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Abstract. Obtaining equations for double waves in the case of a general quasilinear system of partial differential
equations poses some difficulties. They are connected with the complexity and awkwardness of the study of
overdetermined systems, describing solutions of this class. However, there are general statements about double
waves of autonomous quasilinear systems of equations. This article is devoted to the classification of irreducible
double waves of autonomous nonhomogeneous systems.
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1. Introduction

A solutionu; = u;(x1,x2,...,x,) (i = 1,2,...,m), of the autonomous quasilinear system
of equations
n
ou
D Ao — = f@) 1)
Xo
a=1
is called a multiple wave of rankif a rank of the Jacobi matrif(u1, us, ..., u,)/0(x1, x2,
..., X,) is equal tor in a domainG of the independent variables, x,, ..., x,. HereA, are
rectangulaiv x m matrices with elemenus;j. w)andf = (fi(w), ..., fn@)).

Depending on the value @f a multiple wave is called a simple = 1), double(r = 2)
or triple (r = 3) wave. The valuee = 0 corresponds to uniform flow with constaim,
i =12,...,m), andr = n corresponds to the general case of nondegenerate solutions.
Multiple waves of all ranks compose a class of degenerate hodograph solutions.

The singularity of the Jacobi matrix means that the functioris) ( = 1, 2,...,m) are
functionally dependent (hodograph is degenerate), with- number of functional constraints

u; =0, 0% 0N, (=12 ...,m). (2)

The variablest!(x), A2(x), ..., A" (x) are called parameters of the wave. The solutions with

a degenerate hodograph are a generalization of travelling waves: the wave parameters of the
travelling waves are linear forms of independent variables. To find-thmeiltiple wave, it

iSs necessary to substitute the representation (2) into system (1). We get an overdetermined

* On leave from the Institute of Theoretical and Applied Mechanics, Russia.
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system of differential equations for the wave parametérs) (i = 1, 2, ... ., r), which should
be studied for compatibility. A review of applications of multiple waves in gas dynamics can
be found in [1].

The main problem of the theory of solutions with a degenerate hodograph is getting a
closed system of equations in the space of dependent variables (hodograph), establishing the
arbitrariness of the general solution and determining flow in the physical space.

An arbitrary nonhomogeneous system (1) does not change under the transformations

xi=x;+b, (=12...,n),

that compose a groug”. For homogeneous systems (I) = 0), there is one more scale
transformatioh x, = ax; (i = 1,2,...,n). From the group analysis point of view, an
multiple wave is a partially invariant solution with respect@é (or G**1) [2]. A class of
partially invariant solutions of some groui is characterized by rank and defect: class

H (o, §)-solutions. If some clas# (o, §)-solutions are clas#f; (o, §1)-solutions with fewer
defectss; < 4, then it is said that the clasd (o, §)-solutions are reduced to having fewer
defects. For example, & = 0, then such a solution is reducible to an invariant solution with
respect to the subgrouf; .

A study of partially invariant solutions shows that classes of solutions of a given rank
with fewer defects are easier to obtain. This is connected with the idea that the analysis of
compatibility for the solutions with greater defects is more difficult. Therefore, it is useful to
a priori clarify the structure properties of the overdetermined system.

There are only a few sufficient conditions of the reducibility [2] that allow us to predict a
reduction on the basis of the structure properties of an overdetermined system. One of these
conditions is a restriction on the ability to define all first derivatives of a solution (otherwise
the solution is reduced to an invariant solution). Others are concerned with double waves.
If in the process of obtaining compatibility conditions for the wave parameters of a double
wave, we obtainV = 2n — 1 homogeneous equations of type (1), then this double wave
is an invariant solution. In particular, plane nonisobaric double waves with the general state
equation which has a defect of invariante= 2 are isoentropic [2]. Another application of
these conditions to double waves of gas dynamics equations leads to the result [3] that the
class of irreducible to invariant solutions of plane isoentropic irrotational double waves is
described by the flows obtained in [4]. For homogeneous systems of type (1yw#tf2n — 2
andn = 3, a full classification of double waves with the additional assumption about having
functional arbitrariness of the solution was carried out in [5].

This article is devoted to the study of nonhomogeneous systems of type (1Y witln —1
eqguations, the solutions of which are not reducible to invariant.

2. Nonhomogeneous System(®&V = 2n — 1)

Let a system ofN = 2n — 1 independent autonomous quasilinear equations on the wave
parameterg andyu of a double wave be of type (1). It can be obtained as a result of substitution
of the representation of a double wave:

u, =u;(A,p), 0 =12...,m)

1 The full Lie group admissible by system (1) can be wider tb&n(or G"11).
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into the initial system and some analysis of compatibflig¢ithout loss of generality equa-
tions, for the wave parameters can be rewritten as

)"i = pi()"v M))"l—i_.fl()"v M)’

Here); = 0A/0x;, u; = dp/dx; and, for the sake of simplicity, we sp{ = 1, f; = 0.

The problem is to classify systems of type (3), the solutions of which are irreducible to
invariant solutions.

A classification is derived with respect to equivalence transformations, admitted by system

(3):

(a) linear nondegenerate replacement of independent variables;
(b) replacement of wave parametex§= L(A, w), &' = M(A, ).

In the last case, the coefficienis ¢; and the functiong;, g; are transformed by formulae:

) , _piLi+qlL, , _ PiMi+q;iM,
pl:l’ pi:7’ q/:—
L; +q1Lu L, +q1Lu

=0, fl=/fili+gL,—gL.pi, & =[fiMi+gM,—glL.q,

i=2,...,n; j=1,...,n).

As a result of such transformations (as in the homogeneous case [2)]), it is possiblg te-let
0. For this purpose, it is enough to choose a functign, 1), which satisfies the equation

L; + q1Lp, =0.
If 3. g2 # 0, then the coefficients of system (3) can be transformed to
g1=0, ¢g=1 4)

Simultaneous to the equalitigs = 0, g, = 1 under replacement of the wave parameters, iff
M, =0, L,=M,,

results in
L=MW)+oWw, M=Mw. (5)
Another case corresponds to system (3) with
qg=0 ((=12...,n). (6)

There is no case (6) for homogeneous systems, because conditions (6) contradict the definition
of a double wave for such a kind of systems: rank of the Jacobi matrix is less than two.

A study of the compatibility of system (3) consists of the following. As a result of a
reduction of the overdetermined system (3) to an involutive system, we get equations with
a structure of nonhomogeneous quadratic forms with respect to the derivatifeat least

2 A case of homogeneou¥ = 2n — 1 equations was studied by Ovsiannikov [2].
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one of the coefficients of these forms is not equal to zero, then it means that a solution of
the system satisfies the overdetermined system of equations from which all first derivatives
can be found. By virtue of the reduction theorem [2], it gives the reduction of this solution

to an invariant solution. Therefore, these forms are decomposed on subsystems on functions
pi»qj, fi, g;- quadratic, linear and ‘zero’ terms with respect to power of the derivativEur-

ther simplifications are connected with more the detailed study of the compatibility conditions
of systems of types (4) and (6).

3. Systems of Type (4)

The value of.1; = aA; + b can be defined from the expressiba(u, — A1 — g2) — Da(uy —

g1) = 0, whereD; is a total derivative with respect tq, a = pogy + g1, — 82, b =

f281, + 8281, — 8182, It can be noted that all second derivatives and ;; can be found.
Therefore arbitrariness of the general solution of system of type (4) is only constant. For
example, the derivatives

Ai1 = pix)»% + Alapi + fin + g1pip) +bpi +g1fip, (=2,3,...,n)

can be found from the expressioly (A; — p;A1 — f;) = 0. After substituting them into
F,=Dyu; — Diny =0, =2,3,...,n), we obtain nonhomogeneous quadratic forms with
respect to the derivativie;. By virtue of the prohibition of reduction of the solution of system
(3) to an invariant, the coefficients of these quadratic foffnisave to be equal to zero:

qi) = 0’ (7)
qi(p281. — &) + 818in + &ir. — Pigu. =0, (8)
qib+ g18i, — figv. — 881, =0, (=23,...,n). 9)

In the same way from the quadratic formsi; — D;A; = 0, we get

q4jPip =4iDju> (20)

fipin+8ipipn +4q; fip + Pigipjn = fiPjs. + & Pju + i fin + Pj&1Pip
fifin+gjfiu+ pigifiu = fifin + & fiu+prigifin, G Jj=23,....n;i#j). (11)
And from the equalitie;u; — D;u; = 0, we find

q;(Pix —qjw) =qi(Pjr — qjn), (12)

8iqin +qi(pja+ fix+81pju) + Pj&ix +q;8in
= 8iqju + q;(pia+ fin + g1pin) + Pigjr +qi&ju (13)

qi(pib+g1fj) + figin + &j&in
=q;(pib+gifi) + figpn +&&ju . J=23,....n;1#]j). (14)
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We note that the expressioi¥A;; — D; 111 = 0 are cubic polynomials with respect to the
derivativers: p;; A3 + - - = 0. Therefore,

pimn=0 (=23, ....n).

With the help of equivalence transformations (5) that leave the condifipesO0, g, = 1
unchanged, because of the choice of functieiig) and (1), we can assume thab = O.
Then from (6), (10), (12), we get

=0, piu=0, pu=qiu (=23...,n). (15)
By using (15) in the expressiod3,A;1 — D;A11=0( =2,3,...,n), we find

giay = 2api, + fiir (16)

fiar + giay + qiby = 3bpix + g1(piay + 2fi) + 8. fins 17)

aga fip + b fi + &by = bfix + 81(piby + 81 fipu + 10 fir), (18)

The functionsp;, g;, f;, g; must satisfy (8), (9), (11), (14), (13), (15-18) for the irreducibility
of solutions of system (3) to invariant solutions.
We note that

pi=)"Ai+Bia Q/=MAI+CH (i=2537~~~7n)s
are the general solutions of Equations (15), where
A1=0, Bi=1 (C;=0, A,=0, B,=0 C;=1,

andA;, B;,C; (i = 3,...,n) are arbitrary constants. Further simplifications of equations of
system (3) are connected with an application of equivalence transformations, which corres-
pond to a replacement of the independent variables. By means of the replacement

/ /! / .
X1 = Byxy, xp=0Coxq, x;=x;, (=34....n)

we canobtaimlB; =0,C; =0,(i =3,4,...,n).
Further, we have to consider two cases: (afia=0(i = 3,4,...,n) and (b)}_, A? # 0.
In the first case (a), system (3) has the form

A2 = fo, A= fi,
U1 = g1, Ma=Ari+g, Hmi=g, i>3 (19)

In the second case (b), without loss of generality, we can regarg 0. Then as a result
of one more linear transformation of the independent variables
X]=2X1, Xp=2x2, X3=AgXe, X =x;, (=4,5...,n),

1

system (3) becomes

A2 = fo, A3=Ahi+fz, Ai=f,

M1 = 81, Ma=A1+ g, MH3=UU2+83 Wi=g, >4 (20)
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Further successive simplifications of systems (19) and (20) are connected with the analysis
of the constantg’;.

3.1. SrsTEM (19)
In this case, Equations (8), (9), (11), (14) are reduced to

g =Cu+K;, fi=Cr+R;,

Ci(Agu. + ng1 — 81) + Rigu + Kig, =0,

Ci(Ag2r + 182y — 82) + Rigar + Kigzu = 0,

Ci(Afo, + tfou — f2) + Ri for. + Ki fo, =0,

CiR; =C;R;, CK;=CjK;, (i,j=3,4,...,n), (21)
whereC;, R;, K; are arbitrary constants.

3.1.1. CaseC; #0
If at least one of the constants is not equal to zero (without loss of generality, we can take
C3 # 0), then with the help of transformations

R3 K3
)\,/:)\,—F—, ! = +—’
Cs 1% 1% Ca

n

/ / / / .

X] =X1, Xy = X2, x3=E Coxe, x;=x;, (@(=4,...,n),
a=3

system (19) becomes
)"3:)"7 n3 = W, )"iZO’ I‘LiZO’ (i:4757”*’n)7
A2 = AF(u/A),  p1=AWi(u/A), po2= A1+ AWa(/2). (22)

The functionsF, ¥, ¥, must satisfy a system of three ordinary differential equations of the
second order. This system is obtained after substitution of

fa=AF(u/A),  g1=a¥i(u/2), g2=rVa(u/2),
into Equations (16-18):

Wy — y*F" =0,

(V2F —yWy — W) F" =0, (y2F — yWy — W)W} =0,

wherey = u/A.

It can be noted that system (22) is invariant with respect to the transformatien:—A,
u' = —pu. Therefore, we can consider that> 0. It allows one more simplification by
transformation:

N o= ﬁ, w=In), x3=x xp=x1, xi=x;, (=34,...,n).

A
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System (22) is reduced to
Ao+ A=W (1), A,=0, (=34...,n),
M1 = F()")v I‘LZ:)"l—i_(I)Z()")’ /'L3:1’ Mi :ov (l :47“"”)' (23)

HereW;(h) = Wi(A) + AWo(L) — A2F (M), Wa(h) = —Wa(h) + AF(M).
Let us make some remarks about solutions of system (23). A solution of (23) has the form

A= A(x1,x2), p=x3+G(x1,x2),

where the functiorG (x1, x2) can be found from the totally integrable compatible system of
differential equations. These solutions are invariant solutions of Equations (23) with respect
to algebra with generators:

O+ 0ps Oy (=4,....0). (24)

Assume that the functiond (x1, x») and G((x1, xp) are functionally dependent, then the
Jacobian

W, x) = 20 2 (B AF) — Py =0,

d(x1, x2)

This equation supplies the sufficient conditions for the reducibility of the solution of system
(23) to an invariant solution with respect & C G". Therefore, for irreducible solutions, the
functions A (x1, x2) andG ((x1, xp) are functionally independent &V (xq, x;) # 0.

We note that ifd; # 0, then functionsF, ¥4, ¥, are linear:F = ki + kp, ¥, =
kah + ka4, Wo = ksA + kg With arbitrary constant; ( = 1,2,...,6). If U, = 0, then
\iJé(A) + AF’(A) = 0 andA = x;/x, up to shifts of the independent variables and because of
W = xgz(l + xoW, + x1F) # 0, then the solution is not reducible to an invariant solution of
H cC G".

3.1.2. CaseC; =0(i =3,4,...,n)
Let us consider the case with all constants z€o= 0.

Firstly, assume that at least one of the constdtés not equal to zero (without loss of
generality, we can consider th&g # 0). Then from (21) we get

g1=g1(A — Ru), go=gx(A—Ru), fa= foalA—Rpu),

whereR = R3/Ks. If g1 = g, = f5 = 0, then the solution of system (23) is linear with
respect to the independent variables, i.e. itis invariant with respect to some subfrou@”.
Therefore a prohibition of reducibility to an invariant solution leads to conditign®* +
(g5)% + (f3)? # 0 or from (21) we have?; = RK;. After the transformation

we obtainfz =R, g3=1,4=0, f; =0, =4,5,...,n). In addition we can reckon that
R = 0. Really, if it is not so, then after one more transformation

)"/:)"_RMa M,=RM7

/ -1 / /
X3 =R X1 —Xx3, Xy=2Xx2, Xx3= Rxs,
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the same system can be obtained, but with= 0. Irreducibility conditions (16—18) in this
case become

fo=kir+ka, gif2=0, gofa=0

with arbitrary constant&q, k,. We note that iff, = 0 (k; = 0, k, = 0), then a solution of
(19)ish = ¢(x1), u = x3+ cx2 + ¥ (x1), which is invariant with respect to some subalgebra
H C G". Herec is a constant. Therefore, for systems irreducible to invariant solutions, we
have to consider only the case whé¢n # 0. In this case, functiong; and g, are linear

g1 = kaA + ka, g2 = ksh + kg and system (19) is

h2 = kih+ka, A =0, (=34...,n),
m1 = kal+ks, po=>Ari+ksh+ks, pnz=1 pu; =0, (j=45...,n). (25

If k1 # 0, then by equivalence transformations we can considerkthat 1, k, = 0. In
this case

A=g(x)e?,  p= (¢ +ksp)e? + kexa + x3,
where the functiorp = ¢(x,) satisfies the homogeneous linear ordinary differential equation
¢" — k3¢’ + ksp = 0.

If k;, = 0, butk, # 0, then, as in previous case, via equivalence transformations we can
putk; = 0, k, = 1. And then

k
A =x2+ @(x1), M=x3+Xz<w’+ESXz+ksqa+ke)+¢,

where the functiong = ¢(x1) andyr = ¥ (x,) satisfy the ordinary differential equations
¢ +ksp' —ks=0, ¢ =ksp+ ka.

Now let all constantX; = 0. If at least one of the constar®sis not equal to zero (without
loss of generality, we can account thigg £ 0), then by transformation

/ / / / .
M=p, pw=A xp=x2 Xpx=x1, X=x, (@=34,...,n),

the same system is obtained as was considered in the previous casek; |&alD, then for
such a solution

A= A(x1,x2), p=G(x1,x2)

and it is invariant with respect to the subalgelfac G”, which corresponds to the subalgebra
{Oxs> Oxgs - - s O, }-
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3.2. SrsTEM (20)

A study of compatibility of system (20) is more cumbersome. In this case, Equations (8), (9),
(11), (14), (16-18) can be reduced to

83 = Agu. + 1&2 — &1,

s2 = ub + 8183, — fagu — 8381, =0,

Sau = mfou — fo,

SaSfz + g2f3u + Ag1fou = fafar + &3 S2u

82+ Ifa + g3u = Ag2n + M&2u + fa,

6 = 81fou + f283. + 8283, — (f382r + 8382, + Ab + 81 f3,.),

fi=0, g=0, (=45,...,n), (26)

ay = fair

ma, = 2a + fau,

Saa; + g2ay + by = g1 f2,) + g1 fou

faa, + gza, + uby, = 3b + g1(ray + 2f3) + gu. fau,

agi fou + by f2 + 820, = bfar + 81(81f2pun + 81u fou)s

ag1 fau + by fa+ g3by = bfy + g1(Aby + g1 f3uu + &1 f30)- (27)

The problem is to find a general solution (up to equivalence transformation) of system
(26), (27). Because Equations (26) and (27) are not sufficient for irreducibility of a solution of
system (20) to invariant solution, then the next problem is to try to analyze a solution of (20)
with the found functionsf;, g; and coefficienty;, g;.

All further intermediate calculations in the study of the compatibility of system (26) were
made on a computer using the system REDUCE [6]. Here we give the method of computations
and final results.

Let us input the new functiol’s = g3 — g, instead ofgs. From (26) and (263, we
find G, G, and from (27): f2,;, and fs;,. After substitution of the found expressions into
0G3./du—0Gg, /A = 0, we get the equatiofd. (g1, —g21)), = 0. Without loss of generality,
the last equation can be integrated:

81=¢i, 82 =¢u+Y1l0gA, (28)

wherep = ¢ (A, u) andy, = Y1 (u) are arbitrary functions. After substitution of (28) into
expressions for,;; and fs;,, we get

Y1 2y — iy
P A ’
Integration of the last expressions allows us to find the functions

fo=xp(L=10g &) + A2 + Y3, fa = A(uyy — 2¢1) (L —1og &) + As + s

foun=— fan =
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with arbitrary functionsy; = v, (u) (i = 2, 3, 4, 5). From (26}, we have

M2+ Yy — wip) + Y3+ Y5 — uys = 0.
After splitting with respect ta., we get

Uy =y — V2, V5= u3— Y3

or, if we input a new functionys = Ye(1) bY Ya = g+ o — Y1, thenyr, = (Y — ¥g) /2.
In this case,

8G3 8G3

- = A , — = =2 A A
I @5 + A o 0. + A + Vg

which can be integrated &% = —2¢ + Ag; + Ve.

A composition of differentiating (2@)with respect to. and subtracting it by differentiating
(26), with respect tqu and adding it to (273)is
v _
=

If ¥, # 0, then we can get a contradiction. Really,Jgt £ 0, then the last equation can
be integrated

¢ = ¥1(G — nlogd) + 7,

whereG = G (1) andy; = ¥r7(n) are arbitrary functions. In this case, Equation {A&s the
form

Vi@, — Vo + 0.

G (a11 10g A + aoh + as) + ash 10g® A + asi log A + agh + a7 log A + ag = 0, (29)

whereq;, (i = 1,2, ..., 8) are polynomials of functiong, ¥3, ¥s, ¥e, w7 and their deriv-
atives. It can be shown that (29) is possible only/if = 0. But it contradicts the original
assumption about. Therefore, we have to considgi = 0.

Further consideration is based on the analysis of the compatibility of Equationsaib)
dsp/0u — dse/dA = 0, which have the forms:

ouh — 2¢ph" + Yeh' — Ya(uyg — 2yg) + Ysyg =0, (30)
=320 + 0206 + 30,00 — @k =0, (31)

whereh = Ay — 2yr3.
Assume thati = 0, soy3 = 0, ¥s = c1t + ¢, Wherec; andc; are constants. We note
that in this case/; = 0. Analysis of (31) requires that we need to study two cases,(&) 0

and (b)y, # 0.
Letg, = 0, then from (31) we get

(c1r + Ys)pui — 19, = 0.

If ¢c; # 0, then without loss of generality, system (20) can be written as

A =0, Az3=Al+A, X =0,

m1 = 2ck, p2=2>xi1, pz=pri+u+c, w; =0 1i>4 (32)
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A solution of this system is
A=—x1¢(x3), 1= (cxi+x2+ c2e")(x3),

whereg (x3) = e3/(e" — 1).
If ¢, = 0 andys # 0, then without loss of generality, system (20) can be written as

M =0 Aiz3=ir+1 A =0,
m1 = ¢, Mp=A1, Mz=pri—cr+c, u; =0 >4 (33)

A solution of this system is

wherec is an arbitrary constant.
If ¢, = 0 andys = 0, then without loss of generality, system (20) can be written as

A2 =0, Az3=2Ary, XA =0,
ur = ¢, pa=2>xr1, pz=pri+ip —2p, w =0, =>4 (34)

wherep = ¢(A) is an arbitrary function of. A solution of this system is
A==t =T (),
X3 X3
Letg, # O, then from (31) we gep = F (&), whereé = p + ¥ (1). The functionsy (1)
and F (¢) are functions of one argumenk(# 0), which have to satisfy the equations
(il +¥s) =0, F'(2F — c16 —c3) +c1F — (F)? = 0.

Here, by virtue of the first equationg = ¥'(c1A + ¥5) — c1¥ is a constant.
If ¢; # 0, then as a result of equivalence transformations, we car setl, ¥s = 0,
¥ = 0, and system (20) can be written as

=0, Az=Ar+A, A =0,

pr =0, pe=r+F, ps=pri+pu+pF —2F, p; =0, i>4 (35)
where the function” = F(u) satisfies

(u—2F)F' =F'(1—F'), (F #0).
A solution of this system is

)C]_e?(3
A= w = u(x2, x3),

C1l—ew’
where the functionu(x,, x3) satisfies a compatible overdetermined system of equations.
If ¢ = 0 andyss # 0, then without loss of generality and because of equivalence
transformations, system (20) can be written as

M =0 Aiz3=ir+1 A =0,

w1 =0, po=A1+2cu, pz=pri, w; =0, i>4 (36)
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wherec # 0 is a constant. The solution of this system (up to scaling,, x3 andu) is
X 1
h=—"thxs, p=—(ye?+l),
X3 X3

wherey = 0 ory = 1. If y = 0, then the solution is invariant with respect to the subalgebra
Dy Oy (i =4,5,...,1).
If ¢, = 0 andys = 0, then without loss of generality, system (20) can be written as

A2 =0, Az=2AA1, A; =0,
ur = Y'F, pup=»xr+F,
pm3 = prr+ (u+Y'AOF =2F, u; =0, i>4, (37)

wherey = y(A) is an arbitrary functionF = c(& + ¢3)%, &€ = n + ¥ () andc, c3 are
constantsd # 0). With the help of equivalence transformation, this system can be simplified
to

A2 =0, Xz3=2xiky, A; =0,

ur = Y +ir), p2=>xr+nu,
uz = pri+ Ay —Pv)(n+1r), wi =0, >4 (38)

The general solution of this system is (up to equivalence transformation)

P 1)
X3 X3
wherey = 0ory = 1. If y = 0, then the solution is invariant with respect to the subalgebra
By Oy (i =4,5,...,1).
Now we consider the cage= Ay{ — 2y3 # 0.
Letyg # 0, then system (30), (31) is compatible (up to equivalence transformations) only
if system (20) has the form

ho = (A+a)u, Az=2Al;, A; =0,
1 =0, po=r+pupu+p), pz=pr, u; =0, i>4 (39)

wherew, 8 are constants. A solution of this system dependg.on
If B # 0, then the solution is (up to equivalence transformation)

)»_xl—oz)/e"2 B 1+ B2y ew

 ye2—x3  ye2—xg’
wherey = 0 ory = 1. If y = 0, then the solution is invariant with respect to the subalgebra
Dy Oy (i =4,5,...,1).
If B =0, then the solution is (up to equivalence transformation)

x1+ax§ X2
A= 2 Meo 2
X3+ X5 X3+ x5
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Letyf = 0 orye = ciu + c2 andyz # 0. Changing the functiop to Q(A, u) =
(¢ — ve/2)/ h? simplifies Equations (30) and (27 further. Equation (23)can be integrated:

00 LUV — WY . el
o0y, 0203

whereyrg = ¥g(it). Then from these two equations by cross-differentiating, we get

+ Vs,

AQ*+BQ+C=0,

whereA = 6y2(y2y4 — 293955 + (W93, B = 3era(¥4)?/2, C = Yirg — 3c2yry/16.
Further analysis depends on the valugdf There are only two possibilities: (a) = 0,
B =0,C =0and (b)Q, =0.
In case (a), because = 0, we need to consider two cases. In the first aa§e= 0, and
then, without loss of generality, system (20) can be reduced to

A2 =1 A3=A(A1+c1) — p+ca,
w1 =k, po=>Ar+c1, pz=pir—kr+k, (40)

wherek andk, are constants ang attains two values: eithef = 1 orc; = 0. In the second
casec; = 0, and without loss of generality, the system (20) can be reduced to

1 2 1 2
Ao = _E(M_k) , )»32)»)»1—6(#4-2]()(#—]@ ,
_ =kt 2w kP
l‘l/l - 6()\,—]{1)2’ MZ - 1 3(}\’_]{1) El
(1 — k)*( e 4 Bkr — 2kypu — 2kky)
= UA1 — 41
M3 HAL 6(1 — k)2 ) (41)

wherek andk; are constants.
Let us now consider case (i), = 0. Fromsg = 0 we getQy; = 0. If ¢; = 0, then
system (20) can be reduced to

A2 = Y3, Az = Aly+ ¥,
ur = 0, pp=A1+kysvs, sz = prs+ kysys, (42)

wherek is a constant angr; is an arbitrary function of one argument and the functjgns
connected withyz by: ¥ = uyg — ¥s. If ¢1 # 0O, then system (20) can be reduced to

ho =1 A3=A1+1) —pu+k,
ur =0, pe=Ar1+1  puz=pri+k, (43)

wherek andk; are constants.
We can thus formulate the following theorem:

THEOREM. System (19) can have solutions irreducible to invariant solutions only if it is
equivalent to one of the systems: (23), (25), (32—-36), (37) (or (38)).



98 S. V. Meleshko

4. Systems of Type (6)

Systems of the type (6) have the form

Ai=pi, Wi+ i, w), wj=giw, (G=1...,n j=1...,n). (44)

As with systems of type (4), we can obtain the necessary irreducibility conditions from ex-
pressionsD; i ; — Dju; = 0:

gin = Pi&u, &iu81 = [i8u. + 88w, (Pjfi—pifi)8v. +8&i&in—8j&u =0, (45)
and

(piPju — PjpPin)81~+ Pirnfi + Pingi — Pipnfi — Pju& =0,

(pifin—pifier~+ fufi+ fingi — fisfi — fing =0, (46)

from expression®;1; — D;A; = 0. Herei, j =2,3,...,n.

Assume thag; # 0. If g, = 0, then without loss of generality, we can consider= 1.
In this case, from (45) we can conclude that(i, j = 2, 3, ..., n) are constants, even up to
equivalence transformations we can regard themyas 0, (i, j = 2, 3, ..., n). Solution of
such a system ig = x1, which is partially invariant with defed& < 1. It is possible to obtain
a further simplification of system (44).

If g1, # 0, then without loss of generality we can consiger= 1. Because in this case,
from (45) we have

pi =8in, fi=MAgiu, ((=23,...,n).

It gives that the firsh — 1 equationsk; = p;A1 + f;, O, (i,j = 2,3,...,n) are con-
sequences of the other equations. But we have assumed that the equations of system (44) are
not dependent.

If g1 = 0, then without loss of generality we can consider hiat= 1. From (45) and
changing the independent variables, we can objaie= O, (j = 3,4, ..., n). The solution
of such a system ig = x,, which is partially invariant with defect < 1. As before, it is
possible for a further simplification of system (44).

5. Conclusion

In this paper, the classification of systems of type (3) viNti= 2n — 1 for double waves of
nonhomogeneous quasilinear equations is performed.
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