl
00 0y, Y2 + iy, 91)0

D¢ = 8, +0;,00;.

ij'

Dy = 0, + Hjm@@j.

D, = 0y, +6;,,00;.

Substituting the coefficients of the prolonged operator X¢ into the determining
equations (3.3), where the manifold defined by equations (3.1) is described by the
equations
_ /3 12,1 702 /2
yi = —(anyy” + a2y "y + a13y1ys + any;
Faisyiyh + aieys’ + aryy + aisyh + aig),
Yg = —(a13y§3 + auyézyi + &11%?/32 + a24y32

Fassybyl + acys’ + sty + assyh + as),
one gets equations which can be split with respect to the variables
Y1 Yo, U5, ijl, ijQ, Hjmyl’ 0jmyg’ ijlm, ;s 0jy1y1’ ij2y2. All calculations
were done on computer by using the system of symbolic calculations REDUCE
(cf. Hearn (1999)). The method of calculating consists of sequential calculations,

after analysis of the result of calculations, we add the new relations which were ob-

tained into the program and repeat the calculations. As the result of calculations



we obtained the generator of an equivalence group

-
-
-
s
s
-

<a16
(a17

Cals

Calg

<a24

(a25

<a26

CC’«27

C0«28

<a29

of

6f

Oh

= f(x7y17y2>a Cyl = g(zvy17y2)v Cw = h(xvylay2)>

—245,> — Q14g,- 8y +ang; — Gi2p, — 2a11 2L D +
a2 of _ . Oh _ Oh 99 _
A255,; — 155, ay T agy — g, — 20135, 2a1 2 By; 12
0 a oh
— Q6 ay]; — 165, ay +a135, — 20135, — 3y2 +

a2 Of g Oh
275y, 2CL173y1 15, Cl12 o
) d
_(CL28 —f- CL17) 8;; - 2@18—8;1 —
—2a159% +2(52 99
125 ayzax dy20y1

of
—a185. - Do 2&16 Do + (CL

—CL29§—;; - 3@19;}9—51 — a7 — a2 o
28y18x )

—2a19% —aisS — angT

_28y281 )

of dg
—2a192L — a152: + agy 2L ay + a9~

2]

0 h d
—(1278—yf1 + G2, + (a1q — a25>8y

0, 0, oh oh 0
—2G27a—gj; — (ags + Cl17)3—g1 + (@15 — 2a26)8—y1 —2a123%; — 26!243—52 — Q255,;

_2allag + Q(aylaz

of of oh oh
~2az85y, — Wisgy; — G265, T Aoy,

_ 0h
e

of

—2(129 a1 —

Oh
—25,.52 oy10x

of of

26

Oh

0y20y1

) )

- a15)

dg Jg
—2a169% + (ass — a17) 5 + ars 5

) )

9y2

Oh

h

oh
a7 3f + CL27ay2 + (a17 — as) 5.

oh

dg

+ a165.- D1

dg
— a3 o Lt aysL 9y

o9 _

- ar7 79z

oh

— a11y,

oy

dg
+CLQ4£ — CLMW — 3&

Oh oh oh
4155, — 20165,  — 20135, + (azs — 2a14)

99 _ 9g
— 133, oz 8y2 )

09
8112 )
09 _ Oh
2a245y1 i

g

— oh _ 99
3&13 ox 255y, 0y2 — @123, ox + 28y28x

Ooh

T

— Q255

99

) oh
—3CL296—y2 — 195, — a283_£ + 185, — 2a265, — A27%,, — @25

Oh
2 Oy20x

9
—2a20 %L + aze 3y2 + G195, -

Bh

— Q28

Oh
ox 27

o9
79z

oh

0x? °

23

of
8y1 +2 O0y20y1

Og
+2 Oylx 6y2 )

99
0y2

2&146 + 8902

99
— a155, oz

99

of

9g
275, — 205,92 B

Bz + 8902

Here the functions f(x,y1,y2), g(:v, y1,y2) and h(x,y1,ys) are arbitrary functions

of their arguments.



CHAPTER IV
INVESTIGATION OF INVARIANTS

In this research, the invariants that we were looking for are the functions
of the coefficients appearing in system (3.1) and their derivatives up to first and
second orders. In order to find these invariants, we have to apply the operator
X° to an invariant as in equation (3.4). One obtains an equation which is a
polynomial with respect to the functions f, g, h and their derivatives. Since these
functions are arbitrary, this equation can be split with respect to them. Splitting
gives us a system of linear homogeneous first-order partial differential equations.
This system includes 60 equations with 60 independent variables for an invariant
of first-order. For second-order invariants this system consists of 105 equations

with 150 independent variables.

4.1 First-Order Relative Invariants

Analysis of the system of linear homogeneous first-order partial differential

equations shows that most of these equations are of one of the following types:

g—i +a gyF —i—aggj + ...+ ngyi =0, (4.1)
Ig—i + a1y gfz + oy gyi + ..+ anyng—i =0, (4.2)
JUa—F oy OF + QYo OF + ..t Oényna—F
ox Oy1 Yo OYn (4.3)
+a0(a—F+a18F +a2a—F+... ana—F) =0,
ox Oy1 o OYn
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where a; = G;1(x)y1 + Bi2(@)y2 + ... + Biic1(2)yim1 + 7i(z), a; = constant, F' =
F(z,y1,Y2, ..., yn). The General solutions of these equations can be found analyt-
ically as follows.

The characteristic system for equation (4.1) is

dx dyy dys dys

1 () N Boa(x)y1 + 72(x) N B3.1(x)y1 + Bs2(x)y2 + 73(2)

Integrating recurrently, one finds

Y1 = Ol + Fl(l’), Yo = 02 + FQ(ZL’, Ol), ey Yn = Cn + Fn(l‘, 01,02, ceey Ofn—l),

where
Fi(z,C1,Cy, ..., Cia) :/az‘($,y1($),y2($),---,yi—1($))d$-

The variables C; in this step are considered to be constant. The general solution
of equation (4.1) is F' = ¢(C1,Cy, ...,C,,) where ¢ is an arbitrary function and

C1,Cy, ..., C, are defined by the formulae
Clzyl_Flv OQZQQ_F27“'7 Cn:yn_Fn

The characteristic system for equation (4.2) is

x a1lY1 Q2Y2 a3ys

The general solution of equation (4.2) is F' = ¢(Cy,Cy, ...,C,,), where ¢ is an

arbitrary function and C; = % i =1,...,n.

x%i )

The characteristic system for equation (4.3) is

dz dy, dys dys

r+ay oy +aon(x) oy + apas(z,y1)  asys + apas(T, yi, ye)

Considering the first term and the second term, one has

dyy  aayr agy1(7)
P + .
dx r+oay T+
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This is a first-order linear ordinary differential equation. The general solution of

this equation is

Y1 = (2 + a0)™ (C1 + / o (2) (& + ap)~ @),
or
Ci =wp(r+ag) " — /aoyl(x)(x + ag) @ g,

Considering the first term and the third term, after substituting y;(z), one also

obtains a first-order linear ordinary differential equation

dy, ooy, +a0@2($,yl($>)

dx T+ g T+ o

As in the above, the general solution of this equation is

Yo = (x + ap)**(Csy + /CMOCLQ(I, yi(z))(z + ao)_(a2+1)d$),

or

Co = yo(x 4 ag)™** — /Oéoa2(337 y1(2))(x + ag) @2 dz.

Recurrently, one finds all C; , i = 1,2, ..., n. The general solution of equation (4.3)
is F'= ¢(C1,Cs, ..., C,), where ¢ is an arbitrary function.

For solving the system of linear homogeneous first-order partial differential
equations, we used the method of successive solving one equation, and substituting
the solution into the other equations. Notice that after the substitutions the
equations obtained can be split with respect to the independent variable x.

After repeatedly applying the previous step, one obtains the following first-
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order relative invariants

1 _ —
J = —2&2(;@12 + 2@25CL13 - 4a16a11 + a15a12 — 4(113y1 + 2@12y2 = 0.

2 _
J* = aggaiz — 4agraiz + assars — 4agsaie + 4agay — 3airars + 2as,, — 4aig,,

—1—2(11236 = 0.
3 _
J? = —3aggais + 4agraiz — 4agey, + 2095, + Az5a15 — dagsaie — 4a1gar + arrais
—|—2a12x = 0.

J* = 2assa16 — 2ag6a1s + 4ajgarz + 2a18,, + ai1ga1s — 2a17a16 — 4ae, = 0.

J5 = 2a28a13 — 2&266L15 + 2(125(116 + 2@17@13 - 4&16y1 — 4a16a14 + 2(115y2 + a%
—4a13$ = 0.

J® = 12a99a13 + 2098, — 3a9sa15 + 4agra1s — dagg, + Agsa1s + daigars — Gaisy,
+6(118(114 + 6a17y2 + 3&17@15 =0.

JT = —dasgars + assars — dasrars + assars — 4argars + 2a1s,, + 2a13a14 — darz,,
—ayras + 2a15, = 0.

J® = —dazgare + axsars — 4ag,, — 2a19a15 + 2018, + arsar7 = 0.

J = daggais + Gags,, + 3assass — 6asr,, — 6agrass + azrars — 3agsarr + 4azsarg

+12a19a11 + 2a17y1 —4ay4, = 0.

10

J = —daggais — 4ags,, — Assaos + 2as7,, + 2027026 + A27a15 + 2025, + A25017
—4assarg — 4argar; = 0.

J' = 2ag8a11 — 4azsazq + 2ass,, + a§5 — 2ag5a14 — 4a24y, + 2a24a15 + 2017011
—4a11x =0.

J? = —4asy,, — dasgass + 2a29a15 + 2ass, + a35 — 2a5a19 + 4arg,, + dargars
—2ay7, — a2, = 0.

J’ = —4daggy, — 2a29a25 + aggaar + 2a27, + azra;r — 4agsag = 0.

J" = daggars — 2a3a2q + 2a97,, + agrass — 2agra1y — 4ag, + 2az4a17 = 0.

15
J = agsa12 — 4agsa13 + 2a15a11 — 2a14a12 + 2a19,, — 4ag,, = 0.
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Second-Order Relative Invariants

Finding second-order relative invariants is similar to the case of first-order

relative invariants. The difference is only that in equation (3.4), we substitute J

which

depends on coefficients a;; and their derivatives up to second-order instead

of first-order. The set second-order relative invariants are shown as the following:

T =

J =

TP =
J6 =

JT =

—Q98013012 + 2a27a%3 — 2026y, 113 — (26,012 + 2a%6a12 — 2a96a25013
+azeaiea11 — 26015012 + 4026013y, — 3A26012y, + 2025,,013 + A25016012
TA25Q13y, — dagsaiea1z — 2a18a13a11 + 17013012 — Q169,412 — 2Cl16y2a11
+2ai6a15a11 — 2016014012 + a16a12y, — 46L166L11y2 + Q154,012

+a15a13y, — 13,012 — 2013y,4, T 0130124 T A124y, = 0.

—2a26a12 + 2@25CL13 - 4(116(111 + a15a12 — 4@13y1 + 20’123;2 =0.

A28012a11 — 2027013011 — 2026024012 + 25y, Q12 + 2095024013 — Q25014012
+a25a11y, — 20244, A13 — (244,012 — 4a24016011 + A24015012 + 4a24014013
—4dagqa13,, + a24G12y, + 2a1807, — a17a12a1; + 2a15,, 011 — 2015014011
15011y, — Q14y, @12 — 2014,,011 + 207,012 — 3a1412,, + 4014011, + 12,011
+a12y,, — Q120115 — 20114,,, = 0.

azsa12 — 4azsa13 + 2a15011 — 2a14012 + 2a12y1 - 4a11y2 = 0.

2as8a16 — 2a26a18 + 4a19a13 + 2a18,, + argais — 2a17a16 — 4ais, = 0.

A28y, — dagrars — 2a26, + 2a95018 — 4argain — 36l17y2 + 3ai5, = 0.

—daggaie + asgarg — 4argy, — 2a19a15 + 2a18, + argarr = 0.

—daggaiz + aggars — 4agrare + azsais — 4aigain + 2a18,, + 2a18a14 — 4aiyy,
—ay7a1s + 2a15, = 0.

429016013 4 2028, 016 — 2028026016 — 28018013 + A2816,, — 202701

2
—2026,016 — A26y,018 + 2055018 — 402619013 — 3A26018,, — A26A18015



29

+2a06a17016 + 4026016, + 25018016 + 4a19,,013 — 2019016012 + 2a19015013
+2a19013y, — (185013 — A18y,A16 T U184y, T A18y,A15 — Q18417013 + A18Q16y,
+a18a13, — 2a17y2a16 — 17016y, — 2a16xy2 — (16,015 + 2016015, = 0.

J1 = 2as8a13 — 2a06a15 + 2a95016 + 2017013 — e, — dargars + 2a1s,, + al

—4(1131 = 0.
1 _
J = —3agsaiz + dagraiz — 4age,, + 2ass,, + azsa15 — 4agiaie — 4aigair + airare
—|—2CL12z = 0.

12 _
J7 = aggayy — 4agraiz + agsars — dassaie + 4ajgary — 3ayrar + 2ais,, — 4ay,,
+2(J,12w =0.
13 _ 2
J? = daggais + 2ag,,a13 — 2028026013 — U28015013 T (28A13y, — 2026013
2
—2096,, 016 — A26,,015 + 2056015 — 2026025016 — 2026017013 + 40260164,
+4as6a16014 — 3260 — Q9602 + 413, + 2095, 016 + 250
2616014 26015y, — U26075 26013 25,016 T A250164,
+a95a16015 — 4a940% + 2019013012 — 2018, Q13 + Q18 Q12 + 20180160
25016015 24071¢ 1913012 18y, @13 + Q184,012 18016011
—2a18014013 + 2018013, — A180A12y, T+ 2017,,013 — 2017016012 + A17015013
+a17013y, — 216,012 — 2016y, y, — 2016y,014 T Q16015 — 4016014y, T 2016012,
+a15,013 + A15y,y, T Q15,015 — 20134y, = 0.
4 _
J = —2a29,a16 — a29,,018 + 2029028016 — 2029A26018 + 429019013 + 29013y,
+a29a18015 — 2029017016 — 4029016, + A28,018 + A28019y, + 2027019016
2
—Q25019018 — 2a19my2 — A19,015 T A19y, Q18 — A19,, @17 + 2a19a12 — A19A18y,
+2a19a17,, — 2019015, + Q184 + A18,a17 = 0.
15 _ 2
J = 20394y, + 2029,026 — 29,015 — 2029, G18 — 4a59013 — A29028,, + U20028015
+2a09a27a16 + 420026, — 2029025018 + 229018y, + 2029018014 — A29017y,
—Q29017015 — 2029015, — A28z, — (285028 + A28y, A19 + A2g025019 + 27,018
—2a97y,a19 — 2027026019 + 2027019y, + 2027019015 — 27018, + 2a25,19
+a95a19, — Ao5019017 — 2094019018 — 20 — 2aq9,G14 + 4034011 + a19a
25019, — (25019017 2419018 1921, 192014 10011 + Q19017

—4a19a14, + Q174 + 17,017 = 0.
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10 = —dagg,, — 2a9a95 + assaor + 2aa7, + a2ra17 — dagsarg = 0.

JIT = —2a59,a11 — 2as9,,,, — 2029,, 25 + 2a29,, Q14 + 2029, 024 + 2029A27012
—2a29024y, + 4az9a17a11 — 4a29011, + 2008, A27 + 2028024, — 2028024017
42097, a17 — 37015 — 2027025, + Q27025017 + 20270240018 — 2027017014
+2097014, + 20245, — 4024,017 — 2024, A19 — da24a19,, + 2a24a7; = 0.

J'® = daggary — 2a98a24 + 2027, + A27as5 — 2097014 — daga, + 2024017 = 0.

JY = —daggary — dags,, — assass + 2as7,, + 2097026 + ag7a15 + 2095, + azsar7
—4agsarg — 4argar = 0.

J? = —2a99,,, — U29,025 — A29,, Asg + A9y, 17 + Ay, Q27 + 2039012 + 2029028,
— 29027, — Q29027015 — 2029Q25, + 229024018 + 4a29G19011 + A28027,
—2a98024019 + G275 + A27,,A19 + A27025019 — A27019,, — 2027419014 + A27017,
—4dagy,a19 — 2a24a19, + 2a24a19a17 = 0.

J* = dagg,, + 4axas — 2a20a15 — 2028, — a3 + 2a25a19 — darg,, — dargaiy
+2a17, + a3, = 0.

J? = daggar + Gags,, + 3aggags — bagry, — Gazrags + azrais — 3assai7 + 4agsass
+12ay9a11 + 2a17,, — 4ay4, = 0.

J* = dasy,,a16 + 2a2016,, — 2055016 + 2028026018 — dasgr19a13 — 2a25a13,,
—28018a15 + 2028017016 + 4a28G16, — 2027018016 — 2026,018 — 2026019y,
+ags5a7s + 201,013 — 2019, A16 + 201945y, + 2019,,015 — 2019018012
+2a19a16y, + 4a19a13, — 2a18a17,, + 2018015, — 2017016, — 20165, = 0.

JH = 4agg,,a13 + 4azgai16a12 + 2a20a13,, — 2034013 + 2025026015 — 4aga25a16
—QQ18a12 — 2G8G17013 + 46l286l16y1 + 4daggaiea1a — 2a28a15y2 - a28a%5
+aggays, + 4agry, 016 — 2027018013 + 2027016y, — 2027016015 — 2026015
—2a96y, a18 + 2026025018 — 2026017y, — 4025019013 — 2025018y, + A25018015

+2ag5a17016 + 4025016, — 4024018016 + 6a19y,a12 + 6a19a13,, — 2a18,a12
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+2a3ga11 — 3a1sai7a1z + 2a18a15,, — 4018014y, + 2018012, + 2a17,013
—2a17,, 016 + 2017y, + 2017013, — 40164y, — 416,014 + 2a15,015
_2a13mz =0.

J? = —dagya13a12 — 2098026012 + da2ga25013 — 4a2sA16011 + 2028015012 — 46L286L13y1
+2a8012y, — 4a27,,013 — 2027016012 + 2027A15013 — 2027013, + 2026012
+2a56,, 015 — 226025015 + 2026014, + 2035016 — Q25018012 + 2A25a17013
—4dagsai6,y, — 425016014 + 2025015y, — 425013, — 4a24,,016 + 4024018013
—2024016,, + 4024016015 — 2019075 + 2a18,, a12 — daigaizar1 + 4aisaiaars
—2a1812y, + 6a18a11y, — 417,012 + a17015012 — 4ay7a13,, + 6a16,a011
+2a16y,y, + 2016y, 014 + 2016014y, — 2015y, 015 + 2015014y, — 2015012,
—2a14,013 — 20144,,, + 40134, = 0.

J¥ = Gagg,, a12 — 4agga15a11 + Bageainy, + 2028,011 + 2008y, — 2028y, G14
—2a98,, 24 — 32802712 + 2a98a24a15 — 2028017011 + 2028011, — 227,012
—2a97,, 15 + 203,013 — 4asras6,, + 2027095, + A7as5015 — 4a7a24a16
—2ag7a18a11 — A27a17012 + 2027015014 — 2027014y, + 2027012, — 4a26024,
+4a26a24017 + 2025, 025 — 2095, A17 — 35017 — 225024018 + 2025017014
—2a950145 — 4245y, + 40245015 + 2024y, 18 + 4a24y,a17 + 4azsa19a12
+4assars,, — dassairars + 4arg,, a11 + 2a19a11,, — 203,011 + 4airar,
—2a11m = 0.

J*T = dasg,, a11 + 2a20095a11 — 2a99a24a12 — 4a29a14011 + 2029011, — 2028, A4
—Q28027011 — (28024, + 2028A24014 — Q27,011 + 27y, + A27y, G25 — 3027y, A14
— Q27,024 — Q27025014 + A27024y, + 27024015 — A27A17011 — 27014y, + 26!27&%4
+ag7a11, + 2025,024 — A250245 — 20245y, + 424,014 + 24y, Q17 — 2a3,a18
+dagaa19a11 + 2a24a17,, — 2024017014 — 2a24014, = 0.

J? = 2ag5a11 — dagezq + 2095, + a3 — 2095014 — 424y, + 2024015 + 2017013

—4(11136 = 0.
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J*? = 2a29a%2 + 4a28y1a12 — Q28025012 — 2G98G15011 + 46l286l11y2 - 2a27y2a/12
—4agragearz + 4agrassaz — 4azrai6a11 + 27015012 — 6ag7a13,, + 2027012,
+2a26,011 + 2026y,,, — 2026y, 25 — 2026y, Q14 — 2026y, 024 — 2026024y,
+dageazsars — 2az5,, a15 + 2a95,, a5 — 4a25a24a16 — 2a25018011 — 2025017012
+2a25015a14 — 2025014y, + 2025012, — 624,013 + 2024y, Q16 — 20244,y
+4024y,015 + 2024018012 + 4024017013 + da24016,, — 2094075 + da19a12011
+4aig,, a11 + 2a18a11,, — 4a17a15011 + 2017014012 — 2017012y, + 4a17a11y,
+da15011, — 2a14,012 — 40114y, = 0.

¥ = agsal, — 2as7a13012 + 2a26,, a12 — 2026025012 + 2026011, + 2a3-a13
—dagsargary — 4(125Cl13y1 + 2a25G12y2 - 4a24y2a13 + 4azqa15a13 — 26L246L13y2
+2a15a12a11 — A17a7, + da16y, a11 + 2a16011,, — 2675011 + 2415014012
—2a15012y, + 415011y, — 20144,012 — 2014013y, + 213,011 + 2013,
—26L136L11$ - 2a11y2y2 =0.

T3 = 2ag9a10a11 4 2a98,, 011 + 28025011 — 2028024012 — 2028014011 + 28011y,
+agry, 12 — 2a27,,011 — 2027026011 + 2027024013 — A27Q12y, + 2027011y,
—4age,, A24 — 2026024y, + 4026024014 + A25,011 + A25y,,, + A25,, Q25
—3a25,, @14 + A5y, 024 — Q35014 + Q25024015 — A5A17011 — A5014y, + 202507,
—2a24,012 — 20244,,, + Q24,015 + 4a24,,014 — 403,016 + 2024015,
—2024015014 — 2024014y, + 2024012, + 4a19a§1 + 2a17,,a11 — 2017014011
+airairy, — 2a14,011 + 4014011, — 20114y, = 0.

J¥ = —12a99,,a13 + Bagga16a12 + 4aggar5a13 — 6a29a13,, + 208,013 + Baas,, 16
—2a98,,y, + 2028,,026 + 2038,,015 + 4035013 — dasgArga15 — 2028025016
—ag8a13a12 + 208017013 — 4aosre,, — dassa16a14 + dasgars,, + assaiy
—6agga3, + 4agry,a16 + 2a27a18013 + 2027016y, — 6az7a16015 + 40264y,
—4age,a26 — 2a96y, 18 + Bageansais — 4azeai9aia — 4ageais,, — 4a26a18014

+2az6a17a15 + da26a15, — 805,016 — 2025,,018 — 825019013 — 625018y,
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—ag5a18a15 + 4a25a17016 + 6a25016, + 8a24a18016 + B9y, a13 + 2019, a12
—8a19a16a11 + 8a19a14413 — 219013y, + 419012y, + 418y, ,, + 4018y, 014
—2afga11 + a18017012 + da1814y, — 4a17,013 — da17y, 016 — 2017,,015
—2a37013 — 2017015, + 80160145 — 40154y, + 2013,, = 0.

J¥ = —2as9a13a12 — 4ass,, a13 — Aosy, @12 + 4asgasgars — 3agsaasrs + Gasgaisai
—a28a15012 + Da2813y, — 4aoga12y, + 4ao7y,a13 + 2027013y, — 2026,012
=296y, y, T 2026y, G426 + A26y, 15 — 26025y, — A26025015 + 2026018011
—2a26012, + 3025013 + A25,, A16 T A25y,y, T a35a16 + A25a18012 + A25a17013
—Q25016y;, — 2az5a16014 + A25015y, — 4a24y2a16 — 6agqaiza13 — 2@24@16y2
+2ag4a16a15 — 4argaizar — A18y, @12 — 2a18y2a11 + 2a18a15a11 — 2a18a14a12
+a18a12,, — 418011y, + A174,012 + 2017016011 + A17013,, — 2016011
—4da16a11, + 015,012 — 20134y, + 20124y, = 0.

¥ = 209,013 + 2a29,, 016 + U290y, 015 — 2A29028013 + 2029026015 — 2029025016
—2a99a17a13 + 4029016, + 4a20a16014 — A2015,, — Q20075 + dasgars,,
—Q28,A15 — A28y, A18 — 2098097016 — A28A 17y, + 2a97,a16 + A274, 18
+2ag7a26a18 — 6ag7a19a13 — A27018y, — A2701815 + 4a27016, — Q25,018
—5019y, T A25019015 + Q25018017 — 402419016 + 2019,012 + 2019y, 4,
+2a19y,a14 + 2a19a18011 — 4a19a17a12 + 3a19a15,, — 4019014y, + 419012,
—20184y, — 218,014 — 18017y, + 20174y, T Q17,015 — Q174,017 + Q17015
—A1520 — 0.

J¥ = 209,012 + 4039, + 429, G256 — 429, a15 — 2029028012 — 4az9a27a13
+2a09a25,, — 4420018011 — 2029017012 — 202914y, + 420012, — 2028, Gog
—2a98,,027 + 2028027415 + A2825017 — 2027, Q13 — 207,017 + 203,016
+dagrage, — 2a27a26a17 — 3a27025018 + 2a27a19a12 + 2a27a18y, + 4azraigay
taora17015 — 4a97a15, — 2095, + 2095,017 + 2005, a19 + 2095019, — A25a7;

+6a24,a18 + 6agsa19,, — 4a24a18a17 — 219,11 — 20194,y — 2019, 014
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+daygai7a11 — 2019014y, — 419011, + 2a17,, 017 — 20170145 + 20145, = 0.

J3 = 2a99,a19 + 2029, 4, T 2029,, Q26 — A29,, Q15 — 4029028012 + 2a29a27013
—4daggage,, + 3a20a25,, + A20025015 — 4a29a24a16 — 6agga1sa11 + 4aggaia,
+2a98,y, + A28,025 — A28y, A28 — Q28 A17 — A28y, (27 + A28027015 + (2825,
—2a98a19011 — 20274y, — 2027,026 — A27,,A18 — U27025018 + (27018,
+2a27018014 — A27017y, — A27015, + 4026024019 — Q25,5 — Q25,,A19 — C1356119
+agsa19y, + 2095019014 — A25017, + 424,018 + 4a24y, 019 + 2024019y,
—2a24019a15 + 2024018, — 2024018017 + 219,011 — 2019017011 + 4a19a11, = 0.

¥ = 209,013 — 6agg,, a16 + 2029,,y, + 2020,,026 — 2029,,015 — 4029028013
+2029026,, — 2029018012 — 2029a15,, + 4020013, — 2098,,028 + A35015
+4aggagraie + 2028026, — G28G25018 + 22819012 + 2028018, + 2028018014
—Q28017015 — 2028015, — 2027,,018 — 427026018 + 4a27G19013 + 2027018y,
+3ag7a18a15 — 6a27016, — 20965, + 2026y, 19 + 4a25,015 + daz5a19,,
—2a95a18017 — 2024075 — 219,012 — da1g,,,, — 419,014 + dargaiza
+2a19a17a12 — 2019015y, — 4a19012, + 2018017, — 418014, + 2a17,,a17
—|—2a15m = 0.

J¥® = —dasg,, a1z + 2a29,,a12 + 4asgasgars — dagassarz — 8asgargarn — 4asgaizars
+4azga13,, — 2029012y, — 2028,A12 — 2028, 025 + a%gam + 2asgas6,,
—2a98a95,, + A28025015 + Baogaaaie + Oaggaisa11 — 2a28a12, + 2a27,013
—6ag7,, a16 + 2a27,,y, + 2a27,,a026 — 4a27,,a15 + 2027026, — 4027026015
+4agra95016 + dagrarzars — 6asra1ey, + 3027035 — 2027013, — 46,y
+2026,25 + 2026, A17 — Sage024a18 + 45,015 + dass,, G158 — 35018
+agsaigais + 2a25018,, — 2025018014 + 425017y, — 3025017015 — 2025015,
—4dagyy,a18 + 8ag4a19a13 + 4az4a18y, + 2a24a18a15 — 12024016, — 6a19y, a12
—12a19,,a11 — 6aigaia,, + 4aig,a11 + 2a18a17011 — 4a18a11, — 41744,

2
+2a17,,a15 + 3ai;a12 — 2017015y, + 4a17014y, — 4a17012, + 4a15,,, — 4415014,
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+2CL12M; = 0.

J¥ = —12a99,, a15 — 6asg,,a12 + Basgaisair + dasgaisars — 6asgaiz,, — 4ass,,,,
+4agg,, a15 + 2028, 025 + 3a3ga19 + 2a98a07a13 + daggage,, — 2a28025,,
—3aggag5a15 + 42818011 + 2028014y, — 428012, + 4ag7,a13 + 4asyy, ale
+2a97,,a15 — 2027026015 + 2027025016 + Oagrairaz — 4asrase,, — 8a27a16014
+4a27a15,, — A27035 — 4027013, — 46,095 + 40254, — 2025,a15 + 3035018
—4agsargars — 4agsa1gy, — 4025018014 + A25017015 + 4a25a15, — 12a24,016
—6ag4,,a18 — 8asai9a13 — 6agsayg,, + 4az4a18a15 + 8a24a17016 + 2a19,, a12
_4a19y2a11 — daygaisar1 + 4argaisars — 2CL19€L12y1 + 46l196l11y2 + 2a18,a11
+2a18y,y, + 2018y, 14 + 2018014y, — 2018011, — 2017,012 — 2017y, @15 + a%7a12
—2a17015,, + 2017014y, — 2017012, + 20150145, — 40144y, + 20125, = 0.

J = 4a29y2a12 + 8aggageai1z — 8aggzsaiz + Baggaisarn — bazgaisarz + 12612961137;1
—4a99a12,, — 428,012 — 2098, 415 — 228,025 + A5ga12 — 4a2s27a13
+2a8026,, — 228025, + (28025015 + 4028024016 + 428018011 — 2028014y,
—2a28a12, + 6a27,013 — 2a97,, a16 + 2027,,y, + 2027,,026 — 2027,,015
42057026y, — 4027017013 + 2027016y, + 4a27a16014 — 2027015, + a270T5
+6a27a13, — 4265y, + 20265025 + 2026y, A17 — 4a26a24a18 + 2a25,015
+2a55,, 418 — 35018 + 6a25a19a12 + 2a25a18,, + 2025017, — A25017a15
—2a95015, + 404,016 — 2a24y2a18 — 8agsargarz + 2a24a18y2 — 4agqar7ase
—4agsa16, — 4a19,, @12 + 8aigaisar; — 8aigaisais + 4daygarz,, — 12a19ay1,,
—6a18,a11 — 2a18y,,, — 2018y, a14 + 418017011 — 2018014, — 618011,
+4a17,012 + 2017y, 015 — af7012 + 2017015y, — 2017014y, + 2017012, — 2015014,
+4a’14xy2 = 0.

JH = 2029y1a12 + 8a29y2011 + 8aggaoar1 — BaggA24a13 — 915411 — 4d29014a12
+4a'29a12y1 - 26L296l11y2 — 4dagg a1 — 26L28y1a25 - 4a28y2a24 - 26L§86L11

+aggaarais — 2a28025,, + 2a28A25014 + 428024015 + 2a8a17a11 + 427y,
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2
+dagry, aze — Gagry, a15 — 4agry,a14 — 205,013 + 4agrage,, — 4az7a26a14
—Q27025015 + Ba27024016 + 2027018011 — A27A17A12 — 2027015, + Oa27a15014

2
—2a27014y, + 806,024 — 426024017 — 4a25,,, + 4ao5,a14 + 4ags,, a7 + ajzai7

—6agsaz4a18 + 4agsaigarr + 2as5a17,, — 4agsairary + 6az4,a15 + 2a24,, a18

—4azyy,a17 + 8azqa19a12 + 4agsa1sy, + 6az4a17,, — 2a24a17015 — 8a24015,
—12a19, a11 — 6aigairy, + 2a17,011 — 2G174,4, + 2a17,, 014 + 4ata1
—6a17a11, + 40145y, — 4014,014 + 20115, = 0.
J#? = —4aggazar; + A28y, Q12 + 2028024013 + A28A15011 + A28011y, — 2027y, A13
—Qg7y,012 — 2027026012 + 2027025013 — Bagraisa1n + A27a15012 + 2027014013
—4dagraizy, + a27012y, — 2026024015 + A25,012 + A25,, A15 + 2025024016
—Q25017A12 — Q25015014 1 A25014y, — 2024,013 — 2a24y1G16 — 244,015
+6ag4a17a13 — 4az4a16,, + A24015,, + (24035 — 4G24013, — 2019012011
+daigy, a1 + 2a18a11y, — Q174,012 — 4a17y,011 — 3ar7a15a11 + 417014012
—4dai7aiay, + 517011y, + 315,011 + Q15,4 — Q154,014 — 20142012 — 20144,4,
+2014y,014 — 2014012, + 20124y, — 20114y, = 0.
Notice that for verification, these two sets (set of first-order relative invariants
and set of second-order relative invariants) are relative invariants, if they satisfy
equation (3.5).

For the linearization problem, analysis of these relative invariants gives us
that the equations J* = 0, (i = 1,2,...,15) and J™ = 0, (m = 1,2,...,42) are
necessary conditions for system of equations (3.1) to be equivalent to the trivial

system:

—1I

yl :()7 gg = 0
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4.3 Analytical Testing of the Results

Example 1. Let us consider the system

yi + a1 (y1)® + ana(y))? + arryh + arg = 0,
(4.4)
Yy 4+ anyh(yh)® = 0.

In this case
J1:J3:J4:J5:J13:J14:O

JP = A11yy)

J? = A14y,,

JO=J" = airy,,

J8 = a1y, =0,

J? = 6aygar; + 17y, — 20144,

JO = —2ay9a11,

JH = arran — 2a11,,

J1? = (4argy, + 4aigars — 2a17, — ai;)/2 .
Assume that the relative invariants vanish. Because J2 =0,J% =0,J% =0, J!® =
0, the first equation of system (4.4) becomes an equation in only one dependent

function, namely ;. For this equation,

H = 3a11,5 — 20145y, + Q174,45 — 3A11,017 + 30114, @19 + 20145014 — 317,011
—Q17y,014 + 6a1g,, a11,
K = a1455 — 2174y, + 30194,y — 6011,019 + @145017 + 3014y, a19 — 2017, 011
—3a19,a11 + 3a19,, a14-
By virtue of J? = 0,J% = 0,J" = 0,J'2 = 0, one finds that H = 0, K = 0.
Hence, according to Lie’s test, the vanishing of the relative invariants guarantee

that the first equation is linearizable.
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Example 2. Let us consider the system

y//+a y/ y/ 2:(),
!+ a1y (ys) (45)

Yy + ars(yh)? + aze(ys)? + assyh + az = 0.

In this case
J2:J4:J8:J11:J14:J15:O

Jl = (13y,,
J3 = A26y, 5
J9 = Jm == aggyl,
J13 = A29y,

J® = 6aggais + A28y, — 2026,

JT = —2agass,

J? = aga13 — 2ay3,,

J12 = (4asy,, + 4asgass — 298, — a3g)/2 .
Assume that the relative invariants vanish. Because of J' = 0,J% = 0,J° =
0, J' = 0 the second equation of system (4.5) becomes an equation in only one

dependent function, namely y. For this equation

H = 301340 — 20264y, + A28y,y, — 30135008 + 313,029 + 2026,026 — 328,013
— 028y, 026 1 6a29,,013,
K = a2655 — 20985y, + 3029y,y, — 6a13,029 + 26,028 + 3026y, 020 — 2a28,,013
—3a29,a13 + 3a29,,A26-
By virtue of JS =0,J" =0,.J° =0, J'2 = 0, one finds that H = 0, K = 0. Hence,
according to Lie’s test, the vanishing of the relative invariants guarantee that the

second equation is linearizable.



CHAPTER V
CONCLUSION

5.1 Thesis Summary

This thesis is devoted to the study a system of two second-order ordinary

differential equations,

ylll - f1($ay1>y2ayiay;) ) yg = f?(xaylay%yiay;)- (51)

by group analysis.

5.1.1 Problems

The problem considered in the thesis is related to the linerization
problem. For system (5.1), the linearization problem is to find an invertible trans-

formation of independent and dependent variables,
t=o(z,y1,92), w1 =V1(z,91,92), uz = V2(2,91,92), (5.2)
which transforms the system of equations (5.1) into a system of linear equations
u" + B(t)u =0, (5.3)

Similar to a single second-order ordinary differential equation, in order to obtain
necessary conditions, we assume that system (5.1) is obtained from a system of

linear differential equations (5.3) by invertible transformation (5.2). Replacing
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the derivatives u}, uf ,u}, and uj in system (5.3), it becomes
Y+ anyy® + a1y s + arsyis’ + avy)”
Fawsyiyh + aweyh” + arryl + aisyh + azg = 0, (5.4)
Yy + s’ + arnyh vl + anysyy” + asay”
Fassyhyl + aseys” + azry + assyh + aze = 0.
Thus, if system (5.1) is linearizable, then it must be of the form (5.4).

In this thesis it is shown that form (5.4) is not changed with respect to
any transformation (5.2). The main goal of this thesis was to find invariants
of transformation (5.2). These invariants constitute necessary conditions for the
linearization problem.

For solving the problem of the thesis, Lie’s approach was used. This ap-

proach contains the following steps:

1. Finding the equivalence group of transformations for system (5.4).
2. Obtaining equations for the invariants.

3. Solving the equations defining invariants.

5.1.2 Results

1. The equivalence group of transformations for system (5.4) is shown by
its generator on page 23.

2. All obtained equations which define invariants compose a system of linear
homogeneous first-order partial differential equations. For first-order invariants,
this system includes 60 equations with 60 independent variables. For second-order
invariants, this system consists of 105 equations with 150 independent variables.

3. In case of first-order relative invariants, we found 15 relative invariants

as presented on page 27. In case of second-order relative invariants , we found
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42 relative invariants as presented on pages 28-36. All these invariants help us to

analyze necessary conditions for linearizing system (5.4).

5.1.3 Limitations

In this thesis, group analysis was applied to find invariants of the
equivalence group of a system of two second-order ordinary differential equations
in the shape of a system (5.4). We only considered first and second orders relative
invariants. In further research work, one may look for absolute invariants as in

definition 4.
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