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CHAPTER 1

INTRODUCTION

1.1 Literature Background

Almost all physical applications of differential equations are based on non-
linear equations, which in general are very difficult to solve explicitly. Ordinary
differential equations play a significant role in the theory of differential equations.
In the 19th century, one of the most important problems in analysis was the prob-
lem of classification of ordinary differential equations, see Lie (1883), Liouville
(1889), Tresse (1896) and Cartan (1924).

One type of the classification problem is the equivalence problem. Two sys-
tems of differential equations are said to be equivalent if there exists an invertible
transformation which transforms any solution of one system to a solution of the
other system and vice versa. The linearization problem is a particular case of the
equivalence problem, where one of the systems is a linear system. It is one of the

essential parts in the study of nonlinear equations.

1.1.1 A Single Ordinary Differential Equation

The analysis of the linearization problem for a single ordinary differential
equation was started by Lie (1883). He gave the linearization criterion* for a
second-order ordinary differential equation to be transformable into the simplest

linear equation’ (ii = 0) by an invertible point transformation of the independent

*See proof in Chapter II.
fSee more detail in Appendix A.



and dependent variables,

t=o(z,y), u="1v(zy). (1.1)

He showed that a second-order ordinary differential equation is linearizable, if and

only if it has the form

y' = alw,y)y® + bz, y)y” + c(z.y)y' + d(z,y), (1.2)
where ¢ = %73/’ = %, and the coefficients a(z,y), b(z,y), c(z,y) and d(x,y)

satisfy the conditions H = 0 and K = 0, where

H = 2b,, — 3a,, — cyy — 3a,¢ + 3a,d + 2b,b — 3c,a — c,b + 6dya, L3

K = 2c¢3y — byy — 3dyy — 6a,d + byc + 3byd — 2¢cyc — 3da + 3d,b.

Liouville (1889) and Tresse (1896) treated the functions H and K as the rela-
tive invariants with respect to invertible* transformation (1.1). Another approach
was developed by Cartan (1924), who used differential geometry for solving the
linearization problem of a second-order ordinary differential equation.

Later, the linearization problem was also considered with respect to other
types of transformations, for example, contact? and generalized Sundman¥ trans-
formations. Lie noted that under contact transformations, all second-order ordi-
nary differential equations are equivalent to another. In 1994, Duarter, Moreira
and Santos classified the second-order ordinary differential equations which are
equivalent to equation i = 0 under generalized Sundman transformations. Trans-
formation methods have also been applied to third-order and fourth-order ordinary
differential equations as the following. Chern (1940) used Cartan’s approach to

obtain linearization criteria for a third-order ordinary differential equation via con-

!The meaning shown in pp. 8.
§See definition on pp. 11.
YSee definition on pp. 16.



tact transformations. Grebot (1997) studied the linearization problem of third-
order ordinary differential equations by fiber preserving point transformations.
Some equivalence problems for differential equations under contact transforma-
tions were studied in a list of papers Bocharov, Sokolov and Svinolupov (1993);
Doubrov (2001); Doubrov, Komrakov and Morimoto (1999); Gusyatnikova and
Yumaguzhin (1999). In 2002, Neut and Petitot obtain conditions for equivalence
with an arbitrary linear third-order ordinary differential equation. Ibragimov and
Meleshko (2004), obtained linearization criteria for third-order ordinary differen-
tial equations by point transformations. In 2005, Ibragimov and Meleshko ob-
tained linearization criteria for third-order ordinary differential equations by point
and contact transformations. Meleshko (2006), using the Lie linearization test
for linearization of a third-order ordinary differential equations. In 2003, Euler,
Wolf and Leach, obtained criteria for third-order ordinary differential equations to
be equivalent to the equation X" = 0 by generalized Sundman transformations.
Euler (2004), studied the symmetries of nonlinear second-order and third order or-
dinary differential equations by generalized Sundman transformations. Ibragimov,
Meleshko and Suksern (2008), obtained linearization criteria for fourth-order ordi-
nary differential equations by point transformations. In 2009, Suksern, Ibragimov
and Meleshko, obtained linearization criteria for fourth-order ordinary differential
equations by point and contact transformations. Nakpim and Meleshko (2010),
obtained linearization criteria for second-order and third-order of ordinary differ-
ential equations by generalized Sundman transformations.

It is worth to note that fiber preserving transformations, where the change
of the independent variable depends only on the independent variable itself, play
a special role: either only such transformations were studied Grebot (1997) or

they needed to be studied separately during compatibility analysis Ibragimov and



Meleshko (2004); Ibragimov and Meleshko (2005); Meleshko (2005); Ibragimov,

Meleshko and Suksern (2008).

1.1.2 System of Ordinary Differential Equations

The linerization problem for systems of second-order ordinary differential
equations was studied in Wafo and Mahomed (2001); Sookmee (2005); Mahomed
and Qadir (2007); Aminova and Aminov (2006); Neut, Petitot and Dridi (2009)
and others!l. In Neut, Petitot and Dridi (2009), necessary and sufficient conditions
for a system of two second-order ordinary differential equations to be equivalent to
the simplest equations were obtained. In Aminova and Aminov (2006), necessary
and sufficient conditions for a system of n > 2 second-order ordinary differential
equations to be equivalent to the free particle equations were given. Particular
classes of systems of two (n = 2) second-order ordinary differential equations were
considered in Mahomed and Qadir (2007). In Wafo and Mahomed (2001), crite-
ria for linearization of a system of two second-order ordinary differential equations
were related with the existence of an admitted four-dimensional Lie algebra. Some
first-order and second-order relative invariants with respect to point transforma-
tions for a system of two second-order ordinary differential equations were obtained

in Sookmee (2005).

1.2 Accomplishments of the Thesis

This thesis is devoted to the study of the linearization problem of a system
of two second-order ordinary differential equations. The method of the study is

separated into two parts as follows.

IThe references listed are not complete.



1.2.1 Linearization of a Projectable System of Two

Second-order ODEs

A new method for linearizing a system of two ordinary differential equations
is introduced, through the definition of a projectable system of such equations.
This method consists of sequentially reducing the number of dependent variables,
and then applying the Lie criterion to the reduced equations. We call systems
linearizable by this procedure sequentially linearizable. This method is applied to
a system of two second-order ordinary differential equations. Moreover, it is shown
that for systems of two second-order quadratically semi-linear ordinary differential
equations this new method gives a larger class of linearizable systems than via point
transformations. Finally, an example of equations which are not linearizable by

point transformations, but do sequentially linearize by the new method, is given.

1.2.2 Linearization of a System of Two Second-order ODEs

via Fiber Preserving Point Transformations

The necessary form of a system of two second-order ordinary differential
equations which can be linearized via point transformations is obtained. Some
additional necessary conditions are also found. Necessary and sufficient conditions
for a system of two second-order ordinary differential equations to be transformed
to the general form of a linear system with constant coefficients via fiber preserving
point transformations™ are obtained. A linear system with constant coefficients
is chosen because of simplicity of finding its general solution. On the way to
establishing the main theorems, we also give an explicit procedure for constructing

the linearizing transformation.

**See definition of fiber preserving point transformations on pp. 8.



Since the work in the thesis required a huge amount of analytical calcula-
tions, it was necessary to use a computer for these calculations. A brief review
of computer systems of symbolic manipulations can be found, for example, in
Davenport (1994). In our calculations the system REDUCE (Hearn, 1987) was
used.

This thesis is organized systematically as follows. In chapter II, we prepare
some information for solving the linearization problem and do a literature review.
In chapter I1I, a new method for linearizing a system of ordinary differential equa-
tions is introduced. The first main result of the thesis is also shown in this chapter:
conditions for linearization of a projectable system of two second-order ordinary
differential equations. The application to a system of second-order quadratically
semi-linear ordinary differential equations is demonstrated. Examples of systems of
equations which are not linearizable via point transformations, but linearizable by
the new method, are given in the subsequent sections. In chapter IV, the necessary
form of a linearizable system of two second-order ordinary differential equations is
presented. The second main result of the thesis is also exhibited: necessary and
sufficient criteria for a system of two second-order ordinary differential equations
to be equivalent to a linear system of two second-order ordinary differential with
constant coefficients, via fiber preserving point transformations. During this study;,
we also obtained some necessary conditions for linearizability for a system of two
second-order ordinary differential equations, to be equivalent to a linear system
of two second-order ordinary differential under point transformations . Examples
demonstrating the procedure of using the linearization theorems are presented in
the subsequent sections. The thesis conclusions are in the last chapter. Additional

information concerning the thesis is shown in the Appendices.



CHAPTER 11

FUNDAMENTAL KNOWLEDGE

The material in this chapter constitutes the basic background for solving
the linearization problem and constitutes a literature review.
Throughout this thesis, all functions are assumed to be sufficiently many

times continuously differentiable.

2.1 Linearization Problem

Definition 2.1. Two differential equations are said to be equivalent, if there exists
an invertible transformation which transforms any solution of one equation to a

solution of the other equation and vice versa.

Definition 2.2. Two systems of differential equations are said to be equivalent,
if there exists an invertible transformation which transforms any solution of one

system to a solution of the other system and vice versa.

Definition 2.3. The linearization problem is the problem of finding conditions
which guarantee the existence of an invertible transformation mapping a given

system of differential equations into a linear system of differential equations.

Remark 2.1. The problem of finding conditions for a differential equation to be
equivalent to a given differential equation is called the equivalence problem. Thus,
in the particular case where the given differential equation is linear differential

equations, then the equivalence problem is called the linearization problem.



2.2 Point Transformation

Definition 2.4. A transformation of the form

t:90<x7y)’ u:¢<$7y)> (21)

is called a point transformation. Here x is the independent variable and y is the
dependent variable; both variables may be vectors. Notice that ¢ and u are the

new independent and dependent variables, respectively.

Remark 2.2. If t = ¢(z), then the point transformation (2.1) is called a fiber
preserving point transformation.

If A # 0, where A is the Jacobian of the transformation (2.1)

_0(p,0)
8= 8 (x,y)

= %% - prwx 7é 0,

then by virtue of the Inverse Function Theorem*, the transformation (2.1) is an

invertible point transformation. That is x and y can locally be written as follows

r=¢tu), y=1(tu). (2.2)

For example', in this thesis, a system of two second-order ordinary differ-
ential equations will be considered. The invertible point transformation is defined

as follows
t =@z, 91,92), w1 = Y1(x,y1,Y2), U2 = Vo, Y1, Y2). (2.3)

The Jacobian of the change of variables (2.3) is

A= (@leyleyz_(pmwlwale_Soylwlmw%;z+¢y1w1y2w21+(ﬁy2wlzw2yl_goyzwlylem)'

If the function ¢ of (2.3) depends only on the independent variable z, then the

point transformation (2.3) is a fiber preserving point transformation.

*The statement of the Inverse Function Theorem shown in Appendix B.

tSee another example in Appendix C.



2.2.1 Defining Derivatives in Point Transformations

Consider a single? ordinary differential equation of k*’-order
fi (tou, i, iy u®) = 0. (2.4)

Let us explain how an invertible point transformation (2.1) maps equation (2.4)

into another equation
(51 (xayay,7y”a“'7y(k)) =0 (25)

and vice versa.

Assume that y(z) is a given function®. The first equation of (2.1) becomes

t=¢(zy (@) = o(x).

Suppose that @ (z) = 0, then ¢ = ¢ = constant. This contradicts that ¢ is the
independent variable. That is @' (x) = ¢z + ', # 0, and then by virtue of the

Inverse Function Theorem, one finds
x=[(1). (2.6)

Substituting z into the second equation of (2.1), one obtains

u(t) =4 (B(),y B (1)) (2.7)

Thus, the first-order derivative of u with respect to t is defined by the formula

 _du_0¢ds  Oydyds _ oy 48
= T g d T oydear - WY g (2.8)

For finding % let us consider the identity

t=wB@),y(B(1)). (2.9)

IThe case of a system of two-order ODEs is presented in in Appendix D.

§This function at this stage need not to be the solution of equation (2.5).



Differentiating the equation (2.9) with respect to t, one obtains

or
ag_ 1
dt  (pa+y'0y)

Substituting % into equation (2.8), one obtains

. _ Yot ypy, Dy
U =

- :hl (x7y7y/)7
v +Yyy Dy
where
0 0 0 0
D= — Ul n= 4. k)~
o7 +y y +y B + +y Y

is the total derivative with respect to x.

10

(2.10)

The second-order derivative of v with respect to t is defined by the formula

du _didhy (B(1),y(B(1),y (B(1))

a2 dt dt
%% Ohy dy dp ahld_y'%

Or dt Oy dxdt 0Oy dr dt

d
= (hlw +y'hyy, + y”hly’) d_f
. h1$ + y,hly + y//hly’
Pz + Y@y
_ Dny
= Dgp
- h?(xayay,7y”)'

Repeating by the same process, one obtains the higher order derivatives

dul""Y  Dh,_4
dt Dy

Here u(® = u and hy = 1.

= hn(xayay/7y//7"'7y(n))7 (n: 1727"'?k)'

Assume that yo(z) is a given function. Using equation (2.7), one can convert

the function yo(x) into the function ug(t). Conversely, if one has the function ug(t),



11

then by applying the Inverse Function Theorem to the first equation of (2.2), one

obtains
t = (x).
Substitution of this ¢ into the second equation of (2.2), gives the function

yo() =¥ ((2), uo(v(2))) -

Observes that the order of the given ordinary differential equation (2.4) is preserved

under the invertible point transformation (2.1).

2.3 Contact Transformation

Definition 2.5. A transformation

t:(pl (33,3-/,]7), U = P2 ($7y7p)7 w = Y3 (xayap)a (211)
where p = ¢/ = Z_}Z is called a contact transformation if it satisfies the contact
condition

du — wdt = 0.

Notice that the variables x, y and p can also be expressed as vectors.

2.3.1 Defining Derivatives in Contact Transformations

Let us consider how the given k**-order ordinary differential equation
fo (tou, i, iy .o u™) = 0. (2.12)

is transformed into
g2 (x7y7y/7y//7"'7y(k)) =0. (213)

by an invertible contact transformation.
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Assume that y(z) is a given function¥. The first equation of (2.11) becomes

t =1 (z,y(2),p(x) = o(2).

Suppose that @ (z) = 0, then t = ¢; = constant. This contradicts to t

being the independent variable. That is @ (z) = ¢y, +pp1, + "1, # 0. By

virtue of the Inverse Function Theorem, one finds
r = at).
Substituting z into the second equation of (2.11), one gets

u(t) =pa(a(t),y(a)),pla(t)).

(2.14)

(2.15)

Thus the first-order derivative of u with respect to t, is defined by the formula

du

dt

Opyda  Ops dy da Ops dp da

Qv dt  Oydrdt  Op dudt
do

= (p2u+ P22, +02,) 7

For finding ‘fl—ot‘, let us consider the identity

t=wpi(a(t),y(a®)),pla(t)).

Differentiating equation (2.17) with respect to ¢, one obtains

do
L= (1 +pen, +9'01,) o
or
do B 1
dt (¢1, +po1, +¥'01,)

Substituting a 9 into equation (2.16), one obtains

oo Pt PPyt Y' 2, Dy

1, + 01, + Y01,  Dpr

YThis function at this place need not to be a solution of equation (2.13).

(2.16)

(2.17)

(2.18)
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According to the contact condition, we have the relation

o3 = ng. (2.19)
Then equation (2.19) can be represented as follows,
03 (p1a +Po1y, T Y"01,) = 02, + P2, + Y 0o, (2.20)
Since the contact condition (2.20) is satisfied for any y”, one has
Y3 (S01x +ps01y) = P2, + PP2,, P3P1p = P2p- (2.21)

The second-order derivative of u with respect to t, is defined by the formula

*u di

dt2 — dt

Op3 da N O3 dy da N O3 dp da

Ox dt Jy dx dt Op dx dt
da

= (3, + o3, +9"es,) -

P3, + D3, + Y03,

1, +pP1, Y3,

Ds

Dy
- (,04([E, Yy, p, y”)'

Repeating, one obtains the higher order derivatives by the formulae

du™") ~ Don

(n) — — = "oy y™ =1,2,....k).
u dt DQO gpn+2(x7y7p7y Y sy )7 (TL 3 Ly eeny )

Here v = u.
Assume that yo(z) is a solution of (2.13) and ug(t) is a solution of (2.12).

Using equation (2.15), one can convert the function yo(z) to the function ug(t).

(1,02,
(p1,p2 903)7 the

Conversely, if one has the function wuy(t), since A # 0 where A = o)

Inverse Function Theorem gives

T = (tvuvw)’ Y= P2 (t,u,w), P =3 (t,u,w), (2'22)
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and then the first equation of (2.2) becomes
x = @1 (t,up(t),uo(t)) - (2.23)
Thus applying the Inverse Function Theorem to (2.23), one obtains
t=Qx).
Substituting this ¢ into the second equation of (2.22), one obtains the solution

Yo(x) := @2 (), uo(Q2()), o (2(x))) -

Observe that the order of the given ordinary differential equation (2.12) is con-
served by the invertible contact transformation (2.11). Notice also that according
to the contact condition (2.21), if 1, = 0 then ¢y, = 0. Hence, a contact trans-
formations is also a point transformation.

Remark 2.3. It is worth noting that the application of contact transformations

is more complicated than the application of point transformations, for example,

see in Ibragimov and Meleshko (2005); Suksern, Ibragimov and Meleshko (2009).

2.4 Tangent Transformation

A tangent transformation is a transformation of the independent, depen-
dent variables and their derivatives. Let z = (1,2, ...,x,) be the independent
variables, y = (y',9?%, ...,y™) be the dependent variables and p be the vector of

the partial derivatives:

. oledyk olelyk

e =
“ Oz Or{r0xs? ... Dxon’

where o = (o, a9, ..., ) is @ multi-index and k € {1,2,...,m}. Here |a] :=

a;+as+..+a, and o; € {OUN}, (i =1,2,..,n).
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Definition 2.6. The transformation

tj:gpj(xay7p)7 Uk:¢k($ay;p)a ﬁfzﬁﬁ?(%%p);
is called a tangent transformation if it satisfies the tangent conditions
du® — phdt; =0, dps — pl dt; =0, (2.24)

where j = 1,2,3,...,n, k = 1,2,3,...m, «a = (a,q9,....,0p), «a,] :=
(o, aj_1,05 + 1,5 ay) o c L L and 0 < |of <7 -1
1y, 2y -0y G515, &5 y Qg+1y -y B ) o otTotg2 . .otam = = .

Here 7 is the maximum order of the partial derivatives appearing in the vector p.

For example, let us consider the case n = m = 1 and the functions ¥y, 1,

and 13 of the variables x, y, ¥’ and y”. Define the mapping

1= ¢1 (ZE, yay,) U= ,QZ)2 (:B?yayl) ) 5 = ¢3 (l’,y, ylv y”) . (225)

Let y(z) be a given function. Substituting y(z) into the first equation of

(2.25), one yields

t =1 (ZE, y(x), y/(ZL‘)) :

By the virtue of the Inverse Function Theorem, one gets © = «(t). Substituting

this = into the second equation of (2.25), one obtains the transformed function

u(t) =2 (alt), y(at), y'(a(t)))

The derivatives are changed by the formulae

. Vo, + piha, + Y"1, _ Duty
V1, + U, + Y"1, Dethr

where

D_g_i_ 2_'_ //2+ ///a
° Ox pay y(?p yay”

is the total derivative with respect to x. Here p = /.
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According to the tangent condition, we have the relation

_ Da:¢2
g = Doty (2.26)

Thus the second-order derivative of u with respect to t is defined by the formula

Dytps bz, +pis, + Y3, + Yy "3y
D,in VU1, + pry, + ¥,

U= ¢4(37> Y, P, y//, y”/) = (227)

Note that tangent condition (2.26) need not satisfy for any 3" like the
contact condition. Equation (2.27) shows that a tangent transformations need not
to preserve the order of the given ordinary differential equation.

Remark 2.4. The contact transformation forms a particular case of tangent

transformations.

2.5 Generalized Sundman Transformation

The generalized Sundman transformation is a transformation defined by

the formulae

u(t) = P(x,y), dt=S(z,y)dz, (P,S#0). (2.28)

Let us explain how the generalized Sundman transformation maps one function
into another.
Assume that y (x) is a given function. Integrating the second equation of

(2.28)
dt
&= 5(ry(0)),
one obtains ¢ = @ (x). Since the function S # 0, thus @' # 0. By virtue of
the Inverse Function Theorem, one finds x = §(t). Substituting this = into the

function P(z,y(x)), one gets the transformed function



17

Conversely, let u(t) be a given function. Since P, # 0, applying the Inverse

Function Theorem to the equation

u(t) = P(z,y),

one gets y = ¢ (z,t). Integrating the ordinary differential equation

& = S 6(r.1),
one finds ¢t = H(x). Substituting t = H(z) into the function ¢ (x,t), the trans-
formed function y(z) = ¢(z, H (x)) is obtained.

Observe that the formula (2.28) not only allows us to obtain the derivatives
of u(t) through the derivatives of the function y(z) and vice versa, but also relate
the solutions of the two differential equations 3™ = Ny(z,y,v',v",...,y™ ) and
u™ = Ny(t,u, i, ..., u""Y).

Remark 2.5. The generalized Sundman transformation conserves the order of

particular ordinary differential equations only, for example, see in Euler, Wolf and

Leach (2003); Nakpim and Meleshko (2010).

2.6 Canonical Form of a Single Linear Second-order ODE

Theorem 2.1. Every linear second-order ordinary differential equation
y' (@) +a(@)y (z) +b(2)y () = c(z),
can be transformed into the simplest equation
= 0.
Note that the proof of this theorem is shown in Appendiz A.

Remark 2.6. A linear ordinary differential equation of order m > 3 need not be
equivalent to the simplest equation. In fact, the generalization of Theorem 2.1 to

higher order equations is discussed in the next section.
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Remark 2.7. A linear system of n second-order ordinary differential equations

need not to be equivalent to the simplest system of equations.

2.7 Canonical Form of a Single Linear i"-order ODE
Laguerre showed that given any linear ordinary differential equation of form
Y+ ay (2)y Y 4 ag(2)y " + a4 ()Y +ai(x)y = elx), i =3, (2.29)

the two terms following the highest-order term can be eliminated by point trans-
formations. Therefore, the general linear i*"-order ordinary differential equation

in Laguerre’s form is defined by the following theorem.

Theorem 2.2. (Laguerre Canonical Form,).
A linear i'"*-order ordinary differential equation (2.29) can be reduced to the equa-
tion

u® 4+ by () ul + by (a4 b (8)i+ bi(t)u = 0, (2.30)

by point transformations.

2.8 Canonical Forms of a Linear System of n Second-order

ODEs

The general form of a linear system of n second-order ordinary differential
equations is

i+ Co+Dv+ E=0, (2.31)

where v = v(t) and E = E(t) are vectors, C' = C(t) and D = D(t) are n x n
square matrices. It can be shown (Wafo and Mahomed, 2001) that there exists a

change u = Uv such that system (2.31) is reduced to one of the following forms|!

IThe proof of this statement is given in Appendix E.
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either

or

i + Ku = 0. (2.32)

Here U(t), K = K(t) and K; = K;(t) are n X n square matrices.

Thus the linearization problem via point transformations consists of solv-
ing the problem of reducibility of a system of second-order ordinary differential
equations to one of these forms. In this thesis, the second canonical form (2.32) is
used.

One of the main motivations for studying the linearization problem is the
possibility of finding the general solution. Notice that even after finding the lin-
earizing transformation one has to solve a linear system of second-order ordinary
differential equations. The simplest case is where K = 0. More general and
also not complicated is the case where the matrix K is constant. For example,
for n = 2 this case leads to solving either a simple linear fourth-order ordinary
differential equation with constant coefficients or two simple linear second-order

ordinary differential equations. Indeed, for n = 2 system (2.32) is
ill + k1u1 + k:3u2 = 0, 1./;2 + k‘4U1 + k2u2 = 0, (233)

where k;, (1 = 1,2, 3,4) are constant. If k3 # 0, then finding uy from the first equa-
tion of (2.33) and substituting it into the second equation of (2.33), one obtains a

fourth-order ordinary differential equation
u§4) + (k1 + ko)iin + (k1ka — kska)u, = 0.

Here
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The general solution of the last equation depends on the roots A of the character-
istic equation

N (ky + ko) A2 + (kiky — kghy) = 0.

The solution is similar for k4 # 0. On the other hand, if k3 = 0 and k4 = 0, then

system (2.31) is decoupled:
ul + ]{?17,1,1 = O, ﬁ/2 + k‘gUg = 0. (234)

Notice also that if in this case k; = ko, then the last system of equations is

equivalent to the system of two trivial equations z” = 0.

2.9 Theory of Compatibility

This section gives some knowledge on compatibility theory used in the the-
sis. Compatibility theory analyzes the existence of a solution of an overdetermined
system of equations. An overdetermined system is a system with the number
of equations greater than the number of unknown functions. Since this theory
is a special subject of mathematical analysis, the statements are given without
proofs**.

There are two approaches for studying compatibility. These approaches are
related to the works of E. Cartan and C. H. Riquier.

The Cartan approach is based on the calculus of exterior differential forms.
The problem of the compatibility of a system of partial differential equations is re-
duced to the problem of the compatibility of a system of exterior differential forms.
E. Cartan studied the formal algebraic properties of systems of exterior forms. For
their description he introduced special integer numbers, called characters. With

the help of the characters he formulated a criterion for a given system of partial

**A review of the theory of compatibility can be found in Meleshko (2005).
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differential equations to be involutive. Detailed theory of involutive systems can be
found in Cartan (1946), Finikov (1948), Kuranashi (1967) and Pommaret (1978).

The Riquier approach has a different theory of establishing the involution.
This method can be found in Kuranashi (1967) and Pommaret (1978). The main
advantage of this approach is that there is no necessity to reduce the system
of partial differential equations under study to exterior differential forms. The
calculations in the Riquier approach are shorter than in the Cartan approach.
The main operations of the study of compatibility in the Riquier approach are
prolongations of a system of partial differential equations and the study of the

ranks of some matrices. The Riquier approach is used in this thesis.

2.9.1 Completely Integrable Systems

One class of overdetermined systems, for which the problem of compatibility

is solved, is the class of completely integrable systems.

Definition 2.7. A system

oy’
Oz,

gb (x,y), i=1,2,..m; j=1,2,....n) (2.35)

is called completely integrable if it has a solution for any initial values xg,yo in

some open domain D.

Theorem 2.3. A system of the type (2.35) is completely integrable if and only if

all of the mized derivatives equalities

ad)z Y (bl 8¢Z 'yagbl . . .
amk ;¢kay7 - Z(b] a y = 2, - ]{j,j = 1727 ’m) (236)

are identically satisfied with respect to the variables (z,y) € D.

In this thesis, the following corollary of the above theorem is used.
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Corollary 2.4. If in an overdetermined system of partial differential equations all
deriwatives of order n are defined and comparison of all mixzed derivatives of order
n + 1 does not produce new equations of order less or equal to n, then this system

18 compatible.

To demonstrate the importance of Corollary 2.4, let us apply it for obtaining

Lie’s criterion.

2.10 Lie Criterion

Theorem 2.5. (Lie criterion).
A second-order ordinary differential equation is equivalent to the simplest equation

(it = 0) if and only if it has the form
y'+alzy)y® +0(x,y)y* +clzy)y +d(z,y) =0, (2.37)

with the coefficients satisfying the conditions:

3y — 2byy + cyy — 3agc + 3ayd + 2byb — 3ca — ¢yb + 6dya = 0,
byz — 2C4y + 3dy, — 6a,d + byc + 3b,d — 2¢,c — 3dya + 3d,b = 0.
Proof.

Notice that the canonical form of a second-order linear ordinary equation

with independent variable ¢ and dependent variable u is
i = 0. (2.38)

Assume that the equation y” = F(x,y,y’) is obtained from the linear ordinary

differential equation (2.38) by the change of the variables

t=p(xy), u=v(zy). (2.39)
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The derivatives are changed by the formulae

Dy _ Py + y/¢y

Do pa+yp,

Doy _ 9o +Yy'9y+ 19y
D, Vr + Y 0y

u=g(zyy)=

i=p(z,yy,y") =

= A(os +y'0,) [y + alz, y)y”® + bz, y)y? + clz,y)y + d(z,y)),

where

a = Ail(%ﬂﬁyy — Pyyty),

b= A_l(SOxwyy - @yy¢x + Q(Swaﬂﬁy - Spﬂﬁywy))’

(2.40)

c= A_I(QOyQﬁxz — (pajmwy + 2(90;1@7703@ - Qpacyqu)ﬂc)%

d= A_l(gﬁxwm: - @wm¢r)a
and

0 0
Dy=—+y—+y'—

is the total derivative with respect to . Here A = ¢, 1, — ¢ 1, # 0 is the Jacobian
of the change of variables (2.39).

Since A # 0 and ¢, + y'¢, # 0, substitution of @ into (2.38) gives the
equation (2.37).

Therefore, if a second-order ordinary differential equation is linearizable,
then it has the form (2.37). This is the necessary condition for all second-order
ordinary differential equations to be linearized. The mapping of this equation into
a linear equation is reconstituted by finding the functions ¢(z,y) and ¥ (z,y) that
satisfy the relations (2.40) with given coefficients a,b,c and d. Since for a given
differential equation there are only two unknown functions ¢(x,y) and ¥(z,y),
equations (2.40) form an overdetermined system of partial differential equations.

Let us analyze the compatibility of system (2.40).
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2.10.1 case ¢, =0

Since A # 0, assuming that ¢, = 0, it implies that .1, # 0. From

relations (2.40) one has

a=0, Yy =Ub, Yoy = (07 UyPratcty)/2, Yuo = 0 VoPustilyd. (2.41)
Comparing the mixed derivatives (¢zy), = (¢yy), and (Vzy), = (Vzz),, one gets
Cy = 2by, 0,7 (200 00e — 392,) = 4(dy + bd) — (2¢, + 7). (2.42)
From ¢, = 0 and the second equation of (2.42), one obtains
Pazy = 0, Payy =0, Pyyy =0,
Coze = (02° (4(dy +bd) — (2¢, + %)) + 3¢2,) /2
Comparing the mixed derivatives
(Paay)y, = (Payy)e s (Payy), = (Pugy)y> (Vzaa)y = (Paay)y (2.43)

one finds that the first and second equations of (2.43) are identically satisfied. The

third equation of (2.43) gives the condition
dyy — byy — by + byd + dyb = 0.

In brief, a second-order ordinary differential equation of the form (2.37) is
equivalent to the simplest equation (2.38) under fiber preserving point transfor-
mation t = ¢(x) and u = ¥(x,y), if and only if the coefficients of this equation

satisfy the conditions
a=0, ¢, =2b,, dy, — by —bc+b,d+d,b=0. (2.44)

Note that conditions (2.44) guarantee the existence of functions ¢(z) and ¥ (x,y)

satisfying the overdetermined system of equations (2.40).
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2.10.2 case ¢, # 0

Considering the relations (2.40), one has

VYyy = (‘Pyzﬂ% + aA)/SOya (2-45)
Yoy = (2<ny90y¢y - @yyA - (CLQO:D - b@y)A)/Q(P;a (2-46)
Vor = (20050 0s — QuPyytbe — Prtbea + Prpyb (2.47)

+oy (Pyd — ) /0y,

Cor = (200yPupy — Py — Poa + Papyb — o+ id) /o2, (2.48)

From the equations (2.45)-(2.47), one can compare the mixed derivatives (¢, ), =
(yy), and (Yuy), = (¥sz),- These conditions give
Py = (3(65, = 20ay0ya + 20,0y, + @2a%) — 20,0, (ay +ab)  (2.49)
+¢2(2b, — 4a, +dac — b)) /2¢,,
Cayy = (3(4ayPyyPy — ooy T 2020yyPyb — 20y02b) + 3p3a®  (2.50)
+3020(—2a, + 2ac — b?) + 203 (=b, + 2¢, + 3ad)) /6.

Using the equation (2.48), one has

Considering the equations (2.49)-(2.51), one generates the conditions

(Paay), = (%m:)gp (@zyy>y = (Pyyy)s » (Qomy)y = (Payy), - (2.52)

The first equation of (2.52) is satisfied. The second and third equations of (2.52)

give the conditions

33y — 2byy + cyy — 3azc + 3a,d + 20,0 — 3cga — cyb + 6dya = 0,
(2.53)

bez — 2¢4y + 3dyy — 6a,d + byc + 3byd — 2¢c,c — 3dya + 3dyb = 0.
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The condition (2.53) obtained, guarantees the existence of the functions ¢(x,y)
and 1 (z, y) satisfying the overdetermined system of equations (2.40). Observe that
the conditions (2.44) make the conditions (2.53) vanish. That is the conditions

(2.44) form a particular case of the conditions (2.53).



CHAPTER III
CONDITIONS FOR LINEARIZATION OF A
PROJECTABLE SYSTEM OF TWO
SECOND-ORDER ORDINARY

DIFFERENTIAL EQUATIONS

3.1 Establishment of the First Main Problem

A system of two second-order ordinary differential equations with two de-

pendent variables  and y and one independent variable ¢:

'fl:" = G(t7 :E, y7 :t'? y)? y = F(t7 :E, y7 :t'? y)? (3.1)

is considered in this chapter. Here a dot denotes the derivative with respect to ¢

. dw Cody . dx . dy

dt ’ dt ’ az YT ae
A new method for linearization of two second-order ordinary differential
equations (3.1) with two dependent variables x and y and one independent variable
t is proposed here.
Assume that © # 0. By virtue of the Inverse Function Theorem one can

consider y = y(z). Substituting the derivatives

y=y'i, §j=y"i"+yi

into the first equation of (3.1), and using the second equation of (3.1), one obtains
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where

Gt,z,y,2,y) =G,z y,&,2y), F(t,z,y,2,y) = F(t,z,y,&,2y"),

r @ " d2y

y_dx’y T A2

Suppose that

F(t,x,y,a,y) —yGt,x,y,&,y) = >N, y, ), (3.2)

where z,y, 2 and y' are considered as the independent variables of the functions
G, F and \. We call a system (3.1) satisfying the condition (3.2) a projectable sys-
tem. This definition of a projectable system of equations can be extended to any
normal system of ordinary differential equations. Another extension of the defi-
nition can be given as follows. A system of equations (3.1) is called projectable
if there exists an invertible change of the independent and dependent variables
T = qt,z,y), ¥ = ¢g2(t,z,y) and ¢ = g3(t,x,y) such that the equivalent sys-
tem possesses the property (3.2). In this thesis we consider the simple case of a
projectable system, where g, = x, go =y and g3 = t.

Equation (3.2) requires that the function A defined by the formula

1
A("”? y7 Z) = ﬁ(F(t7 aj? y? jj? Zi‘) - ZG(t7 x? y’ i’? Zi))’ (3'3)

only depends on z, y and z = % . The function y(z) thus satisfies the second-order

ordinary differential equation

y” = )\(JZ, Y, y/) . (34)

A solution of a projectable system (3.1) can be found in two sequential steps: in
the first step one solves equation (3.4); in the second step one finds a solution ()

of the first equation of (3.1) with substituted y = y(z) and y = ¢/'(z)& :

i =Gtz y(x), 2,2y (x)) . (3.5)
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If at each step one has a linearizable second-order ordinary differential equation,
then we call system (3.1) a sequentially linearizable system of equations. In this
thesis we give necessary and sufficient conditions for system (3.1) to be sequentially

linearizable.

3.2 Sequentially Linearizable System (3.1)

Since at each step the equations are second-order ordinary differential equa-
tions, one can consecutively apply the Lie criterion to equations (3.4) and (3.5).
Theorem 3.1. A projectable system (3.1) is sequentially linearizable if and only

if the functions A\(x,y, z) and G(t,z,y, ,y) have the representations

)\({L’, Y, Z) = bl(xa y)zi’) + bg(ﬂf, y)ZQ + b3($7 y)Z + b4(l’, y)v (36)

G(ta z,y, jja y) = a1<t7 z,Y, Z)xg + a2<t7 z,Y, 2)12
(3.7)

+as(t,z,y, 2)T + aq(t, z,y, 2),

where the coefficients b;(z,y) and a;(t, x,y, 2), (i = 1,2, 3,4) satisfy the equations

2094y — 3b155 — b3y — 3b1,03 + 301,04 + 2b2,b2

(3.9)
~3bsuby — byby + Gbayby = 0,
2034y — bagy — 3bayy — 6b1,b4 + baybz + 32y by
(3.9)
by, b3 — 3bauby + 3bayby = O,
D Bi(2) T4 Br =0, Bipr(2) + B = 0. (3.10)
=1 =1

Here
B = —as..b%, Ba = bi(—2as,.ba — 3az,b),
By = —2a3,.b1 — 2a3,,b1bs — as..bs> — az.by, — 5as,bibs,

By = 3a1,a4b1 + 2a2,,b1 — 2a3,,b1 — 2a3,,by — az,by — 2a3,,01b4 — 2a3,,brb3
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—az,bi, — as.by, — az asby — daz,bibs — 2a3,by” + 6a4.a1by,

Ps = 3ai,a4bs + 202409 — 2a3,,by — 2a3,.b3 — az,,, — az,by — 2a3..byby
—a3..b3" — az.bo, — a3.bs, — az.asby — 3az.bibs — 3az.babs + 6a4.a1bs,

B6 = 3a14a4 + 3a1,a4b3 + 2agy, + 2a2,,b3 — 2a3,, — 2a3,.03 — 2a3,.by — azyag
—az,bs — 2a3,,bsby — as,bs, — az,ba, — az,asbs — 2a3,bsbs — az,bs’
+6a4,a1 + 6a4,a,b3,

Br = 3a1,a4 — 3a1y — 3a14a3 + 3010404 + 20944 + 2a9,,bs + 29,00 — 2a3,.b4
— 34, — U3,02 — 303,01 — a3yb4 - a3zzb42 — a3,by, — az,a2by — az,b3by
+6a4,a1 + 6a4,a1bq,

Bs = —3a4..b1%, By = 3b1(—2a4,.by — 3as.by),

Bro = 3(—2a4,.b1 — 2a4,.b1b3 — au..bo” — asbr, — 5aq,bibs),

Br1 = 3ag,asby + 2a3,,b1 — 2a3,a3b1 — 6a4,,b1 — 6ay,,by — 3a4,b; — 6ay,,b104

—6a4..bobs — 3as,br, — 3asboy, + 3as,a2b; — 12a4,b1bs — 6ay,by?,
Pr2 = 3ag,asby + 2a3,,ba — 2a3,a3bs — 6a4,,bo — 6a4,,bz — 3as,, — 3a4,bo
—6a4..bobs — 3aa..bs” — 3as.bo, — 3as bz, + 3as.asby — 9as.bi1by — as,bobs,

P13 = 3ag,as + 3az,a4b3 + a3y, + 2a3,,b3 — 2az,a3 — 2a3,a3b3 — 64y,

—604,,03 — 6a4,,bs + 3a4,a2 — 3as,bz — 6ay,,b3bs — 3a4,b3, — 3as,by,
+3a4,asb3 — 6as,bobs — 3a.b3”,

Bra = —6a1paq + 3a2,04 — gy + a24a3 + 302,404 + 203, — 2a3,a3 + 2a3,,by

—2a3,a3by — 6a4,,04 — 304,, + 304,02 — 3a4,01 — 3a4,0y — 3a4,,bs°

—3a4zb4x + 3a4za2b4 — 3a4zb3b4.
3.2.1 Proof of the Theorem 3.1

The second-order ordinary differential equation y” = A(z,y,y’) is lineariz-

able if and only if the function A(z,y,y’) has the form (1.2)

)‘('Ia Y, y,) = bl(:p7 y)y/3 + bQ(xv y)yIQ + b3(l’, y)y, + b4($, y)7 (311)
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where the coefficients b;(z,y), (i = 1,2, 3,4) satisfy the conditions

225, — 3b14g — bayy — 3b1abs + 3by,by + 2ba,by
(3.12)

—3b3xb1 - bgybg + 6b4ybl = O,

3, — baza — by, — 6brsba + baybs + 3ba, by
(3.13)

—2b3ybg - 3b4zb1 + 3b4ybz - O
Assuming that a solution y(x) of the equation y” = A(z,y,y’) with the function A

as in (3.11) is given, the first equation of (3.1) becomes
=Gt x,y(x), 1,y (x)L) . (3.14)
According to the Lie criterion, equation (3.14) is linearizable if and only if
G(t,x,y(x), &,y (2)1) = hi(t,x)i® + ho(t, 2)3* + hs(t,x)d + hy(t,z),  (3.15)

where the coefficients h;(t, x) = a;(t, x,y(z),y'(x)), (1 = 1,2,3,4) satisfy the con-

dition (1.3), with @ = hy, b = hy, ¢ = h3, d = hy. These conditions become

2D, a0, — 3a1y — D?gas — 3aya3 + 3(Dxa1)a4 + 2ag:a9
(3.16)

—3a3ta1 — (Dm(l3)a2 + 6(Dma4)a1 = 0,

2Dxa3t — Qo4 — 3D§CL4 — 6a1ta4 + a2:03 + 3(Dxa2)a4
(3.17)

—2(Dyaz)asz — 3a4sa1 + 3(Dyaq)as = 0.

Here the operator D, is the operator of the total derivative with respect to x

D o 2 + /2 + //i+ ///i
Y ox y@y 4 oy’ Y oy

Substituting y” = A, ¥y = D, into equations (3.16) and (3.17), one obtains

equations (3.10).
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3.3 Other Sequentially Linearizable System

There are other systems of two second-order ordinary differential equations
which might neither be linearizable via point transformations nor projectable, but
in some sense they are sequentially linearizable.

Consider a system of two second-order ordinary differential equations, where

one of these equations can be considered independently
= f(t,x,y,x,9), & =gt z,I). (3.18)
The second equation of (3.18) is linearizable if it has the form
g(t,z, @) = c1(t, 2)3° + co(t, 1)i? + e3(t, 2)@ + cu(t, x), (3.19)
where the coefficients ¢;(¢, x), (i = 1,2, 3,4) satisfy the conditions

201, — 3C14p — €34 — 3C14C3 + 3C1,Ca + 2C04C0

(3.20)

—363t61 — C3,C9 + 6C4x61 = 0,

2034, — Copp — 3Caqy — 6C1C4 + CoC3 + 32,04
(3.21)

—263163 — 3641561 + 30433(32 =0.

Assuming that a solution z(t) of the equation (3.19) is given, the function f of

equation (3.18) becomes

§=f(t,x(t),y,(),9). (3.22)

According to the Lie criterion, equation (3.22) is linearizable if and only if

fa(t),y, &(t),9) = ha(t,=(t), y, 2(8))9° + ha(t, x(t),y, ()5 3.2
+h3(t7 I(t), Y, x(t))y + h4(t7 x(t)7 Y l’(t)),

where the coefficients h;(t, z(t),y, Z(t)), (i = 1,2, 3,4) satisfy the condition (1.3),
with a = hy, b = ho, ¢ = hg, d = hy. These conditions become

2Dk, — 3D2hy — sy, — 3(Dyhy)hs + 3hy,ha + 2(Dyha)ho .

—3(Dth3)h1 - hgyhg + 6h4yh1 - O,
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2D;hs, — D}hy — 3hay, — 6(Dyhi)hy + (Diho)hs + 3ho,hy (3.25)

—2hs,hg — 3(Dyha)hy + 3hayhy = 0.

Here the operator D, is the operator of the total derivative with respect to ¢

Substituting & = g¢(t,z(t),2(t)), © = Dy(g) where g is defined as (3.19) into

equations (3.24) and (3.25) one obtains the conditions

6
Z% ) 4 =0, Z%H )+ s =0, (3.26)

=1

with the coefficients

Y1 = =3h1:¢1%, Y2 = 3e1(=2h1z5¢0 — 3hyzen),

Y3 = 3(—C1h1s — 2h1 4501 — 2hagpc103 — hygpco® — Bhyzeic),

Y4 = —3c1h1; — 3o h1y — 6hygpcr — 6hy 00 — 6hy 50104 — Ghyggcacs
—12hyze1¢3 — Bhigzerhy — 6hyzco® — 3higer + 2hag,c1 + 2hagzcihy
—3hgzciha,

V5 = —3corhiy — 3csphiy — 6h1ypCo — 6hy4p03 — 6hyzicocs — 3hyzpc32
—9hyzc1cq — Yhyzcocs — 3hizcahs — 3hy L, — 3hico + 2ha;,co
+2hgzcohy — 3hazcahy,

Y6 = —3c3ih1sy — 3cazhiz — 6hygic3 — 6hyy, — 6hy 4,04 — 6hy 50304 — 6y 400y
—3h14¢3% — 3hizcshs — 3hi,c3 — 3highs + 2Ry, c3 + 2hoscshs + 20,
+2ha,ha — 3hszcshy — 3hs ha,

v = —3cyhiy — 6higpcs — 3hiy — 3hiths — 3hyzpc4® — 3hyzc3¢4 — 3hyzcahs
3huyes + Bhayha + 2oy + 2hoshs + 2hasycs + 2hoseshs — 3hahy
“3hpeahy — hayy — hayhy + Ghay b,

Vs = —hozsc1®, Yo = c1(—2hoz5¢0 — 3hozcr),

_ 2
Yo = —Cighas — 2hoz.c1 — 2hgic163 — hoziCo® — Dhaogcica,
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Y11 = —Crhag — caghay — 6hizeihy — 2hgyzc1 — 2ho;,00 — 2hogzc104
—2hgzzcoc3 — dhozcicz + hogcrhs — 2h2¢022 — hazer + 2h3¢y01
—3hyzcihy,

T2 = —Cathay — c3hay — 6higeahy — 2hayzco — 2hg;,03 — 2hazzcacy
—hagic3® — Bhozcrcy — BhosCacs + hogCahy — hoyy — hopCo + 2h3;,0o
—3hygcah,

Y3 = —Cathay — caghay — 6hizeshy — 6hihy — 2hoyzc3 — 2hay, — 2hg4,04
—2ha;403¢4 — 2ho4acs — hoycs® 4 hogeshy — hoycs + hoghs + 2hs;,cs
+2h3gy — 3hazezhy — 3hygha,

Y14 = —Carhoy — 6hyghy — 6hygeahy — 2haycq — hag 4 haghs — hogges®
—hazcscy + hogcahs — hogcy + 3hoyhy + 2hgyy, + 2hsgca — 2h3,h3

—3h4th1 — 3h4j364h1 — 3h4yy + 3h4yh2.

Theorem 3.2. System (3.18) is sequentially linearizable if and only if it satisfies

the conditions (3.19)-(3.21), (3.23) and (3.26).

In the next section we will demonstrate systems of two second-order ordi-

nary differential equations which are linearizable in this way, but are not lineariz-

able by point transformations.

3.4 Application to a System of Second-order Quadratically

Semi-linear Ordinary Differential Equations

In this section we show that a system of two second-order quadratically

semi-linear ordinary differential equations

&= a(z,y)i* + 2b(z, y)iy + c(z, y)y?,
(3.27)

i =d(z,y)2* + 2e(x,y)iy + f(z,y)9?,
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which is linearizable via point transformations, is also sequentially linearizable.
Notice that some types of Newtonian systems are of the form (3.27).

A linearization criterion for system (3.27) to be equivalent to the simplest
equations via point transformations was obtained in (Mahomed and Qadir, 2007).
These criteria are

S;=0, (i=1,234), (3.28)
where
Sy =a, —b, +be—cd, Sy =>b,—c,+ (ac—b*) + (bf — ce),
Sz =d, — e, — (ae — bd) — (df —€*), Sy =b, + fo —a, — e,

Notice that system (3.27) is a projectable system with
Mz, y,y) = —cy® + (f — 2b)y* + (2¢ — a)y’ +d. (3.29)

Applying Theorem 3.1 proven above, one obtains the conditions for system (3.27)

to be sequentially linearizable:

3512; — 35290 + 2S4y + 3(f — b)Sl — 3652 — 3053 + (Qf — b)S4 = 0,
(3.30)

351x + 3533/ + 541 - 3(6 — G)Sl + 3d52 + 3[953 — (26 — CZ)S4 =0.

Relations (3.28) make (3.30) vanish. Thus in general there are quadratically
semi-linear system (3.27) which are not linearizable via point transformations, but
are sequentially linearizable. Furthermore, equations (3.30) show that the set of
systems (3.27) which are linearizable via point transformations is a subset of the

set of equations which are sequentially linearizable.

3.5 Illustration of the Linearization Theorem

In this section we demonstrate examples of systems of two second-order

ordinary differential equations which are sequentially linearizable, but not lin-



36

earizable via point transformations. Consider a system

=y, j="1y. (3.31)

Applying the linearization criteria obtained in either Aminova and Aminov (2006)
or Neut, Petitot and Dridi (2009) to system (3.31), one obtains that system (3.31)
is not equivalent to the simplest equations under point transformations. Let us
show that system (3.31) is sequentially linearizable.

For system (3.31), A\ = 0 which implies that y” = 0. The first equation of
(3.31) becomes & = cyx + o, which is a linear second-order equation. Therefore,
system (3.31) is sequentially linearizable.

The presented example shows that a system of two second-order ordinary
differential equations which is not linearizable by point transformations might be
sequentially linearizable.

Let us make another observation. System (3.31) is equivalent to the fourth-

order ordinary differential equation

@ =225 (3.32)

Applying the linearization criteria obtained in Ibragimov, Meleshko and Suksern
(2008) to equation (3.32), one notes that equation (3.32) is not linearizable by
point transformations either.

Remark 3.2. System (3.31) is a particular case of the system

i=fly— Yo, 40) +xgly — fa, 4,0),

c c (3.33)
which is also sequentially linearizable. Here the functions f and g are arbitrary.
For system (3.33), A = 0 which implies y” = 0. Thus the first equation of (3.33)

becomes & = f(cq,¢1,t) + xg(co, c1,t) which is linear equation. Therefore, this

system is sequentially linearizable.
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3.6 Summary

In this chapter, a new method for linearizing a system of ordinary differ-
ential equations was introduced. This method consists of consecutively reducing
the number of the dependent variables and using the linearization criterion for
the reduced equations. The method was applied to a system of two second-order
ordinary differential equations. Moreover, it was shown that for systems of two
second-order quadratically semi-linear ordinary differential equations the class of
equations linearizable by the new method is lager than the class of equations
linearizable via point transformations. Finally, examples of applications of the

method are given.



CHAPTER IV
LINEARIZATION OF TWO SECOND-ORDER
ORDINARY DIFFERENTIAL EQUATIONS
VIA FIBER PRESERVING POINT

TRANSFORMATIONS

4.1 Establishment of the Second Main Problem

The linearization problem of a system of second-order ordinary differential

equations
yil = Fl(xuyhy%yiayé)? yg = FQ(x’y17y27yi7yé)' (41)

via a point transformation is to find an invertible transformation

t:@(x’yhyQ)v Uy :1/}1<$,y1,y2), U2 :7»/12(%91792)7 (42)
which transforms the system of equations (4.1) into a linear system of equations
i+ K(t)u = 0. (4.3)

Note that system (4.1) is the same as system (3.1), however we have changed the
variables x, y and ¢ to y1, y» and x, for ease of notation.

In the next section the form of a linearizable system (4.1) is obtained.
This form coincides with the form obtained in Aminova and Aminov (2006) for
a system (4.1) to be equivalent to the simplest equations. Some invariants of
this form with respect to the general set of point transformations related with

a linearizable systems (4.1) were obtained in Sookmee (2005). The necessary
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and sufficient conditions for system (4.1) to be equivalent with respect to a fiber

preserving point transformation

t=o(x), ur = Y1(x,y1,Y2), Uz = V2(T,y1,2) (4.4)
to system

i.Ll + k1u1 + k'g'LLQ = O, 712 -+ k4U1 -+ k2u2 = O, (45)

where k;, (i = 1,2, 3,4) are constant, are discussed in this chapter.

4.2 Necessary Form of a Linearizable System (4.1)

For obtaining necessary conditions for system (4.1) to be linearizable via
point transformations (4.2) one assumes that system (4.1) is obtained from the
linear system of differential equations (4.3) by an invertible transformation (4.2).

The derivatives are changed by the formulae*,

r o Dan 1 _ Dzg
Uy = 91(3379173/27@1792) Dy ? Uy = Do

r oo\ _ Daztpo 1n __ Dzgo
Ug = 92($;y1,y2,y17y2) T Dap? Uy = Dy’

where

9, 0
Dx = 4 12 + r Y + " + " )
o~ Moy T oy, Moy T oy,

Replacing uf, uf, vy and uj in system (4.3), it becomes

2 2 2
vl = yi(ay)” + ayiyh + a3yh”) + anayl” + a1sy1vs
Faieys” + arryi + aisyh + ao,
(4.6)
2 2 2
vy = yalanyl” + ayiys + a1syh”) + axyy” + assyiYh

+a26y§2 + agryy + assyh + as,

*See more details in Appendix D.
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where the coefficients a;; are expressed through the functions ¢, v, 1, their

partial derivatives and the entries of the matrix K = (k;;(t)) as follows:

ai

a2

a13

A14

ais

aie

ayr

aig

aig

A24

A25

A26

Azt

A28

a29

(hlwlywl + h2¢2y1y1 — UPyryn + f190y13 - f290y1290y2)/A7

2(hthry,y, + hathay,,, — vy, + f1§0y1290y2 — fay 90y22>/A’

<h1w1y2y2 + h2w2y2y2 — VPyay, + f190y1 90?422 - f290y23)/A7

(21914, + 2hotba,,, + hathry,y, + hatbay 0 + Ps@y,y,

— 2004y, + 3f10:04,° — 2 200 Py Py — F305 " 0ya) /A,
2(h1t1 4y, + hathayy, + hatr,,,, + hatbe, ) + RsPy,y,
200y, + 2f1020y, Py — S22y — f30u04:7)/ N,
(ha3W1yyyy + Patloyy + Ps@yoys + 102047 — f304.°) /A,
(P1th1y + hotbay, + 2hath1,y, + 2hatay,, + 2h500y, — VP
+3f102" 0y — fopa’ Py, — 2f300041) /N,

2(RgW1 4y, + hathogy, + 2050y, + f190° 0y — [30204°) /A,
(h3t1g + Pathogy + Bspus + f102° — f302"0y) /A,
(h6W1y,y, + P12y + Psyy — 2020y + f304.°) /A,
2071014y, + hothayy, — VPzy, — het1y,,, + hitbay,,,

+ 100020 = 220204 Py — F3pu " 04) /A,

(2h191 4y, + 2h0t2,,, — 2000y, + het1y,,, + Mooy,
+hsPyays + 2f10205, Oy — 3F2020y,” — f303,04:°) /A,
2(he1ay, + hithogy, + hsay, — f202° 0y + 3000y, ) /A,
(M¥1,5 + hotboy, — Vo + 2het1,y, + 2h7tbay,, + 2hspay,
+ 105750y, — 3f202" Py + 2f3020y,04,) /A,

(h6¢1m + h7w2xx + h890a:a: - f2¢x3 + f390962¢y1)/A7

(4.7)
(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)
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where A # 0 is the Jacobian of the change of variables (4.2),

A = (prth1y, Y2y, —PaV14, Y2y, — Py V102, 05 V1 2,0y 01,02y, — Py V1, Y2s)

f1 = V1, (kaathy + karthr) — oy, (k11thr + kiate),
fo =1y, (koo + korthr) — oy, (k1ithn + kiata),
fs = V1a(koaths + kantn) — Yog(kuithr + kiatdo),

v = wly2¢2yl - w1y1w2y27 h‘l = ()03/2¢2y1 - @y1w2y2> h2 = Soylwlyz - SO?JQQﬂlyl?
hs = 90y2¢2z - <Pac¢2y27 hy = %%yg - 90y2?/11x7 hs = ¢1z¢2y2 - wlwaQ;m

h6 - 90$77D2y1 - @yﬂ/}%a h7 - @y1¢1x - spﬁwlyp h8 = ¢1y1¢2x - ¢1x¢2y1'

Equation (4.6) presents the necessary form of a system of two second-order
ordinary differential equations which can be mapped via point transformations

into a system of linear equations (4.3) .

4.3 Sufficient Conditions for Equivalency to (4.5) via Fiber

Preserving Transformations

For obtaining sufficient conditions of linearizability of system (4.6), one
has to solve the compatibility problem of the system of equations (4.7)-(4.21),
considering it as an overdetermined system of partial differential equations for the
functions 11, 1, and ¢ with given coefficients a;; of system (4.6).

The next part of the present thesis deals with a fiber preserving set of point

transformations (4.4):

t=o(x), w1 = Y1(x,y1,¥2), U2 = Vao(T, Y1, Y2),

and constant matrix

ki ks
K =

ky ko
The compatibility analysis depends on the value of 9y, .
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4.3.1 Case ¢, #0

Substitution of ¢,, =0 and ¢,, = 0 into (4.7)-(4.21) gives

a1 =0, a12 =0, a13 =0, (4.22)

Uy (20020 — @ov(a17 + azs))/(2¢4),
Uy, —v(2a14 + azs) /2,
Uy, —v(as + 2a9)/2,
U1 ga (Prathr, — @xg(kl% + k3tps) — 9011/11?,1@19 - 9011/11?,2@29)/(%, (4.23)
¢1zy1 (S%xwlyl - %ﬂhyl air — ¢x¢1y2a27)/(2§01)7 (4.24)
¢11y2 (SOxx@/)lyQ - @x@blylaw - ¢x¢1y2a28)/(2%:): (4.25)
Uiy — (1, @14 + P1,,024), (4.26)
Vlyys —(¥1,,a15 + P1,,025) /2, (4.27)
Y1y, —(¥1,,a16 + P1,,026), (4.28)
Vg, (V14,02 — V) /1y, (4.29)
P2y (@240 — Y1y W2y, a1a — Y1y, 2y, ana) U1y, (4.30)
Y2y, (Paathry, Yoy, — Patbry, Y2y, 017 — uib1,, Vo, aor (4.31)
T Pata7v) [ (200¢1y, ),
V24y (Paat1y, V2, — a’ U1y, (Ratha + kathr) — @athry, Y2y, a1 (4.32)
— 21, W2y, G29 + P2a2900) [ (P21, ),
where A = —p,v # 0. Comparing the mixed derivatives (v;)y, = (Vy, )z, (Vz)y, =

(Vy,)z and (Vy, )y, = (Vy, )y, One obtains the equations

20145 — Q174 + Q255 — G2gy, = 0, 15, — A17y, + 2026, — A2gy, = 0,

(4.33)

a15yl — 2a14y2 — a25y2 + Qa%yl = 0.
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Considering the conditions (wlx:c)yl = (wlzyl)xa (1/}29::5)1/1 = (w%cyl)wv (wlm:c)m =

(V12y,)z and (V2,,)y, = (U2, ez, One has

Przzx — (3901’x2¢1y1 - 490x4¢1y1 ki — 490$4,17Z)2y1 k3 + %2@/)1;,1 ()‘20 - )‘16) (434)
+0a W1, M2) [ (202401, ),

ki = (4", oy, (k1 — ko) + 40202y, *ks — vA12) /(4ps 11, ?), (4.35)

ks = (P1y,° M2 — 1y, Aas — Y1y, 11, M6) /(402 70), (4.36)
ky = (42t ko — 20y, 2y, Mis — 2001, U1, U, Mg (4.37)

+th1,, v 16 + 2¢1y22¢2y1)\12 - 2¢1y2v>\12)/(490x2¢1y10)~

Here the functions A, (z,y1,y2) are defined through a;;(z,y1,y2) and their deriva-
tives (presented in Appendix G).

Equating the mixed derivatives (¢1zy1)y2 = (wlxyz)yl, (wgwl)y2 = (@Z)QyQ)Iyl,
(Pray )y = Wrgiy)as (Woay, )y = (Woyiy)ar Wrago)ye = Wryign)ar (Vrayy )y =
Wiy )er D1y )ye = Wiy W2y = (2g,)yis (WPryn)ye = W1yap,)n

and using the conditions (k3),, = 0, (k2),, = 0, one obtains
A=0, (n=1,2,..,11). (4.38)

Note that the equation (¥1,,,)y, — (¥1,,4,)z = 0 is also satisfied. Differentiating

equation (4.34) and (4.35) with respect to y; and ys, one has
2/\15y1 - 2@14/\15 - CL15)\16 + a25)\15 = 0, >‘27+j == O, (] == 0, 1, 2) (439)
The equation (k4), =0 is

4(,0;51,)\121) + (,Dx/\141) = 0. (440)
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Considering the equation (k3), = 0, one gets
4<,0m¢1y12)\15 + 4pzath1y, Y1y, M6 — 4<Pxx¢1y22)\12 (4.41)
+0ath1y, 2 (—2A15, + a17A15 + A18A16 — az2sA1s)

+280x¢1y1?/11y2<—>\16x — ajgh12 + darAis) — 90x1/)1y22>\14 =0,

and the condition (k3), = 0 gives

490xm¢1y12¢2y1>\15 + 4PueV1,, V1, Y2y, M6 — 2022015, M6V (4.42)

—490m¢1y22¢2y1>\12 + 41y, A120 + 90x¢1y12¢2y1 (—2\15, + a17)is
+a1gAi6 — aAis) + 20001, V1, Yy, (—Aiee — @18 A12 + azrAis)

+<,0z¢1ylv(>\16x + agAi2 — a27)\15) - ¢x¢1y22¢2y1>\14 + <Px¢1y2>\14v = 0.
Adding j; times (4.40) to (4.41), where j; = ¢1y22/v, one has
4021y, M5 + 40uatb1,, U1y, Mo + Patbry, 2 (=215, + @17 (4.43)
+aigAis — agsAis) + 290z1/11y1¢1y2(_/\16z — a1ghig + agrhis) = 0.

Subtracting equation jy(4.40) + j3(4.43) from (4.42), where jo = (1,0 —

w1y22w2y1)/v and j3z = 1)y, , one has
21, V( M6z + a18A12 — A27A15) — 204201, A1gv = 0. (4.44)
Subtracting equation j4(4.44) from (4.43), where j; = (=2¢1,,)/v, one has
40521y, M5 + @atiny, *(a17 M5 — 2A15, + a1shie — azsAis) = 0. (4.45)
Next consider the equations (4.40)/v, (4.45)/j5 and (4.44)/js, where j5 = ¢1y12
and jg = 11, v, one achieves
4pzziz + paria =0, (4.46)
2050 M6 — YoMz + a18A12 — azrAis) = 0, (4.47)

4ppais + ©u(@17M15 — 2A15, + a1sA16 — aasA1s) = 0. (4.48)
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Further analysis of the compatibility depends on the values of the coefficients A;s,

A5 and Ajg of the last three equations (4.46)-(4.48).

Case A5 # 0.

Substituting ¢,,, found from equation (4.46), into (4.48) and (4.47), one

obtains

171215 — 2A15. 12 + Q181216 — Gag A2 A5 — AaAis = 0,

(4.49)
2162 12 + 2a18A12° — 2a27 A 12M15 + A1adig = 0.
Differentiating equation (4.46) with respect to y; and ys,, one has
A2, A1a — Arag, A1z = 0, Aray, Aig — Argg A1z = 0. (4.50)
Equation (4.34) becomes
ki = (16¢1y12¢2y1)\122)\15 + 16¢1y1¢1y2¢2y1)\122)\16 (4.51)

+16¢1y1)\122’0()\20 — Ai6) + 411, Aav(2A14, + @171
—asgA1a) + Y1y, Mav(dasrhig + 5Aia) — 161, %2, Aio®

+16¢1y2)\123v)/(64¢$2¢1y1)\122?})~
Differentiating equation (4.51) with respect to x, one gets the condition
32)\123>\17 + 8)\122)\18 + 2)\12)\19 + )\14(8@272)\162 + 18@27)‘14/\16 + 15)\142) = 0. (452)

Notice that the equations (k;),, = 0 and (k;),, = O are satisfied. Hence, there
are no new conditions for the functions ¢(x), ¥1(z,y1,y2) and o(x,y1,92). In
summary, the criteria for linearization are conditions (4.22), (4.33), (4.38), (4.39),

(4.49), (4.50) and (4.52). Note also that updating the k;, (i = 2, 3,4), these become
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as follows:
ky = (Aso/epa’) — b, (4.53)
ks = (1/111122)\12 - ¢1y12)\15 — Y1, 1, M16)/ (405°0), (4.54)
ke = (Y1, W2y, M5 + U1y, U1y, Uy, * A6 — Y1y, oy, MgV (4.55)

—¢1y22¢2y12)\12 + 241, 1o, A120 — >\12U2)/(4%2¢1y12v)-

Case A\ =0 and A\ # 0.

Since A2 = 0 and ¢, # 0, equation (4.46) leads to the condition A4 = 0,
and equation (4.47) becomes
Prz = Som)\16z/(2)\16)-

Substituting ¢, into (4.48) and (4.34), one gets

2(M6zA 15 — MspAis) + AisAig(arr — ags) + aighig” = 0, (4.56)

ki = (4, w2y1A162>\15 + 4¢1y2¢2y1)\163 — 4Mi6°0 + 467 Aagv
—4A16A 16220 + D16, V) /(16057 A1670).
The equation (k;), = 0, leads to the condition
8A16° Aot 4 4167 A2z + 18A16 A 1620 62 — 15A16,° = 0. (4.57)

Note that the equations (¢.;),, = 0 and (k1),, = 0, (i = 1,2) are satisfied. Hence,
there are no other conditions for the functions p(z), ¥1(z,y1, y2) and Va(x, y1, y2).
Summarizing, the linearization criteria in the case A\ = 0 and A5 # 0 are condi-
tions (4.22), (4.33), (4.38), (4.39), (4.56) and (4.57). Note also that updating k;,

(1 = 2,3,4), these become as follows:
k’g = ()\31/30952) — kl, (458)
ks = (=1, M5 — Uiy, Y1, A16)/ (49,°0), (4.59)

ke = (¢1y1¢2y12)\15 + ¢1y2¢2y12)\16 - ¢2y1)\16v)/(490x21/11ylv)- (4.60)
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Case )\12 = O, )\16 =0 and )\15 7é 0

Substituting ¢,., found from (4.48), into (4.34), one has
kl = (16¢1y177/)2y1)\153 + )\261})/(64@362)\1521)). (461)
Differentiating equation (4.61) with respect to x, one gets

A5 Aas 4 22152 A5 — 120A15,° 4 36X 1515, (4 15,0 (4.62)

+ 15,017 — Ai5.a08) = 0.

Note that the equations (@), = 0 and (k1),, = 0, (i = 1,2) are satisfied. Hence,
there are no more conditions for the compatibility, and the linearization criteria
in the studied case are (4.22), (4.33), (4.38), (4.39) and (4.62). Note also that

updating the k;, (i = 2,3,4), these become as follows:

ky = ()\32/9022) — kK, (463)
ks = (—¢1y12)\15)/(49012?1)> (4.64)
k‘4 = (wgylz)\15)/(4g0x2v). (465)

Remark 4.1. In the case A3 =0, A\ig =0 and A5 = 0, one has

kl = k2 = (3902m2 - 2903:x:p()0:v + (px2)\33>/(4()0x4)7 k3 = k4 =0.

This case corresponds to (2.34).

Combining all derived results in the case vy, # 0, the following theorem
is proven.
Theorem 4.1. Necessary and sufficient conditions for system (4.6) to be equiva-
lent to a linear system (4.3) with constant matrix K via fiber preserving transfor-
mations are
(I.) The conditions are equations (4.22), (4.33), (4.38) and (4.39), together with

the additional conditions:
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(I.1.) If A1z # 0, then the additional conditions are equations (4.49), (4.50) and
(4.52).

(I.2.) If A\;2 = 0 and Mg # 0, then the additional conditions are equations (4.56)
and (4.57).

(I.3.) If A;2 = 0, A;g = 0 and A5 # 0, then the additional condition is equation
(4.62).

(I.4.) If Aja =0, Mg = 0 and A5 = 0, then there are no additional conditions.

4.3.2 Case ¢, =0

Without loss of generality, we can assume that 15, = 0 as well. Otherwise

the change of variables (which is indeed an equivalence transformation)
T =1, Y1 = Y2, Y2 = Y1,

will bring us back to the case 91, # 0. Thus, substituting ¢,, =0, ¢,, = 0 and

1y, = 0 into (4.7)-(4.21), one obtains the equations as follows:

a1 = 0,a12 = 0,a13 = 0,a15 = 0,a16 =0,

(4.66)
ars = 0,a24 = 0,a95 = 0,a27 =0,
Yoy, = —2,, 014, (4.67)
Yoy, = (Paatay, — Pata,,017)/(2¢02), (4.68)
V1yoyy = —V1,,026, (4.69)
Vigy, = (Paa1y, — P2P1,,028)/(2¢02), (4.70)
Vige = (Paatlin — 0o (k1thr + kstho) — uthr,,a20)/a (4.71)
Vone = (Puathzg — @ (kaths + kath1) — 0athay ar9) /pa, (4.72)

where A = —p,91,,19, # 0.
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From equations (4.67)-(4.72), one can compare the mixed derivatives

(¢1y1)xy2 = (¢1zy2)y17 (l/Jla:yQ)yz = (¢1y2y2)$7 (@Z)lyl)yzw - (77Z)1y2y2)y17 (¢2y2)ﬂcy1 =
(wayl)yw (w%cyl)yl = (walyl)xv (wag)ylm = (walyl)yza <wlxx)y1 = (wlyl)xl”
(wQIm)w = (w2y2>9€9«"7 (wlzx)yz = (wlscyg)r? (¢2:cx>y1 = (w%cyl)ﬂw one obtains

aggy, = 0, aogy, = 20265, a26,, =0, a17y4, =0,

(4.73)
17y, = 20144, 14y, = 0,
ks = (—aa9y,1,,)/ (02" Va2y,), (4.74)
ks = (—a19,,02,,)/ (02" U1,,), (4.75)
ki = (3¢u” = 20umpe + pa’ )/ (4027), (4.76)
ky = (3¢na” = 2Puaatpn — Pa’ha)/ (42"), (4.77)

where the coefficients p,, are defined through a;; and their derivatives, shown in
Appendix G.
Since k;, (i = 1,...,4) are constant, the equations (kg), = 0, (k2)y, = O,

(kl)m =0, (k3)y1 =0, (k4)y2 =0, (kl)yz =0 and (kQ)y1 =0 give

Q199,14 — A19y 9y = 0, A29y, 26 — A29y,yp = 0,
A29y,y, 1 G20y, 14 = 0, A19y,y, + A19y, 026 = 0,
(4.79)

2650 — (265028 T 126,029 — A29y,y, T 029y, 126 = 0,

Al4ge — Q142017 + A4y, Q19 — 19y, T A19,,a14 = 0.
Notice that the equations (@uzzz)y; = 0, (Przaz)ys = 0, (k3)y, = 0 and (k4)y, =0

are satisfied. Considering the derivatives (k;), = 0, (k3), = 0 and (k4), = 0, one
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achieves

20z pts — Papis, = 0, (4.80)
(Prz — Patiz)azgy, =0, (4.81)
(2w — Pafta)arg,, = 0. (4.82)

Further analysis of the compatibility depends on asgg,,, aig,, and ps.

Case agy,, # 0.
From equation (4.81), one obtains that
Pz = Pal3-
Substituting ., into (4.80) and (4.82), one has

253 — s, = 0,

(4.83)
19y, (3 — pa) = 0.
Substitution of ., into (4.78) gives
2:u3:m: + M2, — 6#’?@#’3 - 2,“2,“3 + 2”33 =0. (484)

Note that the equations (¢uz),, = 0 and (¢us)y,, = 0 are satisfied. Hence, there
are no new conditions. In summary, the linearization criteria are equations (4.66),
(4.73), (4.79), (4.83) and (4.84). Note also that updating the k;, (i = 1,2,3,4),

these become as follows:

ky = (s® — 2p3, — pis — pi2)/ (4a”),
ko =k + ,u5/(490w2)7
k3 = (_a29y1¢1y2)/(90x2¢2y1)7

ky = (—a19,,02,,)/ (02" U1,,)-
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Case agy,, = 0 and ayy,, # 0.
From equation (4.82), one obtains that
Prz = Prfq.

Substituting ¢, into (4.80), one gets

Substitution of ¢,, into (4.78) gives

Gptagha — Py — 2y, + 2Hiafts — 21° = 0. (4.86)

Note that the equations (¢us),, = 0 and (¢us)y, = 0 are satisfied. Hence, there
are no other conditions. Thus, the linearization criteria in this case are (4.66),
(4.73), (4.79), (4.85) and (4.86). Note also that updating the k;, (i = 1,2,3,4),

these become as follows:

ky = (M42 — 24, — 5 — Mz)/(4%:2)a
ko =k + M5/(4S0z2)7

k3:0,

ky = (—a19y2w2y1)/(¢x2w1y2>'

Case ag,, =0, ayg,, =0 and ps # 0.

From equation (4.80), one obtains that

Substitution of ¢,, into (4.78) leads to the condition

5% (A5 12 — 45500) + 181540 tts s — 15p1s5,° — Apia,pis® = 0. (4.87)
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Note that the equations (¢uz)y, = 0 and (@), = 0 are satisfied. Hence, there
are no more conditions. In brief, the linearization criteria are conditions (4.66),

(4.73), (4.79) and (4.87). Notice also that
kg = k?l + ,u5/(4<,0x2), k’g = O, k4 = 0.
Remark 4.2. In the case ay,, =0, aig,, =0, pus = 0, one has

kl - k2 - (39‘%3:2 - QQOLB:CLBQO;B + 9012M2)/(4§0m4>’ k3 - k4 =0.

This case corresponds to (2.34).

Combining all obtained results in the case ¢, = 0 and v, = 0, the
following theorem is proven.
Theorem 4.2. Necessary and sufficient conditions for system (4.6) to be equiva-
lent to a linear system (4.3) with constant matrix K by fiber preserving transfor-
mations are
(I.) The conditions are equations (4.66), (4.73) and (4.79),
and the additional conditions:
(IL.1.) If ag,, # O, then the additional conditions are equations (4.83), (4.84).
(I1.2.) If agy,, = 0and aig,, # 0, then the additional conditions are equations
(4.85), (4.86).
(IL.3.) If azgy, = 0, aig,, = 0 and s # 0, then the additional condition is equation
(4.87).
(I1.4.) If agy,, = 0, a1g,, = 0 and 5 = 0, then there are no additional conditions.
Remark 4.3. If one assumes that the conditions (II.) of Theorem 4.2 are valid,
then the conditions (I.) of Theorem 4.1 vanish. Moreover, these conditions also
imply that Ao = —4agg,,, A\is = —4a19,,, A\ie = —pi5, and the following is valid:
(a) the conditions (II.1.) become a particular case of the conditions (I.1.); (b) the

conditions (I1.3.) are a particular case of the conditions (I.2.); (c¢) the conditions
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(I1.2.) with ps # 0 and ps = 0 form particular cases of the conditions (I.2.) and
(I.3.), respectively. This allows to propose the conjecture that Theorem 4.1 is valid
independently of the values of ¥y, and 1g,.

Notice that this conjecture is to be expected. For example, for a lineariz-
able single second-order ordinary differential equation via a point transformation
the criteria of linearization are combined to only two conditions, whereas dur-
ing compatibility analysis one has to study two separable cases, see in Meleshko

(2005).

4.4 Necessary Conditions of Linearization under Point

Transformations

During the study presented in the previous section several relations for
linearizability for the general case of point transformations (4.2) and for the general
case of the matrix K (¢) were noted. These relations are the necessary conditions
for linearization and they were obtained as follows. For example, assuming that
Y1, # 0, from equations (4.7)-(4.21) one obtains the derivatives vy, vy, Que,
Pryss Pysues Viaas Viay,s iy, (4K, 1 =1,2). Comparing the mixed derivatives of
the functions v, ¢, ¥ and 15, one can find the expressions of the quantities wy,,
(n=1,2,...,15), where w, are expressed through a,; and their derivatives (shown
in Appendix G). Excluding the functions v, ¢, 1 and 1, from these expressions,

one obtains the conditions

Ji=0, (i=1,2,..15), (4.88)
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where

Jl = WiW1i1 — 2001009 —+ 20)10&)2 — W3We, JQ = WiWws5 + 2602006,
J3 = 6&]10&8 — 2&.}1&}12 + 10&]11&)2 — 20(,4.)2(,09 - 5&]%,
Ji = 2wipwr — wiwy, J5 = 10wiwr + wiaws — 3waws,
Jo = wiwyg + wiiwe — 3wawyg, J7 = dwiwis — 2wiws + 10w§ + dwsws,
Jg = 10wiwi3 + wiaws — 3wsws, Jg = wiwis — wiows,
Ji0 = wiwig + wiiwz — 3wswy, Ji1 = 2wiawe — wowsg + dwswy,
J12 = wizws — wawr, Ji13 = 2wiswe — wawy,

Ji4 = wiaws — waws, Jis = 2wiwy — 2wews — wWols.

After obtaining these relations, one can directly check by substituting (4.7)-(4.21)
into (4.88), that they are satisfied for the general case of point transformations
(4.2) and for the general case of the matrix K ().

Thus, the following theorem can be stated.
Theorem 4.3. The conditions (4.88) are necessary for system (4.6) to be lineariz-
able under point transformations.
Remark 4.4. Notice also that considering the conditions obtained in Aminova
and Aminov (2006); Neut, Petitot and Dridi (2009), one notes that they are not

satisfied unless the matrix K = 0.

4.5 Illustration of the Linearization Theorem

In this section, examples demonstrating the procedure of using the lin-
earization theorems are presented.
Example 4.4.1. Some types of Newtonian systems are of the form of a

system of two second-order quadratically semi-linear ordinary differential equa-
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tions

i = alyr, y2)u” + 2b(ys, y2)yivh + c(yr, v2)us’, (4.89)
4.89

vy = d(yr, y2)ui” + 2e(yr, yo)yis + f(y1, o) ws™
In Aminova and Aminov (2006); Mahomed and Qadir (2007) showed that sys-

tem (4.89) is equivalent via point transformations to the simplest equations

iy = 0, 1y = 0 if and only if
S;=0, (i=1,2,3,4), (4.90)

where
Sy =ay, — b, +be —cd, Sy =0b,, —c,, + (ac—b*) + (bf — ce),
S3 =dy, — ey, — (ae —bd) — (df —€®), Sy ="by, + fy, — Ay, — €y
Application of fiber preserving transformation to system (4.89) also leads to the

same conditions (4.90).

Example 4.4.2. Consider a nonlinear system

/" _

2 2
V== =y — @, Yh =g — 2y, (4.91)

where ¢, ¢ are constant. Applying the linearization criteria obtained in Aminova
and Aminov (2006); Neut, Petitot and Dridi (2009) to system (4.91), one obtains
that system (4.91) is equivalent to the free particle equations via point transfor-
mations if and only if g = 0. Let us consider the case ¢o # 0. Note that for
system (4.91):

Az = —4q2, Ay =0, A5 = —4q2, Aig = 0.

Since go # 0, then A3 # 0 and equation (4.46) becomes ¢,, = 0. Taking the
simplest solution ¢ = x of this equation and solving the compatible system of
equations (4.23)-(4.28) and (4.29)-(4.32) for the functions ; and 19, one gets the

solution ¢, = %e(yl_yQ) and ¥y = %e(y1+y2). Notice that we assume k3 = ky = 0
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for convenience, during solving the compatibility system of equations (4.23)-(4.32).
Substituting ¢, ¥ and 1, into equations (4.37) and (4.51), one obtains k1 = ¢1+ ¢
and ks = ¢ — ¢2. Thus, Theorem 4.1 guarantees that system (4.91) can be

transformed to the system of linear equations
ﬂl + /ﬁul = 0, ﬁz + k2u2 = 0,
and the linearizing transformation is

t=x, u = 16(y1—y2)’ Uy = le(yri-yz)'

2

Example 4.4.3. A variety of applications in science and engineering such
as the well-known oscillator system, the vibration of springs and some types of the

conservative systems with two degrees of freedom, are of the form:

v =g1(@)yr + g2(@)ye, vy = gs(@)y2 + ga(@)y1. (4.92)
For system (4.92):
A2 = —4gs, Mie = 4(g91 — 93), M5 = —4g2, Ao = —203,, A2 = 4g3M6x — M6z

Then by virtue of Theorem 4.1, system (4.92) can be reduced via a fiber preserving
transformation to a linear system with constant coefficients if the functions g;(x),

(1=1,2,3,4) are as follows. If g4 # 0, then the conditions are

01292 — 92,91 = 0, Ga(93, — 915) + 9a,(91 — g3) = 0,

1693:(:943 + 49455150942 - 18g4xxg4xg4 + 15g4x3 - 16943093942 = 07

if g4 = 0 and g; # g3, then the conditions are

92(935 — 912) + 92,(g1 — g3) = 0,

8A16° Aot + 4A16%Aa2 + 18X 16 A 1600 M6 — 15 16,° = 0, (4.93)
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if g4 =0, g1 = g3 and g2 # 0, then the conditions are

15g2," — 1824092292 + 1692° g3, + 492 (92000 — 492,95) = 0,

if g4 =0, g1 = g3 and g = 0, then this case corresponds to (2.34).

For instance, considering the oscillator system (go = g4 = 0)

v =agi(@)y, vy = g3(2)ye,

the criteria of (Aminova and Aminov, 2006) and (Neut, Petitot and Dridi, 2009) are
only satisfied when g; = g3. If g1 # g3, then there is only the single condition (4.93)
for two functions g; and g3 which guarantees that a fiber preserving transformation

can transform this system to the case
g + kiug + kgug = 0, tig + kaug + kqup = 0.

Example 4.4.4. We consider a predator-prey population model, the non-

linear Lotka-Volterra system:

?Ji = g(yl, 3/2) = lLiy1 — Ly1ya,
(4.94)

yh = h(y1,y2) = lsy1ye — laye,

where [; > 0, (i = 1,2,3,4) are constant. System (4.94) is a particular case of the

system
vl = fi(y2)yy — fa(y1)vs,
(4.95)
ys = f3(y1)va + fa(y2)v,-
with
fi =1 = by, fo=buy, f3 =1y — 1, fa= 1. (4.96)

System (4.95) is not only the differential form of (4.94), but also a type of system
(4.6). Thus applying conditions (I.) of Theorem 4.1 to system (4.95), one obtains

the needed linearizing conditions:

f=0,(=123,4). (4.97)

7
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The linearizing conditions (4.97) force (4.96) to give Iy = I3 = 0, these make Ao
and A;5 of Theorem 4.1 vanish. Therefore, the differential form of system (4.94) is
linearizable by a fiber preserving point transformation. Note that the transformed
linear system depends on the value of \jg = 12— 1,2

Example 4.4.5. Consider the fourth-order ordinary differential equation

"

yi" = alz,y)(y")" = bla,yr) = 0. (4.98)

Applying the linearization criteria obtained in Ibragimov, Meleshko and Suksern
(2008) to equation (4.98), one obtains that equation (4.98) does not satisfy even
the necessary condition for linearization. On the other hand, equation (4.98) is

equivalent to the system

! = ya, Yy = alz, y1)yh + bz, y1). (4.99)

Applying the linearization criteria obtained in Aminova and Aminov (2006); Neut,
Petitot and Dridi (2009) to system (4.99), one obtains that this system is not
linearizable. On the other hand, system (4.99) is a type of equation (4.6). Applying

Theorem 4.1, one obtains that linearization criteria are
bey, =0, by, =0, a=0.

These conditions require that equation (4.98) is already linear. Note that for

system (4.99), A2 = —4b,,, Mg = 0 and A5 = —4.

4.6 Summary

In this chapter, the necessary form of a linearizable system of two
second-order ordinary differential equations vy = fi(x,y1,y2, Y1, v5), v8 =
fol,y1, Y2, Y1, y4) via point transformations was presented. Some other necessary

conditions were also found. Necessary and sufficient conditions for a system of
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two second-order ordinary differential equations to be transformed to the general
form of linear system with constant coefficients via fiber preserving transforma-
tions were obtained. On the way of establishing of main theorems, we also gave
an explicit procedure for constructing this linearizing transformation. Illustrative

examples of linearization theorems were given.



CHAPTER V

CONCLUSIONS

This thesis was devoted to the study of the linearization problem of a system

of two second-order ordinary differential equations
i‘ = G<t7 x? y? jj? y)? Z.j = F(t7 x? y? i‘? y) (51>

The method of the study was separated into two parts as follows.

5.1 Linearization of a Projectable System (5.1)

A new method for linearizing a system of ordinary differential equations
was introduced. This method consists of sequentially reducing number of the
dependent variables and using the Lie criteria for the reduced equations. The
method was applied to a system of two second-order ordinary differential equations.
Moreover, it was shown that for systems of two second-order quadratically semi-
linear ordinary differential equations the new method gives a more general set
of linearizable systems than is possible via point transformations. An example of
equations which are not linearizable by point transformations, but are sequentially

linearizable by the new method, was given.

5.2 Linearization of System (5.1) via Fiber Preserving

Point Transformations

The necessary form of a linearizable system of two second-order ordinary

differential equations (5.1) via point transformations was obtained. Some other
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necessary conditions were also found. Necessary and sufficient conditions for a
system of two second-order ordinary differential equations to be transformed to
the general form of linear system with constant coefficients via fiber preserving
transformations were obtained. A linear system with constant coefficients was
chosen because of its simplicity of finding the general solution. Along the way of
establishing of main theorems, we also gave an explicit procedure for constructing

this linearizing transformation.
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APPENDIX A
CANONICAL FORM OF A LINEAR

SECOND-ORDER ODE

This part shows that a linear second-order ordinary differential equation:

y' (@) +a(@)y (z)+b(x)y () =c(z). (A1)

can be reduced to the simplest equation

under point transformations.
If ¢(x) # 0, then equation (A.1) is nonhomogeneous. If ¢(z) = 0, then
equation (A.1) is homogeneous. Note that the general solution of equation (A.1)

is as follows
Y =Yn+ Yps
where y;, is the general solution of the homogeneous equation
y' +a(z)y +b(z)y =0

and y, is a particular solution of the equation (A.1).

Next let us construct the point transformation

) (A.2)
Then the derivatives are changed by the formulae
y =2 +y,,

y// — Z// + y}/)/



70

Substitution of these y" and y” into equation (A.1), gives
(2" +a(x)z" +b(2)z) + (yp + alx)y, + b(x)y,) = clz). (A.3)
Since y, + a(z)y, + b(z)y, = c(x). Thus equation (E.3) becomes
2" +a(x) +b(x)z = 0. (A.4)

That is, we can eliminate the coefficient ¢(z) from equation (A.1).
Next will show the elimination of the coefficients a(z) and b(z) from the

equation (A.4). Let us construct the point transformation

t=x, w= (A-5)

where a(x) # 0. Then the derivatives are changed by the formulae
2 =w'a(x) + wd(z),
2 =w"a(z) + 2w'd (x) + wa (z).
Substitution of these 2’ and z” into equation (A.4), gives
w"a(z) +w'(2d/ (z) + a(z)a(x)) + w(a" (z) + a(x)d' (z) + b(x)a(z)) = 0. (A.6)

Next construct the Cauchy problem
o"(x) + a(x)d (x) + b(x)a(z) = 0, (A7)
a(xg) =1, o/(zg) = 1. (A.8)

Then there exists the unique solution of (A.7) satisfying the initial condition (A.8).

Therefore, the equation (A.6) is reduced to
w’a(z) + w'(2d/ (x) + a(z)a(x)) = 0. (A.9)

Since by equation (A.8), a(z) # 0 in some neighborhood of z, equation (A.9) can

be rewritten as follows

w” +w'a(x) =0, (A.10)
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where a(z) =

J a(s)ds
Next multiply the equation (A.10) by the nonzero term e <o , one gets

f&(s)ds
e o (w" +w'a(x)) = 0. (A.11)

f a(s)ds
Defining v’ = w'e®o , one obtains that the equation (A.11) is reducible to

simplest equation

v = 0.

Remark A.1. The values of Jacobians of the point transformations (A.2) and
(A.5) are equal to 1 and ﬁ, respectively.
Remark A.2. The composition of two point transformations is still a point

transformation.



APPENDIX B

THE INVERSE FUNCTION THEOREM

Theorem. (The Inverse Function Theorem)

Let V be open in R" and f:V — R" be C* on V. If Ay(a) # 0 for some a € V,
then there exits an open set W C V' containing a, such that

i) fis 1-1 on W,

ii) f~1is C' on f(WW), and

iii) for each z := f(s) € f(W),
D(f)(z) = [Df(s)]

where D is the Jacobian matrix and [ ]~! represents matrix inversion.
Example. Let f(z,y) = (3z —y, ). Prove that f~! exists.

Defining
b= pley) = 30—y, wi= by =
Then ¢, =3, ¢, = —1, 9, = i, iy = 7%, these imply that f € CY(E), where
E={(z,y)|z e R, ye R\ {0} }.

Next consider

3 -1 -3
Af(a):det . :% 7&07
—z0
o Y2

for all a = (xo,y0) € E with yo # 3.
Thus by the Inverse Function Theorem, the function f~! exists at least

locally and direct computation shows that

ut

3u—_ 1’ ?JZT?(@U) =o 1

r=@(t,u) =



for any (t,u) € f(W), where W is some open set containing a.
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APPENDIX C

ANOTHER EXAMPLE TO EXPRESS THE

POINT TRANFORMATION

Consider the problem™ of finding all partial differential equations of the
form

F(t7$aut>uzauttaum>uz’x> = 07 (Cl)
which are equivalent to a linear second-order parabolic partial equation
Uy + b1 (T, y)vyy + ba(T, y)vy + bs(T,y)v = 0. (C.2)

The essential part of this linearization problem under point transformations, is to

find an invertible change of the independent and dependent variables
T=H(t,z,u), y=Y(t, z,u), v=V(tx,u), (C.3)

which transforms the nonlinear equation (C.1) into a linear second-order parabolic
partial differential equation (C.2). Here the independent variables are ¢, = and
the dependent variable is u. Note that A # 0 is the Jacobian of the change of
variables (C.3)

A = (DH)(DyY) — (D H) (DY),

where

Dt = at + utau + utxaum + uttﬁuta Dx = 8:(: + uxau + uxxauz + utxaut-

*See more details in Thailert (2008).



APPENDIX D
DEFINING DERIVATIVES IN POINT
TRANSFORMATIONS IN CASE OF A

SYSTEM OF TWO SECOND-ORDER ODES

Consider the linearization problem of a system of second-order ordinary

differential equations

v = P,y 90,900 95), Y5 = B,y va, 91, 95)- (D.1)
via a point transformation. The problem consists of finding an invertible transfor-
mation

= (,0(17, y17y2)7 Uy = Tbl(% Y1, y2)7 Uy = ¢2(x7y17 92)7 (D2)

which transforms the system of equations (D.1) into a linear system of equations
7:6.1 + ]fn(t)ul + k]_Q(t)UQ = 0, UQ + k’gl (t)u1 + kQQ(t)UQ =0. (DB)

Notice that in the equation (D.2), x is the independent variable and y;, ys are

dependent variables, and A # 0 is the Jacobian of the change of variables (D.2),

A= (¢x¢1y1 w2y2 —@x¢1y2¢2y1 — Py wlwayQ +90y1 wlyngx_‘_gpr wlwayl _SOwalyl ¢2x) :

In order to find the necessary condition for system (D.1) to be linearizable
to the form (D.3), one need to find the formulae of the derivatives 4 and .
Let us assume that y(x) is a given function*. The first equation of (D.2)

becomes

t=p (@ ()1 () = @)

*This function need not to be the solution of equation (D.1).
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Suppose that ¢ () = 0, then t = ¢ = constant. This contradicts the nonzero
value of the Jacobian of the change of variables (D.2). Thus, ¢ (z) = @, + ¥,y +

Yooy, 7# 0, then by virtue of the Inverse Function Theorem, one finds

z=£(t). (D.4)

Substitution of x into the second and third equation of (D.2), one obtains

uy (1) =1 (§(1), 91 (£(1)), 52 (€ (1)), (D.5)

ug (1) =12 (€(1) , 41 (€(1)), y2 (£ (£))) - (D.6)

Thus the first-order derivatives of wuy,us with respect to ¢, are defined by the

formula

) duy O d§ 0Py dys d§ Oy dys dE / / dg
_duwy _ O dE | Oy dyidS | OYrdys df “ (7
U= T or dt T oy dedt T Oy de dr Ve TV, e, ) g (D7)

duy _ Iy % Oy dyy d§ | Oty dyp d€ d§

/ /
e N ) e s . —. (D.
U= T ordt Ty dr dt Oy drdr Vet Fvata) G (D)
To find %, let us consider the identity
t=p (), (E1),y2(£1)). (D.9)
Differentiating the equation (D.9) with respect to ¢, one obtains
b OpdS | Op dydS | O dy, d
dt — Oxdt Oy dx dt Oy, do dt
dg
L= (0n +10m +4avu)
d. 1
@ _ - (D.10)
dt (02 + Y10y + Y50y,

Substitution of % into equations (D.7) and (D.8), one obtains

. ¢l:p + leyl + yé%m Dx¢1 o
U = — :hll(xaylay%yay):
Or+ U ow +Uhow  Dap b

. sz + y/1¢2y1 + yé¢2y2 Dm¢2 o
Uy — = :h21(l’7y17y2;y;y);
Pr+ Yoy + U5y, Dap oo




7

where

D —34_ ’i_f_ ’i+ ”i
x — 6$ y18y1 y2ay2 ylai

+ y// a
A

is the total derivative with respect to z.
Next consider the second-order derivative of u; with respect to ¢, is defined

by the formula
dPuy iy _ dhy (§(), 31 (E(1) 42 (§(})) w1 (€(1) 95 (€(1))

flj”l pu— pum

dt? dt dt
Ohiy d€ | Ohuydyn S OhuydypdS  Ohuydyi g by dy) de

Ox dt Oy dx dt  Oys doe dt  Oyy dv dt Oy, dx dt
dg
dt

- (hllx + yihlyl + yéh‘ng + /ylllhllyll + yghllyé)
hite + Yihiy, + yshay, + yihiy + y3hay,
Pz + Y19y T Yoy,

Dmhll
D,y

= hao (T, Y1, Y2, U1, Yo Y1 Y ).

Note that the formula for the second-order derivative of u, with respect to t, is

similar to u;. That is, one obtains

u2 = hgg(ﬂf, Y1, Y2, y/17 yéa y1,7 yg)

Repeating the same process, one obtains the higher order derivatives by the

formulae
w® = % = % = Tus(x, Y1, y2, Y1, Yoo 015 U5, 915 Y5 ),
us® = % = %hj = has (2, Y1, Y2, Y1 Yoo UL 5 01 U5,
wW = dzst(g) = IZL;’ = (@, Y1, Yo v Yoo U s 0 ),
u't = dq?t(g) - l;fz;g = haa(, Y1, y2, 01 U 0 v 0t i D).

The recurrent formula is as follows

dul"™" " Dhi,_1);
o 2w ™), (n=1,2,.0k), (= 1,2
u] dt DSD nj('r7y7y7y 7"‘7y )7 (n Y LA )7 (j Y )'
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Note that u§0) = u; and h(); = 1;. Observe that the order of the given ordinary
differential equation is preserved under the invertible point transformation (D.2).

For the relation of the solutions g;(x), g2(x) and @4 (t), uz(t), according to
(D.4), (D.5) and (D.6), one can convert the solution ¢;(z),%2(z) to the solution
Uy (t), ug(t). Conversely, since the point transformation (D.2) is invertible, x, y;

and ys can be written as follows

rT=¢ (t7U17U2) y 1 = 1&1 (tﬂil,uz) y Y2 = 1&2 <t7u17u2) . (D'll)

If we have the solution @ (t), @2(t), by applying the Inverse Function Theorem to

the first equation of (D.11), one obtains
t=o(x).

Substitution of this ¢ into the second and third equation of (D.11), one obtains

the solution



APPENDIX E

PROOF FOR CANONICAL FORMS OF A

SYSTEM OF N LINEAR SECOND-ORDER

ODES

Let us consider a linear system of n second-order ordinary differential equa-
tions

i+Co+Dv+ E=0, (E.1)

where v = v(t) and E = E(t) are vectors, C' = C(t) and D = D(t) are n X n
square matrices.

If E(t) # 0, then system (E.1) is called nonhomogeneous. If E(t) = 0,
then system (E.1) is called homogeneous. Note that the general solution of system
(E.1) is of the form

V= Uy + Up,
where vy, is the general solution of the homogeneous system
4 C(t)o+ D(t)v =0,

and v, is any particular solution of the system (E.1).

Next defining the point transformation
r=t, z=uv-—1t). (E.2)
Then the derivatives are changed by the formulae
V=Z+ 0,

v:z+vp.
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Substitution of these v and ¥ into system (E.1), gives
(Z+C(t)e+ D(t)z) + (U, + C(t)0, + D(t)v,) = E(t). (E.3)
Since t, + C(t)v, + D(t)v, = E(t). Thus system (E.3) becomes
Z+C):2+D(t)z = 0. (E.4)

That is, we can eliminate the vector E(t) from system (E.1).

E.1 First Candidate for the Canonical Form.

Since there exists G(t), where Gy(t) is nonsingular n x n square matrix

satisfying the Cauchy problem

2G1(t) + C()G1(t) = 0, (E.5)
det Gl (to) 7’é O, (EG)

we can define u = (G(t)) 2. Hence the derivatives are changed by the formulae
5 =uGy(t) +uGy(t), %= iiGi(t) 4+ 2uG(t) + uGy(t).
Substitution of these 2 and Z into system (E.4), gives

i+ (G1(1) 71 (2GH (1) + C(1)GA (1)) (E.7)

+H(G1(1)H(G1(t) + C(1)G1(t) + D(t)Ga(t))u = 0.
The property (E.5) implies that the system (E.11) reduces to
i+ Ku =0, (E.8)

where K = (G1(t)) 1 (G1(t) + C(t)G1(t) + D(t)G1(t)). Notice that system (E.8) is

called the first candidate of canonical forms.
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E.2 Second Candidate for the Canonical Form.

Since there exists Go(t), where Gs(t) is nonsingular n X n square matrix

satisfying the Cauchy problem

Ga(t) + C(1)Ga(t) + D(t)Ga(t) = 0, (E.9)

we can define u = (G(t)) 2. Hence the derivatives are changed by the formulae
5= uGo(t) + uGs(t), %= iiGs(t) 4+ 2uGa(t) + uGs(t).
Substitution of these Z and % into system (E.4), gives
i+ (G4(1)) 1 (2G(t) + C(t)Ga(t) )i (E.11)
+(Ga(t)) T (Galt) + C(t)Ga(t) + D(t)Ga(t))u = 0.
The property (E.9) implies that the system (E.11) reduces to
i+ Kyi =0, (E.12)

where K; = (Gy(t))(2G5(t) + C(t)Ga(t)). Notice that system (E.12) is called
the second candidate of canonical forms.

Remark C.1. The value of the Jacobian of the point transformation (E.2) is
equal to 1.

Remark C.2. The initial conditions (E.6) and (E.10) imply that the solutions
G1(t) and G(t) are nonsingular in some neighborhoods of ¢y, respectively.
Remark C.3. The system (E.5) can be written as a linear system of n? first-
order ordinary differential equations. Meanwhile, the system (E.9) can be written
as a linear system of 2n? first-order ordinary differential equations. One may
thus apply the theorems* of existence and uniqueness to those linear systems to

guarantee existence of solutions.

*The details are presented in Appendix F.



APPENDIX F
THE THEORY OF EXISTENCE AND

UNIQUENESS OF LINEAR SYSTEMS

Definition. Any system of m first-order ordinary differential equations of the

form

X =F(tX), XeRm, (F.1)

is called a normal system of first order ordinary differential equations.
Definition. A normal system of p'* order ordinary differential equations for the

unknown functions & (t), & (%), ..., £, (t) is any system of the form

d&, dre,

dP &y,
7€n7 dt PR dtr—1 7t) ( )

dtp

— Fi(¢ d& dp 1515 @ "6,
- 1y 3, dtp 152 JREES) dtpfl [N

where k = 1,2, ...,n. In other words, the highest derivatives of each function &,
(k=1,2,...,n) can be found only in the left side.

Theorem. A normal system (F.2) of ordinary differential equations is equivalent
to a normal system of the type (F.1).

Proof.

We introduce new unknown functions:

d§1 d2§1 dP=1&
X, = X , X e, X, =
1 517 2 = d 3= dt2 ) ) p dtpil )
ds d*&s o S

p+1 £27 p+2 — %7 Xp+3 = W? sy X2p - dtp—1 )

p+1 fna p+2 = E; p+3 = W’ ceey np — dtp—1 5
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where p = (n — 1)p. Hence the normal systems of the type (F.2) is transformed to

a normal system of first order ordinary differential equations:

dX; .
dt :Hi(t7X17X2,X37...,Xm), (’L: 1,2,...,m), (F?))

where m = np. Note that if i = jp, (j = 1,2, ...,n), then H; = F}.

Thus, the study of a normal system of first-order ordinary differential equa-
tions provides insight into any kind normal systems (F.2).

Therefore, in the scope of this thesis, it is enough to study the existence
and uniqueness theorems for normal systems of first-order ordinary differential
equations as follows.

Theorem. (Local theorem)
Consider a Cauchy problem consisting of a normal system of n first-order ordinary

differential equations,

X =F(t,X), X(t) = Xo,

which satisfy the properties:

(a) F(t,X) € C(D), where D is an open set in R"!,

(b) for the cylinder G = { (t,X) € D | [t —to] < a, || X — Xo [|[< b }, there are
constants m = max , ., . || F'(¢, X) | and h = min(a, L),

(c) F(t, X) satisfies a Lipschitz condition in G.

Then there exists one and only one solution of the Cauchy problem in the interval
J = [to — h,to + h].

Theorem. (Global theorem)

Let F(t, X) € C(D) satisty a Lipschitz condition in D with the Lipschitz constant

L(t), which can depend on t: there is a function L(t) € C(J), J = (a,b) that

I E @, X1) = F(t, Xo) |< L) || Xa = Xa |,
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where D = { (t,X) € R""|t € J }. Then there exists one and only one solution

of the Cauchy problem:
X =F(t,X), X(t)) = Xo, to € J,

on the interval J, ¥(Xy, %) € D.

F.1 Systems of linear equations

Let us consider a linear system of n first-order ordinary differential equa-

tions. In matrix form it can be written as
X(t) = A(t)X(t) + B(t),

where X (t) and B(t) are column vectors of the length n, A(t) is n x n square
matrix.
Theorem. If A(t) and B(t) € C(J), then there exists one and only one solution
of the Cauchy problem:
X(t) = A(t)X(t) + B(t),
X(to) = Xo, to € J,

defined on the whole interval J.
Proof.

For proving the theorem one needs to check conditions of the global theorem.
Here F(t,X) = A(t)X + B(t). Thus, F(t,X) € C(D), where D ={ (t,X) | t €

J, X € R™ }. For checking the Lipschitz condition in D, one has to study
F(t, X)) — F(t, X2) = A(t)(X; — Xb).

Therefore F(t,X) satisfies a Lipschitz condition in D with the Lipschitz constant

L(t) =| A [l2-
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APPENDIX G

DEFINITION OF \,, u, AND w,

2a98,, — 2027y, + Q17025 — 2418024 — Q25028 + 2026027,
2a18y, — 2017y, — 2a14a18 + a15a17 — a15028 + 2a316a07,
dagy, — 2a97,, — 2a14a27 + 2a17024 — 2024028 + a25a27,
2a98,, — 2a95, + a15a27 — 2018024,

Yy
2a98,, — 426, + 2016027 — A18a3s5,

2
26!25;,1 - 4a24y2 + 2a14a95 — 2a15024 + 4a24a26 — 257,
daie, — 2a18y, + a15018 — 2a16a17 + 2016028 — 218026,
2

dayey,, — 2a15y, — 4a1sa16 + a15” — 2a15a26 + 2016025,
2a95,, — 4az6,, — 15025 + 4a16a24,
2a18,015 — 816y, A19 — BA16y,A29 — 417,016 — 4184,
—4da1g,a26 + 2018y, a18 + 2018y, 017 + 2018, 028 + Ba19,, A16
+8a19y,y, — BA19y,015 + 819y, 26 + 4a26,018 + 428,016
—16 —2 22 2 22 2

29y, A16 a14018 Q15018098 + 2016017 A16a28
+2a + aig’ags + 2

17018026 T 418 A25 A18026028,
2a18y2a27 - 4a19yga25 — 4ag6,, + 40265028 — 4a26y1a19 - 4a26y2a29
+4a29y1a16 + 4a29y2y2 - 4a29y2a26 — 15018027 + 2016017027
—2a16a27028 + 2018026027,

2097, — 4asg,, — Q17027 + 4a19G24 + 2025029 — A27023,
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)\15

A6

A7

A2

)\22
)\23

A24

86

>\12(6L28 - al?) — ag7A16 — 2124,

2a18, — 4a19y, + 2a15019 + 4a16a29 — a17a18 — A180a28,

darg,, — 2a17, + 2as8, — 4asg,, — 4a14a19 — 2015029 + Q17°
+2a19a25 + 4asgazy — ass’,

2a19,025 — 219y, 027 + 2025,019 + 4026020 + 2028, — 208,028
—4a29,y, + 420,026 — 2029, G138 + 150419027 + 216027020 — Q17018027
+2a18019024 + A18025029 — A18A7028 — G715,

2019y, A1a + 4aggy A1a — 10a29,, A4 + 2A 1455 + 214,017 — 214,008
—2a14a19\14 — Q1502914 + a172/\14 — 17028\ 14 — 318027 A 14
+5a19a95A 14 + 10a26a20 14 — 2a28* A4,

829y, AM14A16 + 8A 14,027 16 + 18A 145 A 14 + 8ar7aar Ad1adis + 9a17 14>
—8a19a24 A 1416 — 4a2saa9 N iarie + 4asr* A1adis — dasrassAadie
_9a28/\1427

2025, — 4a29,, — 15027 + 2019025 + 4a26a29 — a2s”,

2026029 + U285, — (285028 — 20294y, + 2029,026,

4612992)\16;); — 2028, M6z — M6zze — M62026020 + )\1635@282’

2a98, — 4agg,, + dazsazy — ass’,

32(a19xy1 - a19m6l14) - 16(@17y1a19 + 18y, @29 + 29,015 — a146l18a29)
+56(a19,, @17 — A14G17G19) — 24(A19y, A28 + A14019028) + 21ass®
+160(a26,a20 — A294y, + A20,G26) + 120(a17a26a29 — G29,,017)
+64a28,, + 48a28,a17 — 112098, a28 + 88(a29,,a28 — A26a28a29)
—36a15a17a29 + 20a15a28a29 + 15a17° — 9ai7’ass — 27ar7ass’,

12(M 1540028 — 522017 + Mi52015029) + 24(Ai5,012019 — G19,, M52)
—16A 15200 — 32028, M5, — IN15,017° + 615017008 + 1915, a08

+88(a29y, M5 — A152026029),



A26

A3t

As2

As3

H1
12%)

29y, 143

87

2 2
(/\15 (16a19y1 -+ 32@28:]0 — 80&29y2 — 16@14&19 — 8@15@29 -+ 5&17
2
—2a17028 + 80a26a29 — 19a9s”) + 4A15(A 15,028 — AN 1500 — A152017)
+20X15,2)/(32X15%)
152 15 ),
8a14y, 19 + 4ais,, azg + 4ar7,y, — 4ar7y, a17 + 4aig, a4 — 2a18y, asr
—8a19y,y, + 8a19y, A14 — Ba19y, @24 — 4a24,018 — 227,015 + Baggy, A15
+2a14a18a27 + A15a17027 — 2015025029 + A15027028 + 8A16a24029
—4ay7a18024 — 1825027,
2a17y1a27 - 8019y1a24 — 4asay, + 4a24,a098 — 4a24y1a19
—dagyy, a9 + 4asgy,,, + 4asg,, a14 — 4asgy, azs + 4asg,, a2,
242
—a15027" + 2018024027,
2018y, Q27 — 2019y, 25 — 4019y, 024 — 40244,A19 — 2025, + 2025,028
—4age,, a29 + 4asgy,,, + 2a29,, a15 — dagg,, Az — 2a14a18027
+2a14a19095 + A15Q17027 — 215019024 — 15025029 — Q15027028
2
+4a16a24a29 + a18a25027 + 4a19a24026 — Q19025 ,
2
(8A127 (=16 + 2A20) + 4X12(2A 14, + a17A 14 — ass A1) + Aa(dazr Mg
2
+5A14))/(32X127),
AN162 Ao — 2X16° — 4A 16 5Mi6.2)/ (8A16>
(AX16"A20 — 2A16° — 4 A 16 A 1620 + DA1627 )/ (8A167),
2 2
(/\15 (16&19y1 —|— 32@28x — 80(129y2 — 16@146L19 — 8@15@29 + 5(117
2
—2ay7a8 + 80agsaz9 — 19a2s”) + 4A15( A 15,028 — 4 A1520 — A152017)
+20A15,2)/(32X15%)
152 15 )»
2
2a98, — 4aggy, — a18a27 + 2a19a25 + 4assazg — agg”,
2
2a98, — 4agg,, + dazsazg — azs”,
2
dayg,, — 2a17, — 4apsarg + a7’

(2a29.y, + @29y, 017 — G29,, A28) /4,



A19y, 4

Hs

W2

w3

Wy

Ws

We

w7

wsg

Wy

%)

w11

W12

w13

38

(201924, — Q194,017 + Q19,,028) /4,

_(Hl + N2>7

2a12,, — 4a11y, — 2a11015 + 2a12014 — Q12025 + 4a13004,

2a12y, — 4a13y, + 4a11a16 — a12a15 + 2a12a96 — 2a13025,

A15y, — 2014y, — 25y, + 2026,, — 4a11018 + 2012017

—2a12a28 + 4aizazy,

2a15,, — 4ai3, — 4arsy, — 2a13017 — 2013098 + 4a14a16

—ar5” + 2a15a26 — 2a16a25,

daya, + 4asgs,, — Bazsy, + 8ai1a1s — 2a12a17 + 6aigass — 8aizasy
—2a15025 + 816024 + W3,

dar, +dagy, — 2a25,, + 2a11017 + 2011028 — 2014025 + 2015024
—4az4a26 + azs°,

2a18y, — 4a1e, — 4aizarg — ai5a18 + 2a16a17 — 2016028 + 201802,
Sais, — 17y, — 4aisy, — Bage, + 3assy, + 4a12a19 — 8aizagy
+daisa1s — 2a15a17 + 2a15028 + dareazr — 4aisass,

A7y, — 20145 + 3025, — 3assy, + 4012029 — 2a15027 + 4a15a24,
2a97y, — 4ag, — 4ariagg + 2a14a27 — 2417024 + 2024028 — Go5027,
dags, + 4agry, — Basgs,, + 8ai1a1g + Baiaazg — 2a15a97 — 2a17a25
+8a1saq + 2a25a28 — 4ageasy,

12a17y2 — 12&183/1 — 8@26z + 4a28y2 — 8&12&19 — 24@13&29 + 12@14&18
—6a15a17 + 6ai5a28 — Bai6a27 — 218025,

2M\15, wia = 46, wis = —2A10.



APPENDIX H

THE COEFFICIENTS ¢;; OF SYSTEM (4.6),

EXPRESSED THROUGH THE FUNCTIONS

a1

Q12

a13

2 ¢1, ¢27 AND kij

Py V1, V2yy — Pongn V14, Y2y, + @y13¢1y2k221/12 (H.1)
0y, U1y, ko1t — oy, Py, ks — @y, 22, k12t

—90y12S0y2¢1y1 kogthy — 80y1290y2¢1y1 ka1p1 + 90y1290y2¢2y1 k11n
+<Py1290y2¢2y1 k12tbs — 90y1¢1y1y1¢2y2 + ¢y1¢1y2¢291y1

Ty 1y, Y2y, — PraWiy, Yoy, )/ A,

2(Py1ya W14, V2yy — Prnya¥1,, Y2y, + 90y1280y2¢1y27€22¢2 (H.2)
+90y12¢y2¢1y2k721¢1 - ‘Py1290y2¢2y27<?11¢1 — SOylz‘PyQ%kalz%

—Py 9%221/}13,1 koatha — @y, Spyz21/)1y1 ko111 + @y, 90y22¢2y1 k11

+©y, 90y221/12y1 k12t2 — 0y V14, V2 T P V1, 02410,
Ty 1y, Y2y, — PraWiy, V2y,y,) /A,

(@yl 80y22¢1y2/€22¢2 =+ 80y190y22¢1y2/€21¢1 - 90y190y22¢2y2k11¢1 (H.3)
—Py ‘PyzQ%yQ k122 — @y V14,0, Vg, + P V1, V24,
Py V14, V24, — Praya V14, Y2y, — 90y23¢1y1 Ekao1)o

—90y23?/11y1 ka1 + 90y231/12y1 ki + 90y231/12y1 k12tbo

— Py 1y, Y2y, + S03J2¢1y2yzw2:t/1)/A’



Q14

Q15

Q16

a7

90

(200 U1y, Y2y, — 200 V1, Y2y, + 3000y, 1, ka2t (H.4)
+390x90y12¢1y2/€21¢1 - 38019%12%1,2/?11% - 3901903112%@,2 k1212

=200y, Py Y1y, ka2t — 2020y, Py 1y, k21901

200 Py, Py V2, k1101 + 2020y, Py Yoy, K122 — @athry,,, Y2y,

+0eV1y, Y2y T Pt V12V24, — Puan V1, V24

— 0y 2Py Raaths — 0y, 20y 1k U1 + @y 2@y tha kit

0y, Pyt k1aths — 20y, V14, Y2y, + 204,81, V20,

+20y, V1ay, Y2y, — PyaV1a¥2y,y, T PyaViy,y, V2o

—290y21/11y1¢2xy1 )/A7

2(Paya W1y, ¥y, — Cayn V14, V2y, + 2020y, Py 1y, kootho (H.5)
+2020y, Py W1y, k21101 — 2060y, Py Y2y, k1101 — 2020y, Py P2y, k1212

— 0Py W1y, koaths — Pay, U1y, k11 + 0oy, thay k11t
+90z80y22¢2y1k12¢2 — PaV1y, V24, T PeV1y, V2410, T PuryaV1:V24,

— 0y V1, V20 — Py s UV1nkoaths — Py, 0y, 01 k19

F 0y Py V2, k1101 + 0y, Py 2, K122 — 0y 1y, Yoy,

+05 V1, V200, T ProVlay V20, — PraV12V2y14, T PPy V20

— Py V1, Y20y, ) [ A,

(Sﬁzs0y22¢1y2 kaatpy + @x@ngQﬁlyQ ko111 — 90m90y22¢2y2 ki1n (H.6)
—¢x<ﬂy22¢2y2/€12¢2 — PeVlypyV2y, T PeV1y, V2400, T Pyoya V1.V,

— Pyoya V14, V2, — <Py231/1193k221/12 - @yzgwlka?/fl =+ @yzgi/fzmkn%
0y, Vo k1aths — yth1, W2, + Pro Wiy V22) /D,

(20024, V12V2y, = 20y V14, V20 + Prathiy, Yoy, — Paat1y, P2, (H.7)
+305° 0y U1y, kaaths + 30520y 1y, ka1t — 3.0y, Y2y, k11t
—3903:2<Py1¢2y27€12¢2 - <Px290y21/11y1 kaothy — 90x290y2¢1y1 ko191

+90x290y21/12y1 ki + @x290y2¢2y1 k121 — 2%:%0;/1 SOygwlkawz



a18

Q19

Q24

25

Q26

91

=200y, Py V1,k21901 + 2020y, Py V2, k1101 + 2000y, Py V2, k12102
=201y, Y2y, T 20201, V25, — Py V122024, T P V14, V240
F204, 0140 V20 T PraV1V2y = 20001020, — PuaV1y, V220) /A,
2(Pays V122, — PayaV1yy V20 + Pa” Py iy, kootho (H.8)
+€0x2¢y2¢1y2k21¢1 — ¢x290y21/12y2k111/11 — 80z2<ﬂy2¢2y2k12¢2

— 0Py U1 k222 — PaPyy U1k U1 + oy, Vo k11t
000y o kraths — P14y, Y2y, T Py, Y20y, T PyaV1y, Vs

— Py 1o¥20y,) /A,

(Pae1,02y, — Peatry, Vo, + 90x3¢1y2 kaotpe + <Pa:3¢1y2 ko111 (H.9)
—<Px3¢2y2k11¢1 - 90x3¢2y2/€121/12 - 901290y2¢1mk22¢2 - 90m2<ﬂy2¢1;5k21¢1
+90x290y2w2wk11¢1 =+ 90x290y2¢2xk121/12 — PaP1202y, + P21y, Y2y,

TP Vlea¥2e = PyaV1a¥2ea) /D,

(@x¢y12¢2y1k11¢1 - @x90y12¢1y1 Fkaotby — @x@y12¢1y1k21@/}1 (H.lO)
+¢z@y12¢2y1/€12¢2 + a1y, Y2y, — Pathiy, Yoy,

— Py V1202, + Pyryy V1, Y2, + 90y13"¢1zk22¢2 + 90y13¢1$k21¢1
—@y13¢2xk11¢1 - 90y13¢2xk12¢2 + Py 1,02y, — ¢y1¢1y1y1¢2x)/A7
2(Payy U1y, Y2y, — Payy 1y, P2y, + 90x90y12¢1y2k22¢2 (H.11)
000y, V1, k1101 — Paipy, 2y, k11t — ©py, Vo, k12t

=202y, Py W1y, ka2tha — 2050y, Py 1y, k2101 + 2020y, Py Y2y, k11901
+2020y, Py Vo, k1202 + a1y, Y2y — P21y, 2y,

— Oy V1V2, + Pyrya 1y, P2, + Cur 2Py 1 k2200 + Py, 2Py 1 ko111

— 0y Py thagkitn — @y, Py o ki2tbs — Oy 14y V2, T Py V10244,

~ Py U1y V20 T Py U1y, V20 T CooWVlay V2ys — Py, U2y, )/ A,
(202, V14, V2, = 200y V14, Y2y, + 2020y, Py 1y, ko2to (H.12)

+2020y, Py V14, k2191 — 2020y, Py V2, k1101 — 20004, Py 2y, k12102



Azt

A28

a29

92

—3<Px80y221/11y1 kooths — 3<Pa:<Py221/f1y1 ko1t1 + 3¢x<ﬂy22¢2y17€11¢1
+390x90y22¢2y1 k12ths — @uth1,, Y2y + Pat1yyy, Y2y,

0y Py V1 k2Ws + 0y, Py 01, K11 — Py 0y, V2 k10

— 0y Pya agkr1202 — 20y, V140, Vo + Py 0150200, — Py Uiy, V2e
20y, V1, V220, — PrayaV12V2y; T Pyaya U1y, V20 + 204,14y, V2,
=20y, 1y, Y24y, )/ A,

2oy 1y, V20 — Payy V1V2y, — Co Py U1y, kaoths (H.13)
— 00" Py U1y, ka1t + 022 @y oy, k11n + @0 0y, Uy, k1ot

000y, Y1k + ©oy, Y1k 1 — 0oy, "o k11t
—90z90y12¢2x/€12¢2 + a1y, Y2y, — Path1y, Vogy, — Pyt Vg, V2u

F05 V1:V22,) /A,

(2029, V1, V20 — 2029, V15Y2y, + PuatPry, Y2y, (H.14)
—rat1y, U2y, + 90w290y1¢1y2 kogths + 90x290y1¢1y2 ko191
—90932Q0y11/)2y2/€11¢1 - S0z280y1 ¢2y2]€12¢2 - 3801290y2¢1y1 Fao1ba
—3<Px290y21/11y1 ko1t1 + 3<Px290y2¢2y1k’11¢1 + 39012<Py2"¢2y1 k1219

2000y, Pys V12k2202 + 2000y, Py U1,k2101 — 2050y, Py V2, k1191
=220y, Py Vo k1202 + 20501,,, Vo, — 20201y, Y24y,

=205, V14, V20 — Py 1222y, T 205 V1020, + Cy V1, V200

T Viaatay, — PPy, Vo) /A,

(Prary, Yoy = Paxtlig oy, — Pa° U1y, kaoths (H.15)
—90x3¢1y1 ko101 + 90x3¢2y1 ki + 80x3¢2y1 k12¢02

027 Py 1 kaaths + 0120y 1.k h1 — 0u” Py Yo ki1t

— 0Py V2 k1212 + Qa1 V2, — a1y, V2ue — Py Vs V2s

+90y1 wlwaacx)/A
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