

Available online at www.sciencedirect.com

Biochemical and Biophysical Research Communications 336 (2005) 438-443

www.elsevier.com/locate/ybbrc

High-efficiency gene knockdown using chimeric ribozymes in fish embryos [☆]

Surintorn Boonanuntanasarn^a, Toshio Takeuchi^b, Goro Yoshizaki^{b,*}

^a School of Animal Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand

^b Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan, Minato, Tokyo 108-8477, Japan

Received 14 July 2005 Available online 24 August 2005

Abstract

We report an effective gene knockdown technique in rainbow trout embryos using additional RNA components combined with ribozymes (R_z s). Chimeric R_z s (tR_z Cs) containing $tRNA^{Val}$, R_z against GFP, and a constitutive transport element were microinjected into transgenic embryos. tR_z Cs induced greater gene interference than R_z s alone. Control tR_z Cs did not affect unpaired bases of target RNA, and the tR_z C did not interfere with non-relevant gene expression, suggesting that the tR_z C-mediated gene-interference effects were sequence-specific. Furthermore, the tR_z C-containing expression vector specifically suppressed target GFP expression in transgenic trout. tR_z Cs enhance R_z cleavage and could therefore be powerful tools for studying unknown gene function in vertebrates. © 2005 Elsevier Inc. All rights reserved.

Keywords: Constitutive transport element; Gene knockdown; Rainbow trout; Ribozyme; Transgenic fish; tRNA