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Abstract

Projective clustering is a clustering technique for
high dimensional data with the inherent sparsity of the
data points. To overcome the unreliable measure of
similarity among data points in high dimensions, all
data points are projected to a lower dimensional sub-
space. Principal component analysis (PCA) is an effi-
cient method to dimensionality reduction by projecting
all points to a lower dimensional subspace so that the
information loss is minimized. However, PCA does not
handle well the situation that different clusters are
formed in different subspaces. We propose a method of
multiple principal component analysis for iteratively
computing projective clusters. The objective function is 
designed to determine the subspace associated with
each cluster. Some experiments have been carried out
to show the effectiveness of the proposed method.

1. Introduction

Clustering is a widely used technique to discover
homogeneous groups, or clusters, of data according to
a certain similarity measure. Many algorithms have
been designed [10] to compute a partition on full-
dimensional data set. While these approaches work
successfully on low-dimensional data sets, their effi-
ciency decrease significantly in higher dimensional
space [9, 12]. In high dimensional data, some dimen-
sions tend to be redundant or irrelevant. Massive di-
mensions can confuse the clustering algorithms. It is
also difficult to group similar data points in very high
dimensions because the distance between any two data
points becomes almost the same [5, 8]. The most
difficult problem on clustering high dimensional data
is that different clusters may exist in different sub-
spaces of different dimensions [4]. 

A possible solution to these problems is to use
dimension reduction or feature selection techniques.
By means of dimension reduction, one first reduces the

dimensions of the original data set by removing less
important dimensions or by transforming the original
data set into a lower dimensional space. The conven-
tional clustering algorithms can then be applied to the
new data set. However, an attempt to reduce dimen-
sions of all data points results in significant informa-
tion loss.

Recognizing the need for an efficient algorithm for
clustering high dimensional data, the concept of sub-
space clustering or projective clustering has thus been
proposed [1, 2, 3, 4]. The goal of projective clustering
is to find clusters embedded in lower dimensional sub-
spaces. It can minimize the information loss in the pro-
cess of dimension reduction by projecting those high
dimensional data points into different lower dimen-
sional subspaces for different clusters.

Statistical methods such as Principal Component
Analysis (PCA) [11] can effectively reduce the dimen-
sionality of the original data by projecting all points on
a subspace so that the information loss is minimized.
Then, a standard clustering method can be used in this
subspace. However, PCA does not work well when
different subsets of data points embedded in different
lower-dimensional subspaces. We, thus, propose the
method to iteratively apply PCA aiming at transform-
ing the original data set into various lower-dimensional
subspaces. The subsequent steps compute a partition-
ing of data points into disjoint groups. We briefly
explain the concept of PCA in Section 2. The proposed 
method of multiple PCA and the partitional clustering
steps are then presented in Section 3. The experimental
results shown in Section 4 verify the efficiency of the
proposed method. Finally, conclusion remarks are
presented in Section 5. 

2. Dimensionality reduction with PCA

Dimensionality reduction is an important pre-
processing step for unsupervised clustering, especially
on high dimensional data set. There are two major
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approaches to dimension reduction: feature selection
and feature transformation. Feature selection is a pro-
cess of finding a minimum subset of original features
that satisfies some criteria, such as information mea-
sure, and no new feature to be generated. Feature tran-
sformation methods, on the other hand, transform data
from the original d-dimensional feature space to a new
q-dimensional (q < d) feature space through some
functional mapping.

Principal Component Analysis (PCA) [11,14],
sometimes called the Karhunen-Loeve (KL) transform-
ation [4], is a widely used method for feature trans-
formation to reduce the number of dimensions of a
data set. The goal of PCA is to find basis vectors for a
subspace which maximizes the least square recon-
struction error. Let X= (x1,...,xn) be a d-dimensional
data matrix of points. PCA projects the correlated high
dimensional data onto a hyperplane. This mapping
uses only the first few q nonzero eigenvalues and the
corresponding eigenvectors of the covariance matrix F,
F = U UT where is a matrix that includes the
eigenvalues i of F in its diagonal in decreasing order,
and U is a matrix that includes the eigenvectors
corresponding to the eigenvalues in its column. The
vector y = WT(xi) is a q-dimensional reduced
representation of the observed vector xi where the W
weight matrix contains the q principal orthonormal
axes in its column W = Uq q

1/2.
Tipping and Bishop [13] developed a method called

probabilistic PCA to associate a proper probability
model for PCA. The advantage of the probabilistic
PCA model is that it can be extended to mixture model
where data can be viewed as arising from several pop-
ulations mixed in varying proportions. The entire data
set is then modeled by a Gaussian with restricted cova-
riance matrix:
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where A = 2I + WWT is the modified covariance
matrix and I is the identity matrix. W is found as in the
original PCA algorithm, and 2 is found by calculating
the average of the variance in the discarded dimen-
sions:
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3. Multiple PCA with projective clustering

Our approach aims at performing clustering in low
dimensional subspaces, instead of the original high
dimensional space where clusters are not well-sepa-
rated. The intuition idea is to reduce the dimensions
using PCA. Since the embedded clusters may lie in
different subspaces, the subspace initially obtained
using PCA does not necessary coincide with the sub-
space spanned by the k cluster centers. Therefore, we
propose to iteratively perform PCA and clustering on
the reduced subspace until the convergence criteria has
been reached. The algorithm can be defined as follows.

Algorithm Clustering with multiple PCA

Input: a set of data vectors X = [x1, ..., xn] of d
dimensions and the number of cluster (k)

Output: a set of cluster centers C = [ 1, ..., k] and
the relevant attributes

Steps:

1. Initialization: Refine the initial points for clustering 
(as proposed in [7]) on sample data, and center the 
data matrix X so that the value of each variable is 
subtracted for that variable.

2. Do the first dimension reduction using PCA to 
obtain the q-dimensional subspace, q < d.

3. While not convergence

3.1     Run clustering algorithm on the q-dimensional
subspace to obtain clusters.

3.2     Use cluster membership to construct the k
cluster centroids in the original space.

3.3     Compute the span of k centroids using singular 
value decomposition.

3.4     Apply PCA to obtain a new q-dimensional
subspace.

4. Return a set of cluster centers associated with 
relevant attributes

We propose the method for iterative high dimen-
sional clustering on the basis of fuzzy k-means [6]. A
prior probability of the cluster can be computed as:
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The square distance measurement, D2, for the fuzzy
k-means is defined as the product of three terms: prior
probability of the cluster, the distance between the kth

data point and the centroid vi of cluster i, and the dis-
tance between the cluster prototype and the data in the
subspace. The objective function, J, of the clustering is
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In the PCA step (steps 2 and 3.4 in the algorithm),
we use a simple and fast method to determine the num-
ber of principal dimensions to be retained at each level. 
For component i, the dimension qi to be retained in the
corresponding sub-components in the next level is con-
sidered from the two criteria: the proportion of var-
iance of the first r components and the size of impor-
tant variance.

The proportion of variance of the first r components
can be computed from the summation of the first r
variances divided by the sum of all variances. We set
projections accounting for over 85% of the total var-
iance as a threshold, that is,

d
i i

r
i i

1

1 > 0.85.

The size of important variance is a simple measure-
ment to discard principal components that have sample

variances below ,
d

i
id 1

1
.

The intuitive idea is that if i < , then the ith principal 

direction is less interesting than average.
Our method of determining how many principal

components to retain is to consider from the proportion 
of variance and the size of importance variance,

(
d
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r
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1

1 > 0.85) OR ( i > ).

With the proposed criteria, each cluster component can
have potentially different dimensionality.

4. Experimental evaluation

We compare our proposed projective clustering
(PKM) with the fuzzy k-means (FKM) and k-means
(KM) algorithms. The experiments are performed on
the Pentium IV 1.0 GHz machine with 512 MB of
main memory. We generate the synthetic data sets of
50,000 points with varied dimensions up to 100. To
assess the quality of a clustering algorithm we use the
distance metric

.||||min
1

}..1{

2n
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ji cx

The performance is evaluated on the clustering qua-
lity, the number of iteration toward convergence crite-
ria, and the running time. The results are shown in Fig-
ures 1 through 3.
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Figure 1. A comparison on clustering quality
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Figure 2. A comparison on number of iteration
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Figure 3. A comparison on running time

5. Conclusions

We have introduced a new method for clustering
high dimensional data using the concept of projective
clustering. The algorithm is based on the fuzzy parti-
tional clustering algorithm. The key to the effective-
ness of finding clusters on different subspaces is due to 
the power of PCA. The main justification of powerful
dimension reduction is that PCA uses singular value
decomposition (SVD) which gives the best low rank
approximation to original data. We perform multiple
PCA to project data into different subspaces for the
effectiveness of discovering clusters embedded in
different layers. The experimental results confirm the
efficiency of our proposed method. Running experi-
ments on real data is an essential step toward the
practicality improvement of the method. 
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