
Nonlinear Dynamics22: 85–99, 2000.
© 2000Kluwer Academic Publishers. Printed in the Netherlands.

On the Compatibility of Overdetermined Systems
of Double Waves

S.V. MELESHKO*

Suranaree University of Technology (SUT), Nakhon Ratchasima 30000, Thailand

(Received: 15 March 1999; accepted: 12 April 1999)

Abstract. Obtaining equations for double waves in the case of a general quasilinear system of partial differential
equations poses some difficulties. They are connected with the complexity and awkwardness of the study of
overdetermined systems, describing solutions of this class. However, there are general statements about double
waves of autonomous quasilinear systems of equations. This article is devoted to the classification of irreducible
double waves of autonomous nonhomogeneous systems.
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1. Introduction

A solutionui = ui(x1, x2, . . . , xn) (i = 1, 2, . . . , m), of the autonomous quasilinear system
of equations

n∑
α=1

Aα(u)
∂u

∂xα

= f (u) (1)

is called a multiple wave of rankr if a rank of the Jacobi matrix∂(u1, u2, . . . , um)/∂(x1, x2,

. . . , xn) is equal tor in a domainG of the independent variablesx1, x2, . . . , xn. HereAα are
rectangularN ×m matrices with elementsaα

ij (u) andf = (f1(u), . . . , fN(u)).
Depending on the value ofr, a multiple wave is called a simple(r = 1), double(r = 2)

or triple (r = 3) wave. The valuer = 0 corresponds to uniform flow with constantui,
(i = 1, 2, . . . , m), andr = n corresponds to the general case of nondegenerate solutions.
Multiple waves of all ranks compose a class of degenerate hodograph solutions.

The singularity of the Jacobi matrix means that the functionsui(x) (i = 1, 2, . . . , m) are
functionally dependent (hodograph is degenerate), withm−r number of functional constraints

ui = 8i(λ
1, λ2, . . . , λr), (i = 1, 2, . . . , m). (2)

The variablesλ1(x), λ2(x), . . . , λr(x) are called parameters of the wave. The solutions with
a degenerate hodograph are a generalization of travelling waves: the wave parameters of the
travelling waves are linear forms of independent variables. To find ther-multiple wave, it
is necessary to substitute the representation (2) into system (1). We get an overdetermined
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system of differential equations for the wave parametersλi(x) (i = 1, 2, . . . , r), which should
be studied for compatibility. A review of applications of multiple waves in gas dynamics can
be found in [1].

The main problem of the theory of solutions with a degenerate hodograph is getting a
closed system of equations in the space of dependent variables (hodograph), establishing the
arbitrariness of the general solution and determining flow in the physical space.

An arbitrary nonhomogeneous system (1) does not change under the transformations

x′i = xi + bi, (i = 1, 2, . . . , n),

that compose a groupGn. For homogeneous systems (1)(f = 0), there is one more scale
transformation1 x′i = axi (i = 1, 2, . . . , n). From the group analysis point of view, anr-
multiple wave is a partially invariant solution with respect toGn (or Gn+1) [2]. A class of
partially invariant solutions of some groupH is characterized by rankσ and defectδ: class
H(σ, δ)-solutions. If some classH(σ, δ)-solutions are classH1(σ, δ1)-solutions with fewer
defectsδ1 < δ, then it is said that the classH(σ, δ)-solutions are reduced to having fewer
defects. For example, ifδ1 = 0, then such a solution is reducible to an invariant solution with
respect to the subgroupH1.

A study of partially invariant solutions shows that classes of solutions of a given rank
with fewer defects are easier to obtain. This is connected with the idea that the analysis of
compatibility for the solutions with greater defects is more difficult. Therefore, it is useful to
a priori clarify the structure properties of the overdetermined system.

There are only a few sufficient conditions of the reducibility [2] that allow us to predict a
reduction on the basis of the structure properties of an overdetermined system. One of these
conditions is a restriction on the ability to define all first derivatives of a solution (otherwise
the solution is reduced to an invariant solution). Others are concerned with double waves.
If in the process of obtaining compatibility conditions for the wave parameters of a double
wave, we obtainN = 2n − 1 homogeneous equations of type (1), then this double wave
is an invariant solution. In particular, plane nonisobaric double waves with the general state
equation which has a defect of invarianceδ = 2 are isoentropic [2]. Another application of
these conditions to double waves of gas dynamics equations leads to the result [3] that the
class of irreducible to invariant solutions of plane isoentropic irrotational double waves is
described by the flows obtained in [4]. For homogeneous systems of type (1) withN = 2n−2
andn = 3, a full classification of double waves with the additional assumption about having
functional arbitrariness of the solution was carried out in [5].

This article is devoted to the study of nonhomogeneous systems of type (1) withN = 2n−1
equations, the solutions of which are not reducible to invariant.

2. Nonhomogeneous Systems(N = 2n− 1)

Let a system ofN = 2n − 1 independent autonomous quasilinear equations on the wave
parametersλ andµ of a double wave be of type (1). It can be obtained as a result of substitution
of the representation of a double wave:

ui = ui(λ, µ), (i = 1, 2 . . . , m)

1 The full Lie group admissible by system (1) can be wider thanGn (or Gn+1).
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into the initial system and some analysis of compatibility.2 Without loss of generality equa-
tions, for the wave parameters can be rewritten as

λi = pi(λ, µ)λ1+ fi(λ, µ),

µj = qj (λ, µ)λ1+ gj (λ, µ), (i = 1, . . . , n; j = 1, . . . , n). (3)

Hereλi = ∂λ/∂xi, µj = ∂µ/∂xj and, for the sake of simplicity, we setp1 ≡ 1, f1 ≡ 0.
The problem is to classify systems of type (3), the solutions of which are irreducible to

invariant solutions.
A classification is derived with respect to equivalence transformations, admitted by system

(3):

(a) linear nondegenerate replacement of independent variables;
(b) replacement of wave parameters:λ′ = L(λ,µ), µ′ = M(λ,µ).

In the last case, the coefficientspi, qi and the functionsfi, gi are transformed by formulae:

p′1 = 1, p′i =
piLλ + qiLµ

Lλ + q1Lµ

, q ′j =
pjMλ + qjMµ

Lλ + q1Lµ

,

f ′1 = 0, f ′i = fiLλ + giLµ − g1Lµp′i , g′j = fjMλ + gjMµ − g1Lµq ′j ,

(i = 2, . . . , n; j = 1, . . . , n).

As a result of such transformations (as in the homogeneous case [2]), it is possible to letq1 =
0. For this purpose, it is enough to choose a functionL(λ,µ), which satisfies the equation
Lλ + q1Lµ = 0.

If
∑

i q
2
i 6= 0, then the coefficients of system (3) can be transformed to

q1 = 0, q2 = 1. (4)

Simultaneous to the equalitiesq1 = 0, q2 = 1 under replacement of the wave parameters, iff

Mλ = 0, Lλ = Mµ,

results in

L = λM ′(µ)+ ω(µ), M = M(µ). (5)

Another case corresponds to system (3) with

qi = 0 (i = 1, 2, . . . , n). (6)

There is no case (6) for homogeneous systems, because conditions (6) contradict the definition
of a double wave for such a kind of systems: rank of the Jacobi matrix is less than two.

A study of the compatibility of system (3) consists of the following. As a result of a
reduction of the overdetermined system (3) to an involutive system, we get equations with
a structure of nonhomogeneous quadratic forms with respect to the derivativeλ1. If at least

2 A case of homogeneousN = 2n− 1 equations was studied by Ovsiannikov [2].
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one of the coefficients of these forms is not equal to zero, then it means that a solution of
the system satisfies the overdetermined system of equations from which all first derivatives
can be found. By virtue of the reduction theorem [2], it gives the reduction of this solution
to an invariant solution. Therefore, these forms are decomposed on subsystems on functions
pi, qj , fi, gj : quadratic, linear and ‘zero’ terms with respect to power of the derivativeλ1. Fur-
ther simplifications are connected with more the detailed study of the compatibility conditions
of systems of types (4) and (6).

3. Systems of Type (4)

The value ofλ11 = aλ1+ b can be defined from the expressionD1(µ2− λ1− g2)−D2(µ1−
g1) = 0, whereDi is a total derivative with respect toxi , a = p2g1λ + g1µ − g2λ, b =
f2g1λ + g2g1µ − g1g2µ. It can be noted that all second derivativesλij andµij can be found.
Therefore arbitrariness of the general solution of system of type (4) is only constant. For
example, the derivatives

λi1 = piλλ
2
1+ λ1(api + fiλ + g1piµ)+ bpi + g1fiµ, (i = 2, 3, . . . , n)

can be found from the expressionsD1(λi − piλ1 − fi) = 0. After substituting them into
Fi ≡ D1µi −Diµ1 = 0, (i = 2, 3, . . . , n), we obtain nonhomogeneous quadratic forms with
respect to the derivativeλ1. By virtue of the prohibition of reduction of the solution of system
(3) to an invariant, the coefficients of these quadratic formsFi have to be equal to zero:

qiλ = 0, (7)

qi(p2g1λ − g2λ)+ g1giµ + giλ − pig1λ = 0, (8)

qib + g1giµ − fig1λ − gig1µ = 0, (i = 2, 3, . . . , n). (9)

In the same way from the quadratic formsDiλj −Djλi = 0, we get

qjpiµ = qipjµ, (10)

fjpiλ + gjpiµ + qjfiµ + pig1pjµ = fipjλ + gipjµ + qifjµ + pjg1piµ,

fjfiλ + gjfiµ + pig1fjµ = fifjλ + gifjµ + pjg1fiµ, (i, j = 2, 3, . . . , n; i 6= j). (11)

And from the equalitiesDiµj −Djµi = 0, we find

qj (piλ − qjµ) = qi(pjλ − qjµ), (12)

gjqiµ + qi(pja + fjλ + g1pjµ)+ pjgiλ + qjgiµ

= giqjµ + qj (pia + fiλ + g1piµ)+ pigjλ + qigjµ, (13)

qi(pjb + g1fjµ)+ fjgiλ + gjgiµ

= qj (pib + g1fiµ)+ figjλ + gigjµ, (i, j = 2, 3, . . . , n; i 6= j). (14)
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We note that the expressionsD1λi1 − Diλ11 = 0 are cubic polynomials with respect to the
derivativeλ1: piλλλ

3
1+ · · · = 0. Therefore,

piλλ = 0, (i = 2, 3, . . . , n).

With the help of equivalence transformations (5) that leave the conditionsq1 = 0, q2 = 1
unchanged, because of the choice of functionsω(µ) andψ(µ), we can assume thatp2 = 0.
Then from (6), (10), (12), we get

qiλ = 0, piµ = 0, piλ = qiµ, (i = 2, 3, . . . , n). (15)

By using (15) in the expressionsD1λi1−Diλ11 = 0 (i = 2, 3, . . . , n), we find

qiaµ = 2apiλ + fiλλ, (16)

fiaλ + giaµ + qibµ = 3bpiλ + g1(piaµ + 2fiλµ)+ g1λfiµ, (17)

ag1fiµ + bλfi + gibµ = bfiλ + g1(pibµ + g1fiµµ + g1µfiµ), (18)

The functionspi, qj , fi, gj must satisfy (8), (9), (11), (14), (13), (15–18) for the irreducibility
of solutions of system (3) to invariant solutions.

We note that

pi = λAi + Bi, qj = µAi + Ci, (i = 2, 3, . . . , n),

are the general solutions of Equations (15), where

A1 = 0, B1 = 1, C1 = 0, A2 = 0, B2 = 0, C2 = 1,

andAi, Bi, Ci (i = 3, . . . , n) are arbitrary constants. Further simplifications of equations of
system (3) are connected with an application of equivalence transformations, which corres-
pond to a replacement of the independent variables. By means of the replacement

x′1 = Bαxα, x′2 = Cαxα, x′i = xi, (i = 3, 4, . . . , n)

we can obtainBi = 0, Ci = 0, (i = 3, 4, . . . , n).
Further, we have to consider two cases: (a) allAi = 0 (i = 3, 4, . . . , n) and (b)

∑
i A

2
i 6= 0.

In the first case (a), system (3) has the form

λ2 = f2, λi = fi,

µ1 = g1, µ2 = λ1+ g2, µi = gi, i ≥ 3. (19)

In the second case (b), without loss of generality, we can regardA3 6= 0. Then as a result
of one more linear transformation of the independent variables

x′1 = x1, x′2 = x2, x′3 = Aαxα, x′i = xi, (i = 4, 5, . . . , n),

system (3) becomes

λ2 = f2, λ3 = λλ1+ f3, λi = fi,

µ1 = g1, µ2 = λ1+ g2, µ3 = µµ2 + g3, µi = gi, i ≥ 4. (20)
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Further successive simplifications of systems (19) and (20) are connected with the analysis
of the constantsCi.

3.1. SYSTEM (19)

In this case, Equations (8), (9), (11), (14) are reduced to

gi = Ciµ+Ki, fi = Ciλ+ Ri,

Ci(λg1λ + µg1µ − g1)+ Rig1λ +Kig1µ = 0,

Ci(λg2λ + µg2µ − g2)+ Rig2λ +Kig2µ = 0,

Ci(λf2λ + µf2µ − f2)+ Rif2λ +Kif2µ = 0,

CiRj = CjRi, CiKj = CjKi, (i, j = 3, 4, . . . , n), (21)

whereCi, Ri,Ki are arbitrary constants.

3.1.1. CaseC3 6= 0
If at least one of the constantsCi is not equal to zero (without loss of generality, we can take
C3 6= 0), then with the help of transformations

λ′ = λ+ R3

C3
, µ′ = µ+ K3

C3
,

x′1 = x1, x′2 = x2, x′3 =
n∑

α=3

Cαxα, x′i = xi, (i = 4, . . . , n),

system (19) becomes

λ3 = λ, µ3 = µ, λi = 0, µi = 0, (i = 4, 5, . . . , n),

λ2 = λF(µ/λ), µ1 = λ91(µ/λ), µ2 = λ1+ λ92(µ/λ). (22)

The functionsF,91,92 must satisfy a system of three ordinary differential equations of the
second order. This system is obtained after substitution of

f2 = λF(µ/λ), g1 = λ91(µ/λ), g2 = λ92(µ/λ),

into Equations (16–18):

9 ′′1 + y9 ′′2 − y2F ′′ = 0,

(y2F − y92 −91)F
′′ = 0, (y2F − y92−91)9

′′
2 = 0,

wherey ≡ µ/λ.
It can be noted that system (22) is invariant with respect to the transformation:λ′ = −λ,

µ′ = −µ. Therefore, we can consider thatλ > 0. It allows one more simplification by
transformation:

λ′ = µ

λ
, µ′ = ln(λ), x′1 = x2, x′2 = x1, xi = xi, (i = 3, 4, . . . , n).
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System (22) is reduced to

λ2+ λλ1 = 9̂1(λ), λi = 0, (i = 3, 4, . . . , n),

µ1 = F(λ), µ2 = λ1+ 9̂2(λ), µ3 = 1, µi = 0, (i = 4, . . . , n). (23)

Here9̂1(λ) = 91(λ)+ λ92(λ)− λ2F(λ), 9̂2(λ) = −92(λ)+ λF(λ).
Let us make some remarks about solutions of system (23). A solution of (23) has the form

λ = 3(x1, x2), µ = x3+G(x1, x2),

where the functionG(x1, x2) can be found from the totally integrable compatible system of
differential equations. These solutions are invariant solutions of Equations (23) with respect
to algebra with generators:

∂x3 + ∂µ, ∂xi
, (i = 4, . . . , n). (24)

Assume that the functions3(x1, x2) and G((x1, x2) are functionally dependent, then the
Jacobian

W(x1, x2) = ∂(λ, µ)

∂(x1, x2)
= λ2

1+ λ1(9̂2+ λF)− F9̂1 = 0.

This equation supplies the sufficient conditions for the reducibility of the solution of system
(23) to an invariant solution with respect toH ⊂ Gn. Therefore, for irreducible solutions, the
functions3(x1, x2) andG((x1, x2) are functionally independent orW(x1, x2) 6= 0.

We note that if9̂1 6= 0, then functionsF , 91, 92 are linear:F = k1λ + k2, 92 =
k3λ + k4, 92 = k5λ + k6 with arbitrary constantski (i = 1, 2, . . . , 6). If 9̂1 = 0, then
9̂ ′2(λ)+ λF ′(λ) = 0 and3 = x1/x2 up to shifts of the independent variables and because of
W = x−2

2 (1+ x29̂2+ x1F) 6= 0, then the solution is not reducible to an invariant solution of
H ⊂ Gn.

3.1.2. CaseCi = 0 (i = 3, 4, . . . , n)
Let us consider the case with all constants zero,Ci = 0.

Firstly, assume that at least one of the constantsKi is not equal to zero (without loss of
generality, we can consider thatK3 6= 0). Then from (21) we get

g1 = g1(λ− Rµ), g2 = g2(λ− Rµ), f2 = f2(λ− Rµ),

whereR = R3/K3. If g′1 = g′2 = f ′2 = 0, then the solution of system (23) is linear with
respect to the independent variables, i.e. it is invariant with respect to some subgroupH ⊂ Gn.
Therefore a prohibition of reducibility to an invariant solution leads to conditions(g′1)

2 +
(g′2)

2+ (f ′2)
2 6= 0 or from (21) we haveRi = RKi. After the transformation

x′3 =
n∑

i=3

Kixi, x′i = xi, i 6= 3

we obtainf3 = R, g3 = 1, gi = 0, fi = 0, (i = 4, 5, . . . , n). In addition we can reckon that
R = 0. Really, if it is not so, then after one more transformation

λ′ = λ− Rµ, µ′ = Rµ,

x′1 = R−1x1− x2, x′2 = x2, x′3 = Rx3,
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the same system can be obtained, but withR = 0. Irreducibility conditions (16–18) in this
case become

f2 = k1λ+ k2, g′′1f2 = 0, g′′2f2 = 0

with arbitrary constantsk1, k2. We note that iff2 = 0 (k1 = 0, k2 = 0), then a solution of
(19) isλ = ϕ(x1), µ = x3+ cx2+ψ(x1), which is invariant with respect to some subalgebra
H ⊂ Gn. Herec is a constant. Therefore, for systems irreducible to invariant solutions, we
have to consider only the case whenf2 6= 0. In this case, functionsg1 and g2 are linear
g1 = k3λ+ k4, g2 = k5λ+ k6 and system (19) is

λ2 = k1λ+ k2, λi = 0, (i = 3, 4, . . . , n),

µ1 = k3λ+ k4, µ2 = λ1+ k5λ+ k6, µ3 = 1, µj = 0, (j = 4, 5, . . . , n). (25)

If k1 6= 0, then by equivalence transformations we can consider thatk1 = 1, k2 = 0. In
this case

λ = ϕ(x1)e
x2, µ = (ϕ′ + k5ϕ)ex2 + k6x2 + x3,

where the functionϕ = ϕ(x1) satisfies the homogeneous linear ordinary differential equation

ϕ′′ − k3ϕ
′ + k5ϕ = 0.

If k1 = 0, butk2 6= 0, then, as in previous case, via equivalence transformations we can
put k1 = 0, k2 = 1. And then

λ = x2+ ϕ(x1), µ = x3+ x2

(
ϕ′ + k5

2
x2 + k5ϕ + k6

)
+ ψ,

where the functionsϕ = ϕ(x1) andψ = ψ(x1) satisfy the ordinary differential equations

ϕ′′ + k5ϕ
′ − k3 = 0, ψ ′ = k3ϕ + k4.

Now let all constantsKi = 0. If at least one of the constantsRi is not equal to zero (without
loss of generality, we can account thatR3 6= 0), then by transformation

λ′ = µ, µ′ = λ, x′1 = x2, x′2 = x1, xi = xi, (i = 3, 4, . . . , n),

the same system is obtained as was considered in the previous case. If allRi = 0, then for
such a solution

λ = 3(x1, x2), µ = G(x1, x2)

and it is invariant with respect to the subalgebraH ⊂ Gn, which corresponds to the subalgebra
{∂x3, ∂x4, . . . , ∂xn

}.
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3.2. SYSTEM (20)

A study of compatibility of system (20) is more cumbersome. In this case, Equations (8), (9),
(11), (14), (16–18) can be reduced to

g3λ = λg1λ + µg2λ − g1,

s2 ≡ µb + g1g3µ − f3g1λ − g3g1µ = 0,

f3µ = µf2µ − f2,

f2f3λ + g2f3µ + λg1f2µ = f3f2λ + g3f2µ,

g2+ µf2λ + g3µ = λg2λ + µg2µ + f3λ,

s6 ≡ µg1f2µ + f2g3λ + g2g3µ − (f3g2λ + g3g2µ + λb + g1f3µ),

fi = 0, gi = 0, (i = 4, 5, . . . , n), (26)

aµ = f2λλ,

µaµ = 2a + f3λλ,

f2aλ + g2aµ + bµ = g1(2f2λµ)+ g1λf2µ,

f3aλ + g3aµ + µbµ = 3b + g1(λaµ + 2f3λµ)+ g1λf3µ,

ag1f2µ + bλf2+ g2bµ = bf2λ + g1(g1f2µµ + g1µf2µ),

ag1f3µ + bλf3+ g3bµ = bf3λ + g1(λbµ + g1f3µµ + g1µf3µ). (27)

The problem is to find a general solution (up to equivalence transformation) of system
(26), (27). Because Equations (26) and (27) are not sufficient for irreducibility of a solution of
system (20) to invariant solution, then the next problem is to try to analyze a solution of (20)
with the found functionsfi, gj and coefficientspi, qj .

All further intermediate calculations in the study of the compatibility of system (26) were
made on a computer using the system REDUCE [6]. Here we give the method of computations
and final results.

Let us input the new functionG3 = g3 − µg2 instead ofg3. From (26)1 and (26)5, we
find G3λ, G3µ and from (27)1: f2λλ andf3λλ. After substitution of the found expressions into
∂G3λ/∂µ−∂G3µ/∂λ = 0, we get the equation(λ(g1µ−g2λ))λ = 0. Without loss of generality,
the last equation can be integrated:

g1 = ϕλ, g2 = ϕµ + ψ1 logλ, (28)

whereϕ = ϕ(λ,µ) andψ1 = ψ1(µ) are arbitrary functions. After substitution of (28) into
expressions forf2λλ andf3λλ, we get

f2λλ = −ψ ′1
λ

, f3λλ = 2ψ1 − µψ ′1
λ

.

Integration of the last expressions allows us to find the functions

f2 = λψ ′1(1− log λ)+ λψ2+ ψ3, f3 = λ(µψ ′1− 2ψ1)(1− log λ)+ λψ4+ ψ5
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with arbitrary functionsψi = ψi(µ) (i = 2, 3, 4, 5). From (26)3, we have

λ(ψ2+ ψ ′4− µψ ′2)+ ψ3+ ψ ′5− µψ ′3 = 0.

After splitting with respect toλ, we get

ψ ′4 = µψ ′2− ψ2, ψ ′5 = µψ ′3 − ψ3

or, if we input a new functionψ6 = ψ6(µ) by ψ4 = ψ ′6+µψ2−ψ1, thenψ2 = (ψ ′1−ψ ′′6 )/2.
In this case,

∂G3

∂λ
= −ϕλ + λϕλλ,

∂G3

∂µ
= −2ϕλ + λϕλµ + ψ ′6

which can be integrated asG3 = −2ϕ + λϕλ + ψ6.
A composition of differentiating (26)6 with respect toλ and subtracting it by differentiating

(26)2 with respect toµ and adding it to (27)3 is

ψ1ϕλµ − ψ ′1ϕλ + ψ1

λ
= 0.

If ψ1 6= 0, then we can get a contradiction. Really, letψ1 6= 0, then the last equation can
be integrated

ϕ = ψ1(G− µ logλ)+ ψ7,

whereG = G(λ) andψ7 = ψ7(µ) are arbitrary functions. In this case, Equation (26)4 has the
form

G(a1λ logλ+ a2λ+ a3)+ a4λ log2 λ+ a5λ logλ+ a6λ+ a7 logλ+ a8 = 0, (29)

whereai , (i = 1, 2, . . . , 8) are polynomials of functionsψ1, ψ3, ψ5, ψ6, ψ7 and their deriv-
atives. It can be shown that (29) is possible only ifψ1 = 0. But it contradicts the original
assumption aboutψ1. Therefore, we have to considerψ1 = 0.

Further consideration is based on the analysis of the compatibility of Equations (26)4 and
∂s2/∂µ− ∂s6/∂λ = 0, which have the forms:

ϕµh− 2ϕh′ + ψ6h
′ − ψ3(µψ ′′6 − 2ψ ′6)+ ψ5ψ

′′
6 = 0, (30)

−3ϕλϕµµ + ϕλψ
′′
6 + 3ϕµϕλµ − ϕλλh = 0, (31)

whereh = λψ ′′6 − 2ψ3.
Assume thath = 0, soψ3 = 0, ψ6 = c1µ + c2, wherec1 andc2 are constants. We note

that in this caseψ ′5 = 0. Analysis of (31) requires that we need to study two cases: (a)ϕµ = 0
and (b)ϕµ 6= 0.

Let ϕµ = 0, then from (31) we get

(c1λ+ ψ5)ϕλλ − c1ϕλ = 0.

If c1 6= 0, then without loss of generality, system (20) can be written as

λ2 = 0, λ3 = λλ1+ λ, λi = 0,

µ1 = 2cλ, µ2 = λ1, µ3 = µλ1+ µ+ c2, µi = 0, i ≥ 4. (32)
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A solution of this system is

λ = −x1φ(x3), µ = (cx2
1 + x2+ c2e

x3)φ(x3),

whereφ(x3) = ex3/(ex3 − 1).
If c1 = 0 andψ5 6= 0, then without loss of generality, system (20) can be written as

λ2 = 0, λ3 = λλ1+ 1, λi = 0,

µ1 = c, µ2 = λ1, µ3 = µλ1− cλ+ c2, µi = 0, i ≥ 4. (33)

A solution of this system is

λ = −x1

x3
+ x3

2
, µ = c

(
x1− x2

3

6

)
− x2

x3
,

wherec is an arbitrary constant.
If c1 = 0 andψ5 = 0, then without loss of generality, system (20) can be written as

λ2 = 0, λ3 = λλ1, λi = 0,

µ1 = ϕ′, µ2 = λ1, µ3 = µλ1+ λϕ′ − 2ϕ, µi = 0, i ≥ 4, (34)

whereϕ = ϕ(λ) is an arbitrary function ofλ. A solution of this system is

λ = −x1

x3
, µ = −x2

x3
− x3ϕ(λ).

Let ϕµ 6= 0, then from (31) we getϕ = F(ξ), whereξ = µ + ψ(λ). The functionsψ(λ)

andF(ξ) are functions of one argument (F ′ 6= 0), which have to satisfy the equations

ψ ′′(c1λ+ ψ5) = 0, F ′′(2F − c1ξ − c3)+ c1F
′ − (F ′)2 = 0.

Here, by virtue of the first equation,c3 ≡ ψ ′(c1λ+ ψ5)− c1ψ is a constant.
If c1 6= 0, then as a result of equivalence transformations, we can setc1 = 1, ψ5 = 0,

ψ = 0, and system (20) can be written as

λ2 = 0, λ3 = λλ1+ λ, λi = 0,

µ1 = 0, µ2 = λ1+ F ′, µ3 = µλ1+ µ+ µF ′ − 2F, µi = 0, i ≥ 4, (35)

where the functionF = F(µ) satisfies

(µ− 2F)F ′′ = F ′(1− F ′), (F ′ 6= 0).

A solution of this system is

λ = x1 ex3

1− ex3
, µ = µ(x2, x3),

where the functionµ(x2, x3) satisfies a compatible overdetermined system of equations.
If c1 = 0 and ψ5 6= 0, then without loss of generality and because of equivalence

transformations, system (20) can be written as

λ2 = 0, λ3 = λλ1+ 1, λi = 0,

µ1 = 0, µ2 = λ1+ 2cµ, µ3 = µλ1, µi = 0, i ≥ 4, (36)
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wherec 6= 0 is a constant. The solution of this system (up to scalingx1, x2, x3 andµ) is

λ = −x1

x3
+ x3, µ = 1

x3
(γ ex2 + 1),

whereγ = 0 or γ = 1. If γ = 0, then the solution is invariant with respect to the subalgebra
∂x2, ∂xi

, (i = 4, 5, . . . , n).
If c1 = 0 andψ5 = 0, then without loss of generality, system (20) can be written as

λ2 = 0, λ3 = λλ1, λi = 0,

µ1 = ψ ′F ′, µ2 = λ1+ F ′,

µ3 = µλ1+ (µ+ ψ ′λ)F ′ − 2F, µi = 0, i ≥ 4, (37)

whereψ = ψ(λ) is an arbitrary function,F = c(ξ + c3)
2, ξ = µ + ψ(λ) and c, c3 are

constants (c 6= 0). With the help of equivalence transformation, this system can be simplified
to

λ2 = 0, λ3 = λλ1, λi = 0,

µ1 = ψ ′(µ+ λ1), µ2 = λ1+ µ,

µ3 = µλ1+ (λψ ′ − ψ)(µ+ λ1), µi = 0, i ≥ 4, (38)

The general solution of this system is (up to equivalence transformation)

λ = −x1

x3
, µ = 1

x3
(γ ex2−x3ψ + 1),

whereγ = 0 or γ = 1. If γ = 0, then the solution is invariant with respect to the subalgebra
∂x2, ∂xi

, (i = 4, 5, . . . , n).
Now we consider the caseh ≡ λψ ′′6 − 2ψ3 6= 0.
Let ψ ′′6 6= 0, then system (30), (31) is compatible (up to equivalence transformations) only

if system (20) has the form

λ2 = (λ+ α)µ, λ3 = λλ1, λi = 0,

µ1 = 0, µ2 = λ1+ µ(µ+ β), µ3 = µλ1, µi = 0, i ≥ 4, (39)

whereα, β are constants. A solution of this system depends onβ.
If β 6= 0, then the solution is (up to equivalence transformation)

λ = x1− αγ ex2

γ ex2 − x3
, µ = −1+ β2γ ex2

γ ex2 − x3
,

whereγ = 0 or γ = 1. If γ = 0, then the solution is invariant with respect to the subalgebra
∂x2, ∂xi

, (i = 4, 5, . . . , n).
If β = 0, then the solution is (up to equivalence transformation)

λ = −x1+ αx2
2

x3+ x2
2

, µ = − x2

x3 + x2
2

.
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Let ψ ′′6 = 0 or ψ6 = c1µ + c2 and ψ3 6= 0. Changing the functionϕ to Q(λ,µ) =
(ϕ −ψ6/2)/h2 simplifies Equations (30) and (27)3, further. Equation (27)3 can be integrated:

∂Q

∂λ
= 6Q2ψ3ψ

′′
3 − (ψ ′3)

2

ψ3
− 3Q

c1ψ
′
3

2ψ2
3

+ ψ8,

whereψ8 = ψ8(µ). Then from these two equations by cross-differentiating, we get

AQ2+ BQ+ C = 0,

whereA = 6ψ2
3(ψ2

3ψ ′′′3 − 2ψ3ψ
′
3ψ
′′
3 + (ψ ′3)

3), B = 3c1ψ3(ψ
′
3)

2/2, C = ψ ′8ψ
4
3 − 3c2

1ψ
′
3/16.

Further analysis depends on the value ofQλ. There are only two possibilities: (a)A = 0,
B = 0, C = 0 and (b)Qλ = 0.

In case (a), becauseB = 0, we need to consider two cases. In the first caseψ ′3 = 0, and
then, without loss of generality, system (20) can be reduced to

λ2 = 1, λ3 = λ(λ1+ c1)− µ+ c2,

µ1 = k, µ2 = λ1+ c1, µ3 = µλ1− kλ+ k1, (40)

wherek andk1 are constants andc1 attains two values: eitherc1 = 1 or c1 = 0. In the second
case,c1 = 0, and without loss of generality, the system (20) can be reduced to

λ2 = −1

2
(µ− k)2, λ3 = λλ1− 1

6
(µ+ 2k)(µ− k)2,

µ1 = (µ− k)4

6(λ− k1)2
, µ2 = λ1− 2(µ− k)3

3(λ− k1)
,

µ3 = µλ1− (µ− k)2(λµ+ 3kλ− 2k1µ− 2kk1)

6(λ− k1)
2

, (41)

wherek andk1 are constants.
Let us now consider case (b)Qλ = 0. Froms6 = 0 we getQψ ′′3 = 0. If c1 = 0, then

system (20) can be reduced to

λ2 = ψ3, λ3 = λλ1+ ψ5,

µ1 = 0, µ2 = λ1+ kψ3ψ
′
3, µ3 = µλ1+ kψ3ψ

′
5, (42)

wherek is a constant andψ3 is an arbitrary function of one argument and the functionψ5 is
connected withψ3 by: ψ ′5 = µψ ′3− ψ3. If c1 6= 0, then system (20) can be reduced to

λ2 = 1, λ3 = λ(λ1+ 1)− µ+ k1,

µ1 = 0, µ2 = λ1+ 1, µ3 = µλ1+ k, (43)

wherek andk1 are constants.
We can thus formulate the following theorem:

THEOREM. System (19) can have solutions irreducible to invariant solutions only if it is
equivalent to one of the systems: (23), (25), (32–36), (37) (or (38)).
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4. Systems of Type (6)

Systems of the type (6) have the form

λi = pi(λ, µ)λ1+ fi(λ, µ), µj = gj (λ, µ), (i = 1, . . . , n; j = 1, . . . , n). (44)

As with systems of type (4), we can obtain the necessary irreducibility conditions from ex-
pressionsDiµj −Djµi = 0:

giλ = pig1λ, giµg1 = fig1λ + gig1µ, (pjfi − pifj )g1λ + gigjµ − gjgiµ = 0, (45)

and

(pipjµ − pjpiµ)g1+ piλfj + piµgj − pjλfi − pjµgi = 0,

(pifjµ − pjfiµ)g1+ fiλfj + fiµgj − fjλfi − fjµgi = 0, (46)

from expressionsDiλj −Djλi = 0. Herei, j = 2, 3, . . . , n.
Assume thatg1 6= 0. If g1λ = 0, then without loss of generality, we can considerg1 = 1.

In this case, from (45) we can conclude thatgi, (i, j = 2, 3, . . . , n) are constants, even up to
equivalence transformations we can regard them asgi = 0, (i, j = 2, 3, . . . , n). Solution of
such a system isµ = x1, which is partially invariant with defectδ ≤ 1. It is possible to obtain
a further simplification of system (44).

If g1λ 6= 0, then without loss of generality we can considerg1 = λ. Because in this case,
from (45) we have

pi = giλ, fi = λgiµ, (i = 2, 3, . . . , n).

It gives that the firstn − 1 equationsλi = piλ1 + fi, 0, (i, j = 2, 3, . . . , n) are con-
sequences of the other equations. But we have assumed that the equations of system (44) are
not dependent.

If g1 = 0, then without loss of generality we can consider thatg2 = 1. From (45) and
changing the independent variables, we can obtaingj = 0, (j = 3, 4, . . . , n). The solution
of such a system isµ = x2, which is partially invariant with defectδ ≤ 1. As before, it is
possible for a further simplification of system (44).

5. Conclusion

In this paper, the classification of systems of type (3) withN = 2n − 1 for double waves of
nonhomogeneous quasilinear equations is performed.
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