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Abstract

‘We prove rigorously that for “bosonic matter”, if deflation occurs upon collapse as more and more such matter is put together, then for a non-
vanishing probability of having the negatively charged particles, with Coulomb interactions, within a sphere of radius R, the latter necessarily
cannot decrease faster than N —1/3 for large N, where N denotes the number of the negatively charged particles. This is in clear distinction with
matter (i.e., matter with the exclusion principle) which inflates and R necessarily increases not any slower than N 1/3 for large N.
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The astonishment as to why matter occupies so large a vol-
ume and its connection to the Pauli exclusion principle was
clearly expressed in words addressed by Ehrenfest to Pauli in
1931 on the occasion of the Lorentz medal (cf. [1]) to this ef-
fect: “We take a piece of metal, or a stone. When we think about
it, we are astonished that this quantity of matter should occupy
so large a volume”. He went on stating that the Pauli exclusion
principle is the reason: “Answer: only the Pauli principle, no
two electrons in the same state”. In regard to this, we have re-
cently shown [2] that for a non-vanishing probability of having
electrons in matter, with Coulomb interactions, within a sphere
of radius R, the latter necessarily grows not any slower than
N3 for large N, where N denotes the number of electrons.
This conclusion is based on a derived inequality [2] relating the
probability for the electrons to lie within such a sphere, the vol-
ume v of the latter and the number N of electrons:
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where ag = h? /me? is the Bohr radius, and Z|e| corresponds
to the nucleus in matter carrying the largest positive charge.
The above statement follows by noting from (1) that for a non-
vanishing probability of having the electrons within the sphere,
the corresponding volume vg grows not any slower than the
first power of N for N — o0, since otherwise the left-hand side
of (1) would go to infinity and would be in contradiction with
the finite upper bound on its right-hand side. We also note that
N /vg gives an average density, and one may also infer from (1)
that the infinite density limit N /vg — oo does not occur, as the
probability on the left-hand side of (1) necessarily goes to zero
in such a limit.

The Hamiltonian in question is taken to be the N-electron
one
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where x;, R; correspond, respectively, to positions of elec-
trons and nuclei. We have also considered neutral matter
Zf:l Zi=N.

What conclusion can be drawn about matter if the Pauli ex-
clusion principle is not invoked?—that is regarding “bosonic
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matter” [1,3,4]. Here we recall the drastic difference between
matter (with the exclusion principle) and “bosonic matter” is
that the ground-state energy Ey for the former —Ey ~ N [5,
6], while for the latter [1,3,4,7] —Exy ~ N% with « > 1. And
such a power law behavior with & > 1 implies instability as the
formation of a single system consisting of (2N + 2N) parti-
cles is favored over two separate systems brought together each
consisting of (N + N) particles, and the energy released upon
the collapse of the two systems into one, being proportional
to [2N)¥ — 2(N)¥] will be overwhelmingly large for realis-
tic large N, e.g., N ~ 1023, In regard to such a collapse Dyson
states [1]: “[Bosonic] matter in bulk would collapse into a con-
densed high-density phase. The assembly of any two macro-
scopic objects would release energy comparable to that of an
atomic bomb. .. Matter without the exclusion principle is un-
stable”.

We prove rigorously that if deflation does occur for “bosonic
matter”, upon collapse, as more and more such matter is put
together, then for a non-vanishing probability of having the neg-
atively charged particles within a sphere of radius R, the latter
necessarily cannot decrease faster than N ~!/3 for large N. To
this end, we define the particle density of N (spin 0) bosons:

,o(x):N/d3X2-~-d3xN|¢(x,xz,...,XN)|2 3)

and [ dxp(x) = N, ¢ denotes a normalized state giving a
strictly negative expectation value of the Hamiltonian, i.e.,

—enm] < (¢|H|¢p) <O, “

where —ey[m] = En < 0 is the ground-state energy emphasiz-
ing its dependence on m.

To establish the statement made above, we need [2] upper
and lower bounds to the expectation value of the kinetic energy
operator

T=<¢|ZN:p—i2|¢) )]
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To the above end, we rewrite |¢) = |¢(m)), emphasizing its
dependence on the mass m. Since |¢(m/2)) cannot lead for
(p(m/2)|H|¢p(m/2)) a numerical value lower than —ey[m],
we have —ey[m] < (¢p(m/2)|H|p(m/2)). Accordingly, if we
denote the interaction part in (2) by V, we have

T
—en[2m] < <¢(M)|5 + Vg m) (6)

and hence we have from the extreme right-hand side of the in-
equality (4)

T <2en[2m]. @)

A lower bound for T was derived in [8]. The basic idea in that
derivation is to consider an effective interaction of the form
g(x) =4p(x)/(3 [ d*x p?(x)), coupled with the way of count-
ing the number of eigenvalues, in the manner of Schwinger [9],
of the effective Hamiltonian ZlNzl [pl.2 /2m — g(x;)]. This gives
the lower bound [8]
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for any ¢ > 0 which may be taken as small as we please.
The lower bound expression obtained in [8] for —ey [m] may
be now used to derive from (7) and (8) the basic relations
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For the probability of the N negatively charged particles to
lie within a sphere of radius R, we have

Prob[[x|| <R, ..., |xy| < R]
< Prob[[x;| < R]
1

== / d*x p (X) XR (%)

| 12
N( / d3xp2<x)) wp)'2, (10)

where Xr(x) =1 if [x| < R, and = 0 otherwise. In writing the
last inequality in (10) we have used the Cauchy—Schwarz in-
equality and that (X (x))? = (Xg(x)), vg =47 R /3.

From (9), (10), we then have the explicit inequality
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From this inequality we may infer the inescapable fact that if
deflation of “bosonic matter” occurs, upon collapse, then for a
non-vanishing probability of having the N negatively charged
particles within a sphere of radius R, the corresponding vol-
ume, necessarily, cannot shrink faster than 1/N for N — oo,
since otherwise the left-hand side of (11) would go to infinity
and would be in contradiction with the finite upper bound on
its right-hand side, thus establishing the above stated result. We
note that the inequality in (11) is sufficient to reach such a con-
clusion but cannot establish the actual deflation of such matter.
This formidable problem will be attempted in a future report.
Methods similar to the ones developed above have been used to
study the localizability and stability of other quantum mechan-
ical systems as well [10].
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