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The main objectives of this study are (1) to assess LULC and its change between 

2003 and 2013, (2) to identify driving forces for LULC change, (3) to optimize local 

parameter of CLUE-S model and simulate three LULC scenarios for year 2023, (4) to 

assess and evaluate impact of LULC change on soil erosion, water yield and economic 

value; and (5) to allocate an optimal LULC in different scenarios for year 2023. Herein, 

color orthoimages in 2003 and Thaichote data in 2013 were visually interpreted LULC 

data for extracting LULC change and its driving force. Then, CLUE-S model was used 

to simulate three different scenarios of LULC change. After that actual LULC data in 

2013 and three simulated LULC data in 2023 were used to assess soil erosion by USLE 

model, water yield by SWAT model and SCS-CN method and economic value by PV 

model with their impact due to LULC change. Finally, an optimum land allocation with 

suitable class for three scenarios was established by simple additive weighting method. 

 

 

 

 

 

 

 

 



IV 

 

LULC assessment during 2003 to 2013 showed that urban and built-up land, 

cassava, sugarcane, water body, and miscellaneous land were increased while maize, 

perennial trees/orchard and forest land were decreased. The most common driving 

factor for LULC types change was population density. For LULC simulation, the 

increased LULC types were urban and built-up land, cassava, sugarcane, water body 

and miscellaneous land while the decreased LULC types were maize, perennial 

trees/orchards and forest land under Scenario I. Meanwhile, most of the increasing areas 

of cassava and sugarcane under Scenario II came from maize, forest land and 

miscellaneous land. In contrast, most of increased forest land under Scenario III were 

converted from maize, sugarcane, and miscellaneous land. For assessment of soil loss, 

water yield, and economic values from actual and three simulated LULC, total soil loss 

were 40.21, 40.86, 87.96 and 28.78 million ton/ha/year; total water yield were 37.79, 

38.04, 46.13, and 36.22 million cu. m, and economic values of agriculture and forest 

land were 16,987.05, 16,677.33, 12,923.64, and 19,660.13 million Baht. 

For optimum land use allocation according to soil loss, water yield and 

economic values, most of agricultural land in 2023 under Scenario I was allocated in 

moderate suitability class while all of forest land was located in high suitability class. 

Under Scenario II, most of cassava was located in low and moderate suitability classes 

while most of sugarcane was allocated in moderate and high suitability classes. Under 

Scenario III, forest land was allocated in moderate and high suitability class. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Background problem and significance of the study 

The study on land use and land cover change is specifically important with respect 

to a number of aspects including their roles on biodiversity and climate change 

(Trisurat, Shrestha and Alkemade, 2011). Helming, Pérez-Soba and Tabbush (2008) 

stated that the term land use implies human activities that exhibit a spatial dimension 

and change the biogeophysical conditions of land and the environment. From the spatial 

viewpoint, land use is among those human activities have strongest impacts on the 

environment worldwide. Concerns about environmental impacts of land use changes 

are not new. Extensive literature exists on the relations between land use patterns and 

intensities and environmental impacts, e.g. soil degradation (Zapata, Garcia-Agudo, 

Ritchie and Appleby, 2003; Boardman and Poesen, 2006), desertification (Geist, 2005; 

Ci and Yang, 2010), water quality and biotic diversity (Poschlod, Bakker and Kahmen, 

2005). Interrelations between land use changes and ecosystem robustness and resilience 

have also intensively been studied (e.g. Metzger, Rounsevell, Acosta-Michlik, Leemans 

and Schroter, 2006). In recent years, the role of land use in accelerating/mitigating 

climate change processes has gained focus [Intergovernmental Panel on Climate 

Change (IPCC), 2001; Graveland, Bouwman, de Vries, Eickhout and Strengers, 2002]. 

Increasing understanding of the relations between land use changes and environmental 
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impacts have been triggered by a series of studies related to the land use and cover 

change project (LUCC) of the International Geosphere-Biosphere Programme (IGBP) 

and International Human Dimension Programme on Global Environmental Change 

(IHDP) (Steffen et al., 2005; Lambin and Geist, 2006). When compared to 

environmental impacts, social and economic aspects of land use changes are less well 

understood. They are mostly analyzed in the context of driving forces for land use 

changes. 

Thailand has become a newly industrial country (NIC) grown rapidly over the past 

several decades (Rowntree, Lewis, Price and Wyckoff, 2008). Large parts of the 

country were active agricultural land (approximately 44 million acres) with rice as the 

major crop. In fact, Thailand is the world’s leader of rice exporter. Agriculture product 

contributed to around 11% of the GDP. World Bank (2011) stated the Thailand’s 

economic growth from 2002-2006 has averaged 5.6% and has upgraded Thailand’s 

income categorization from a lower-middle income economy to an upper-middle 

income economy. In addition World Bank claimed that in recognition of Thailand's 

economic achievements in the past decade in which gross national income (GNI) per 

capita has almost doubled, while poverty has been significantly reduced. In the 

meantime, various land use and land cover types were changed due to multi-sectors 

development in Thailand, especially, an increasing of agricultural products. 

Cause and effect relationships between interacting components of social, 

economic, and environmental systems which included Driving forces of land use/land 

cover change, Pressures on the land use/land cover, State of the land due to the changing 

situations, Impacts on population, economy, ecosystems, and/or environment and 

Response of the society or DPSIR play an important role for land use and land cover 

 

 

 

 

 

 

 

 



3 

 

change (European Environment Agency, 1999). The most important of DPSIR is 

driving forces of land use/land cove change. Driving force was used to beginning of 

changes by human driving force such as population income, technology, political-

economic and culture (Meyer and Turner, 1994). 

Particularly during 1961- 2013, land use and land cover (LULC) change of the 

forest areas had decreased in the areas of forests from 53.3 to 31.57 percent 

respectively, (Royal Forest Department, 2014). In addition, loss of agricultural capacity 

was due to the impact of urban development. For these reasons, it is crucial to have an 

effective plan to conservation forest, agricultural areas and water body from the urban 

sprawl phenomenon. Thus, a long-term and integrated approach in land use planning 

and plans with implementation in mind to optimize the use of land for current and future 

need is very important, especially to protect conservation areas and agricultural 

protected areas, water supply and irrigation systems. 

Furthermore, immigrants are a major cause of an increasing number of population 

in many cities. In the case study of Nakhon Ratchasima province, the largest city and 

the center of the northeast region, the growth of tourism in some specific areas such as 

Pak Chong and Wang Nam Khiao districts has impacted agricultural and conservation 

areas. For this reason, it is found that the misuse of suitable lands, deforestation, land 

degradation, and flood, cause several problems to the cities. Proper plan gives a 

direction to protect and reduce those problems. Furthermore, alternative goals and plans 

will also be useful for limited soil and land resources management. However, the 

potential of the soil and land resources should be considerably used to provide 

maximize benefits to the public. Consequently, multiple scenarios establishment using 

prediction and simulation models will provide a good framework for an optimized land 
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use allocation in the future. In these recent years, prediction and simulation studies of 

land use and land cover change have emerged by combining land use and land cover 

change into the logical chain of driving forces and impacts such as  the studies of 

Verburg, Van Eck, De Nijs, Dijst and Schot (2004c); Overmars, Verburg and Veldkamp 

(2007). Also and Lui (2009) stated that it is complicated to understand the complex 

system so that models are an appropriate ways to generate from reality representing the 

fundamental features of reality. 

Integration of LULC change model (Conversion of Land Use and Its Effects: 

CLUE), hydrology model (Soil and Water Assessment Tool: SWAT) soil erosion 

model (Universal Soil Loss Equation: USLE) and economic model (Present Value: PV) 

are therefore applied for LULC change and its impact simulation for an optimized land 

use allocation. The expected results would be useful to many stakeholders, such as 

governors, planners, developers and decision makers for considering the land use 

allocation in the future. 

 

1.2 Research objectives 

In this study, the integration of LULC change model, hydrologic model, soil 

erosion model and economic value measures were applied for LULC change and its 

impact assessment for an optimal land use allocation. In order to achieve the aim of this 

research, the specific objectives of this study are as follows: 

(1) To assess LULC and its change between 2003 and 2013; 

(2) To identify driving forces for LULC change;  

(3) To optimize local parameter of CLUE-S model and simulate triple LULC 

scenarios for the year 2023;  
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(4) To assess and evaluate impact of LULC change on soil erosion, water yield and 

economic value; and 

(5) To allocate an optimal LULC in different scenarios for year 2023. 

 

1.3 Scope and limitations of the study 

Scope of this study can be summarized as follows. 

(1) LULC data in 2003 and 2013 were extracted by means of visual interpretation 

of color orthoimage and Thaichote data on the screen at the scale of 1: 10,000. Herein 

land use classification system of Land Development Department (LDD) and Office of 

Agricultural Economics (OAE) are modified for LULC type extraction. The extracted 

land use and land cover type include: 

(a) Urban and built-up land;  

(b) Agricultural land (paddy field, cassava, maize, sugarcane, perennial 

trees/orchard);  

(c) Forest land;  

(d) Water body; and  

(e) Miscellaneous land (abandoned land). 

(2) Physical and socio-economic driving forces for LULC change were identified 

by stepwise binary logistic regression. The goodness of fit for logistic regression is 

validated by the receiver operating characteristic (ROC). 

(3) An optimized local parameter of CLUE-S model is calibrated based on the 

comparison of the simulated LULC by the CLUE-S model and the interpreted LULC 

in 2013. Herewith the acceptance of the overall accuracy and Kappa hat coefficient of 

agreement should be more than 80 percent. 
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(4) Three scenarios for year 2023 are simulated under CLUE-S model with an 

optimum local parameters regarding historical land use evolution, agriculture 

production extension and forest conservation and prevention. 

(5) Impact assessment from LULC change between 2013 and 2023 was evaluated 

in three aspects: soil loss and its severity using USLE model, water yield using SWAT 

model and SCS-CN method and economic value with the Present Value (PV). 

(6) An optimum LULC allocation within different three scenarios in 2023 was 

evaluated by simple additive weighting (SAW) method of multi-criteria decision 

analysis (MCDA) regarding soil loss severity, water yield and economic value from 

each scenario. 

 

1.4 Study area 

1.4.1 Location and topography 

Upper Lam Phra Phloeng watershed, which is a sub-watershed Lam Phra 

Phloeng watershed of Mun basin, situates in upper part of the basin. The main river of 

the watershed is Lam Phra Phloeng River which downstream flows to Lam Phra 

Phloeng Dam. Area of the upper Lam Phra Phloeng watershed area is about 77,165 

hectares (Figure 1.1). Topography of the area is generally characterized by hilly-rolling 

terrain, with less undulating and flat areas. Elevation varies from 260 m in the 

northeastern parts to 1,307 m above mean sea level in the southwestern part of the 

watershed. The study area covers two main districts (Pak Chong and Wang Nam 

Khieo).  
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Figure 1.1 Location and topography. 
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1.4.2 Land use 

Based on land use data of LDD from 1980 to 2011, there were two main land 

use types in 1980, i.e., agricultural land (58%) and forest land (41%), while the rests 

were urban and built-up land and water body. The characteristic of land use type 

proportion in this year was similar to other years (2000, 2003, 2007 and 2011) (Table 

1.1). As these statistics data, urban and built-up land will be increased in the future 

while agricultural land will be decreased. Meanwhile forest land, water body and 

miscellaneous land are quite stable (Figure 1.2). 

Furthermore, areas of major field crops in agricultural land between 2000 

and 2011 were cassava, maize, and sugarcane and areas of maize and sugarcane were 

fluctuated in this period while area of cassava was stable (Figure 1.3). 

 

Table 1.1 Areas of major land use types between 1980 and 2011.  

Major land use types 

Area in hectare 

1980 2000 2003 2007 2011 

Urban and built-up land 80 843 1,812 2,576 3,835 

Agricultural land 44,478 50,976 46,228 41,413 40,710 

Forest land 31,998 24,336 26,564 26,386 26,239 

Water body 616 261 1,102 1,198 1,264 

Miscellaneous land - 756 1,466 5,600 5,125 

Total 77,172 77,172 77,172 77,172 77,172 

Source: LDD (1980, 2000a, 2003, 2007, and 2011) 
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Figure 1.2 Comparison of major land use type areas between 1980 and 2011. 

Source: LDD (1980, 2000a, 2003, 2007, and 2011) 

 

 

Figure 1.3 Variation of major field crop areas between 2000 and 2011. 

Source: LDD (1980, 2000a, 2003, 2007, and 2011) 
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1.5 Benefits of the study 

(1) Understand the situations and changes of LULC development in the study areas 

in 2003, 2013 and 2023. 

(2) Understand the influence of local driving factors (e.g. biophysical and socio-

economic) for LULC allocation based on binary logistic regression analysis. 

(3) Gain understanding of how to apply CLUE-S model with an optimized local 

parameters for LULC simulation regarding historical land use evolution, agriculture 

production extension and forest conservation and prevention scenarios. This finding 

can be applied to other areas. 

(4) Understand the impact of LULC change on soil erosion, water yield and 

economic value. 

(5) Allocate an optimized LULC in different scenarios for year 2023.The tentative 

outputs are useful for land use planning, forest conservation and protection, 

environment management and etc. 

 

1.6 Outline of the thesis 

The thesis is structured in two parts and follows a hierarchical organization (Figure 

1.4) and each part is summarized in the following section. 

The first part includes Chapters I “Introduction”, Chapter II “Basic Concepts and 

Literature Reviews” and Chapter III “Data and Methodology”. Chapter I contains 

background problem and significance of the study, research objectives, scope and 

limitations of the study, study area, benefit of the study and outline of the thesis. 

Chapter II consists of basic concepts including (1) driving force for LULC change, (2) 

land use change modeling, (3) CLUE-S Model, (4) soil erosion model, (5) hydrological 
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model, (6) economic land evaluation and (7) multi-criteria spatial allocation model and 

relevant literatures. While, Chapter III presents data and explains details of 

methodology including Component 1: Historical and recent LULC extraction and 

driving force identification, Component 2: Local parameter of CLUE-S optimization 

and validation, Component 3: LULC simulation with three scenarios, Component 4: 

impact assessment and evaluation: soil erosion, water yield, and economic value and 

Component 5: an optimized land use allocation. 

The second part consists of four chapters of the results with discussion, which 

separately describes according to objectives and one chapter presents conclusion and 

recommendation. Chapter IV “LULC Assessment and Its Change and Driving Forces 

for LULC Change” contains historical and recent LULC extraction and driving force 

identification for LULC change. Chapter V “Simulation of LULC Scenarios by CLUE-

S Model” contains optimum local parameter of CLUE-S model, LULC simulation of 

three scenarios and comparison of simulated LULC 2023 with LULC 2013. While 

Chapter VI “Evaluation of LULC Change on Soil Erosion, Water Yield and Economic 

Values” consists of soil erosion assessment and its impact due to LULC change, water 

yield estimation and its impact due to LULC change and economic value estimation 

and its impact due to LULC change. Chapter VII “An Optimal Land Use Allocation” 

contains an optimal land use allocation of three scenarios based on the integration of 

soil erosion, water yield and economic value by SAW method. Chapter VIII 

“Conclusion and Recommendation” comprises conclusion of the study and 

recommendation. 
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Figure 1.4 Structure of the thesis. 
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CHAPTER II 

BASIC CONCEPTS AND LITERATURE REVIEWS 

 

Basic concepts including (1) driving force for LULC change, (2) land use change 

modeling, (3) CLUE-S Model, (4) soil erosion model, (5) hydrological model, (6) 

economic land evaluation, and (7) multi-criteria spatial allocation model and (8) 

relevant literatures are here reviewed in this chapter. 

 

2.1 Driving force for LULC change 

Several studies have been conducted to assess the drivers of land use change 

(Veldkamp and Fresco, 1996a; Verburg and Veldkamp, 2004a; Verburg et al., 2004c; 

Luo, Yin, Chen, Xu and Lu, 2010 and Orekan, 2007). Meyer and Turner (1994) stated 

that changing in LULC are three broad land types: forest/woodland (tree cover), 

grassland, and settlement and theirs changes take effect to environmental consequences 

on atmospheric chemistry and air quality, soils and hydrology and water quality by 

human driving forces such as population income, technology, political-economic and 

culture and cultural change. 

In general, driving force can be classified into two main groups consist of 

biophysical and human driving forces. Herewith, biophysical driving forces that are 

abiotic and biotic factors included climate, soils, lithology, topography, relief, 

hydrology, and vegetation. Stern, Young and Druckman (1992) suggested that the 

possible human forces driving land-use change can be grouped into five categories:  
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population, level of affluence, technology, political and economic institutions, and 

cultural attitudes and values. This classification is similar to Meyer and Turner (1994), 

Geist et al. (2006), Hersperger and Burgi (2007) and Weng (2010). 

In the meantime, human driving forces should be covered population or 

demographic data (population density and immigration), economic data (income, level 

of affluence and GDP), policy (national policy, local policy, world trade policy 

institutional and regime), technology (technological change, internet and network of 

communication), and culture (change in attitudes, beliefs and values). 

(1) Population. On October 31, 2011 the United Nations officially announced that 

the total population of the World had reached 7 billion people (United Nations, 2011). 

Lambin et al. (2006) who described the Malthusian model shows between man or 

demand and food supply and Boserup model shows highly technologies bring up to 

urban growth. And pressure of population on resources affects to carrying capacity. 

Population is independent variable about environmental four general ways: (a) 

population growth can result in expansion area under cultivation and lead to resource 

depletion and technology, (b) population growth increases investments of human, 

nature and financial, capital and innovation, (c) population growth to local resource 

based import food from elsewhere excess population to lead of pressure for agricultural 

change, and (d) population growth reverse effects on population on feedback loops 

when change in productive potential of local environment influence the determined of 

population mortality, fertility and migration. 

Each person in a population makes some demands on the environment and the 

social system for the essentials of life, including food, clean water, clothing, shelter, 

and so on (Simmons, 1997). On a global scale, population growth has been positively 
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associated with the expansion of agricultural and urban land, land intensification, and 

deforestation.  

(2) Level of affluence. Economic activities have long been major sources of land-

use change. Today, economic factors seem to play a strong role. This should not come 

as a surprise since global economic activity increased nearly sevenfold between 1950 

and 2000 (Geist et al., 2006). Economic activity is so extensive that it produces 

environmental change on a global level (Stern et al., 1992) by arising level of per capita 

income, as part of the process of economic development through changes in land use 

and land cover. High levels of affluence and economic development are often 

associated with higher resource demands, although they could be reduced by advanced 

technologies (Turner, Ross and Skole, 1993). On the other hand, poverty usually has an 

affinity with environmental degradation as it has been observed widely in developing 

countries. The amount of land and resources needed for a given amount of economic 

growth depends on the patterns of goods and services produced the population and 

resources base for agricultural development, the forms of national political 

organization, and development policies. 

(3) Technology. Economics as knowledge based includes information, skills and 

procedures (organization) that related to input and output prices, taxes, subsidies, 

production and transportation costs, capital flows and investments, credit access, and 

trade (Barbier, 1997). At the same time technology could be developed for value added 

(Rubenstein, 1992) and changed the usefulness and societal demand for various natural 

resources (Turner, Meyer and Skole, 1996), as well as the manner, scope, and intensity 

of resource use. Different kinds of technology produce different environmental impacts 

from the same process (e.g., fossil fuel and nuclear energy production have different 
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influences). Two particular examples are transportation infrastructures such as railways 

network and energy, which have important implications for an underdeveloped society 

and inevitably alter its land uses. Technological change has led to far-reaching 

transformations in agricultural thought increases in land productivity and labor 

productivity. Transport revolution increased the spatial division of labor large scale 

export and trade. New transport technologies increased access to land reduce functional 

distance and connected world system and newly way, internet such as e-commerce like 

a Amazon.com and knowledge from portal websites www.google.com etc. to lead for 

everything everywhere and every times when you want to know and bring to change 

rapidly of LULC (Weng, 2010). 

(4) Political-economic Institutions. It is reasonable that the political and economic 

institutions that control the exchange of goods and services, as well as structure the 

decisions, of large human groups or by government have a strong influence on land 

uses and their changes (Geist et al., 2006). These institutions include economic and 

governmental institutions at all levels of aggregation to which land uses must respond 

(Stern et al., 1992). Political and economic institutions can affect land use along many 

causal pathways: markets, governments, and the international political economy. 

Markets are always imperfect, and the impact of economic activity on the environment 

depends on which imperfect-market method of environment management is being used 

such as tariffs and taxes (Summer, 2004). In this case, the international political 

economy or international organization likes a WTO, APEC, AEC, and EU play 

important role to governmental policies, agenda, strategies, and price making and 

subsidies in short term or long term policy, such as natural disaster, sustainable 

development, global warming, resource management which can have significant 
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impacts on land use and land cover change. Meyer and Turner (1994) suggested that 

what is to be done: (a) finding global indicators of LULC change that correspond to 

high levels of institutional intervention at the international level, (b) creating a metric 

of country or regional cases sensitive to the range of values possible within a given 

institution set, (c) determining of sensitive or permeability at various scales to macro 

scale driving and (d) selecting out indicative cases to explore significance of local 

institutional variation in the face of external mandate for change. 

(5) Cultural attitudes and values. Cultural attitudes and values are related to 

material possessions, and the relationship between humanity and nature is often seen as 

a way of adaption to environment limitations (Simmons, 1997). Stern et al. (1992) 

described this relationship (humanity and nature) is clearly reflected in land-use 

activities. The effects of cultural attitudes and values on land use and the environment 

are of long term and should be observed from a historical perspective and using a 

comparative method. However, within single lifetimes, attitudes and values also may 

have significant influence on resource-using behavior, even when social and economic 

variables are held constant. Additional to social organization, humankind, property 

right, norm, ideologies are representation religious beliefs, literature, art, folk, myths, 

perception and population belief also exist in pre-legal societies. Information in this 

factor come from depth interviews of small group of respondent or opinion of group‘s 

leadership, but biases may be carefully about gender and classes of the poor or the 

middle, and the rich classes. 
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2.2 Land use change modeling 

As explanation in the previous section about driving force for LULC change, many 

scientists and researchers have tried to derive the driving forces as causing of LULC 

change and to integrate them into land use change modeling. The driving forces form a 

complex system of dependencies and interactions land use change modeling. 

Furthermore land use change modeling affects a whole range of temporal and spatial 

levels. In this section land use change modeling are reviewed and briefly summarized 

based on relevant literatures, especially a review and assessment of land use change 

models (Agarwal, Green, Grove, Evans and Sheik, 2001). 

The Von Thünen Model or “The Isolated State” theory is the classical land use 

model which was developed by Johann Heinrich von Thünen in 1826 (Lambin, Geist 

and Rindfuss, 2006). This model showed how market processes could determine and 

how land in different locations would be used. The use of a piece of land is put to a 

model is a function of the cost of transport to market and the land rent a farmer can 

afford to pay. The model generated four concentric rings of agricultural activity around 

the city: (1) dairy and market gardening, (2) forest for fuel, (3) grains and field crops, 

and (4) ranching; the outer is wilderness where agriculture is not profitable.  

In general, type of model at top-level can be classified into two categories 

including physical (or hardware) and mathematical models (Mulligan and Wainwright, 

2004). Physical models are scaled-down versions of real-world situations and used 

when mathematical models would be too complex, too uncertain or not possible 

because of lack of knowledge. Mathematical models are more common and represent 

states and rates of change according to formally expressed mathematical rules. In 
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addition, they further classified type of environmental model into five major types: 

conceptual, integration, mathematical, spatial, and temporal models (Table 2.1).  

 

Table 2.1 Type of environmental model. 

Types Models 

Conceptual Empirical, conceptual, physically based or mixed 

Integration Analytical, numerical or mixed 

Mathematical Deterministic or stochastic or mixed 

Spatial Lumped, semi-distributed, distributed, GIS, 2D, 3D or mixed 

Temporal Static, dynamic or mixed.   

Source: Mulligan and Wainwright (2004) 

 

However, modern land use change modeling is more complicated. Lambin, 

Rounsevell and Geist (2000) mentioned that modeling of land cover change processes 

should aim to address at least one of the following questions: 

(1) Which environmental and cultural variables contribute most to an explanation 

of land-cover changes -why? ; 

(2) Which locations are affected by land-cover changes -where? , and 

(3) At what rate do land cover changes progress -when? 

Furthermore, Agarwal et al. (2001) applied three dimensional frameworks 

consisting of space, time, and human decision-making (Figure 2.1) to review and assess 

19 land use change models including (1) General ecosystem model (GEM) by Fitz, De 

Bellevue, Costanza, Boumans, Maxwell, Wainger and Sklar (1996); (2) Patuxent 

landscape model (PLM) by Voinov, Costanza, Wainger, Boumans, Villa, Maxwell and 
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Voinov (1999); (3) CLUE model (conversion of land use and its effects) by Veldkamp 

and Fresco 1996a); (4) CLUE-CR (conversion of land use and its effects – Costa Rica) 

by Veldkamp and Fresco (1996b); (5) Area based model by Hardie and Parks (1997); 

(6) Univariate spatial models by Mertens and Lambin (1997); (7) Econometric 

(multinomial logit) model by Chomitz and Gray (1996); (8) Spatial dynamic model by 

Gilruth, Marsh and Itami (1995); (9) Spatial Markov model by Wood, Lewis, Tappan 

and Lietzow (1997); (10) CUF (California urban futures) by Landis (1995) and Landis, 

Monzon, Reilly and Cogan (1998); (11) LUCAS (land use change analysis system) by 

Berry, Hazen, MacIntyre and Flamm (1996); (12) Simple log weights by Wear and 

Mangold (1998); (13) Logit model by Wear, Liu, Foreman and Sheffield (1999); (14) 

Dynamic model by Swallow, Talukdar and Wear (1997); (15) NELUP (natural 

environment research council [NERC]–Economic and Social Research Council 

[ESRC]: NERC/ESRC land use programme [NELUP]) by O’Callaghan (1995); (16) 

NELUP – Extension by Oglethorpe and O’Callaghan (1995); (17) FASOM (forest and 

agriculture sector optimization model) by Adams, Alig, Callaway, McCarl and Winnett 

(1996); (18) CURBA (California urban and biodiversity analysis model) by Landis, 

Monzon, Reilly and Cogan (1998); and (19) Cellular automata model by Clarke, 

Hoppen and Gaydos (1998) and Kirtland, Gaydos, Clarke, DeCola, Acevedo and Bell 

(2000). Summary of basic information includes type, modules, what the model explains 

(dependent variables), independent variables and the strengths and weaknesses of each 

model are summarized as shown in Appendix A. 

According to summary of 19 land use change models, the CLUE model can be 

used for simulating LULC change study since CLUE model is dynamic systems model 

covers a wide range of biophysical and human drivers at different temporal and spatial 
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scales. CLUE model is consequently selected for land use and land cover change study 

in this research. 

 

 

Figure 2.1 A Three-Dimensional Framework for Reviewing and Assessing Land-use 

Change Models. 

Source: Agarwal et al. (2001) 
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2.3 CLUE-S Model 

CLUE model or the Conversion of Land Use and its Effects modeling framework 

(Veldkamp and Fresco, 1996a; Verburg, De Koning, Kok, Veldkamp and Bouma., 

1999) was developed to simulate land use change using empirically quantified relations 

between land use and its driving factors in combination with dynamic modeling of 

competition between land use types. The model was developed for the national and 

continental level. Verburg et al. (2002) stated that the study areas with such a large 

extent the spatial resolution for analysis was coarse or pixel size varying between 7 X 

7 and 32 X 32 sq. km such as Central America (Farrow and Winograd, 2001), Costa 

Rica (Veldkamp and Fresco, 1996b), China (Verburg and Veldkamp, 2001) and 

Indonesia (Verburg et al., 1999) are available. Each land use is represented by assigning 

the relative cover of each land use type to the pixels. The CLUE model cannot directly 

be applied at the regional scale. Therefore the modeling approach has been modified 

and is now called CLUE-S (Conversion of Land Use and its Effects at Small regional 

extent). Verburg (2010) stated that CLUE-S is specifically developed for the spatially 

explicit simulation of land use change based on an empirical analysis of location 

suitability combined with the dynamic simulation of competition and interactions 

between the spatial and temporal dynamics of land use systems. Major characteristics 

of CLUE-S including (1) CLUE-S module structure, (2) Spatial policies and restrictive, 

(3) Land use type specific conversion setting, (4) Land use requirement and (5) 

Location characteristics and allocation procedure are here summarized based on 

handbook of CLUE model by Verburg (2010). 

  

 

 

 

 

 

 

 

 



23 
 

2.3.1 CULE-S module structure 

The model is made up into two distinct modules, a non-spatial module and a 

spatially module. The non-spatial module calculates the aggregate area, by simple trend 

extrapolations, the change annual area (demand) for all land use types. In the second 

part of the model, demands of part one are translated into land use changes at various 

locations within the study region using a raster-based system. The allocation is based 

upon a combination of empirical, spatial analysis and dynamic modeling (Verburg et 

al., 2002). Empirical analysis is applied to determine the relationships between spatial 

distribution of land use and a number of proximate factors that are driving or 

constraining land-use change. Based on the competitive advantage of each land use at 

a location, the competition among land uses for a particular location is simulated.  

2.3.2 Spatial policies and restrictions 

Spatial policies and restrictions can pressure areas where land use changes 

are restricted through policies or tenure status (Verburg, Steeg, Van de and Schulp, 

2005). The implement of policy to land use types must be supplied such as a forest 

reserve policy from a logging ban, species-specific habitat of wildlife sanctuary, 

residential construction in designated agricultural areas or permanent agriculture in the 

buffer zone of a nature reserve and so on. These policies and restrictions are specific 

land use conversions condition. It should be mentioned that, the conversions that are 

restricted by a certain spatial policy can be indicated in a land use conversion matrix: 

for all possible land use conversions it is indicated if the spatial policy applies. 
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2.3.3 Land use type specific conversion settings 

The temporal dynamics of the simulations upon the setting of land use type 

specific conversion determines. Two sets of parameters setting are therefore needed to 

characterize the individual land use types: conversion elasticities and land use transition 

sequences.  

The first parameter set, the conversion elasticities, is related to land use 

change between types. Because a high cost to change will not easily be converted in 

other uses as long as there is sufficient demand. Examples are residential locations but 

also plantations with permanent crops (e.g., fruit trees). Land use type must be specific 

the relative elasticity to change from ranging between 0 (easy conversion) to 1 (not 

allow). The user should decide on this factor based on expert knowledge or observed 

behavior from history. The second set of land use transition sequences likewise the first 

parameter that needs to be specified are the land use type specific conversion settings 

and their annual temporal characteristics. These settings are specified in a conversion 

matrix. Verburg (2010) suggested that the conversion matrix (Figure 2.2) definition 

should be answered the following questions.  

(1) Can be convert other land use types (present)?  

(2) The area or region is allowed or not (spatial policy or restriction)? 

(3) How many years (or time steps) the land use type at a location should 

remain the same before it can change into another land use type can be possible? 

For example, in case of cropland, it cannot change directly into forest. 

Nevertheless, after a number of years it is achievable that a cropland will change into 

forest because of regrowth by natural or man-made. 
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In addition, Verburg (2010) emphasize the range of conversion or the 

minimum and maximum number of years before a conversion can or should be happen 

is indicated in the conversion table. It depends on the land use pressure and location 

specific conditions (Figure 2.3). 

2.3.4 Land use requirements (demand) 

The main part of non-spatial are calculated at sum of total area from land use 

types as part of a specific scenarios. Land use requirements or demand side was 

determined for CLUE-S model by each area of land use types in processing. The 

extrapolation of trends in land use change in recent part into the near future is a common 

technique to calculate land use requirements (Verburg and Overmars 2009; Verburg, 

2010). The demand depends on perspective of policy and/or population change or 

advance model to communicate with CLUE-S model such as SD model (Zheng et al., 

2012), SAMBA (Castella, Kamb, Quangc, Verburg and Hoanh, 2007) and LEITAP 

(Perez-Soba et al., 2010). 

 

 

Figure 2.2 Illustration of the translation of a hypothetical land use change sequence 

into a land use conversion matrix (Verburg, 2010). 

(C) 

(d) 
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Figure 2.3 Example of a land use conversion matrix with the different options 

implemented in the model (Verburg, 2010). 

 

2.3.5 Location characteristics 

Location of land use conversions are expected to take place at the highest 

'preference' for the specific type of land use (Verburg, 2010) based on the relation 

between the occurrence of a land-use type and the physical and socioeconomic 

conditions of a specific location factors (Trisurat, Alkemade and Verburg, 2010). Those 

are based on the different, disciplinary, understandings of the determinants of land use 

change. The preference is calculated following: 

Rki= akX1i + bkX2i + ....+nkXni , (2.1) 

where Rki is the preference to devote location i to land use type k, X1,i,...Xni are 

biophysical or socio-economical characteristics of location i, and ak, bk…nk are the 

relative impact of these characteristics on the preference for land use type k. 
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Although, the preference Rki cannot be observed or measured directly and 

has therefore to be calculated has a probability (Verburg, 2010). The function, that 

relates these probabilities with the biophysical and socio-economic location 

characteristics, is defined in a statistical model can be developed as a binomial logit 

model of two choices: convert location i into land use type k or not. The preference Rki 

is assumed to be the underlying response of this choice following: 

𝐿𝑜𝑔 (
𝑃𝑖

1−𝑃𝑖
) = 𝛽0 + 𝛽0𝑋1,𝑖 + 𝛽2𝑋2,𝑖 … … + 𝛽𝑛𝑋𝑛,𝑖 , (2.2) 

where 𝑃𝑖 is the probability of a grid cell for the occurrence of the considered land use 

type on location I, 𝑋𝑛,𝑖 are the location factors, and the coefficients 𝛽0 (are estimated 

through logistic regression using the actual land use pattern as dependent variable. 

2.3.6 Allocation procedure 

The spatial allocation module allocates the regional level demands to 

individual grid cells until the demand has been satisfied by iteratively comparing the 

allocated area of the individual land use types with the area demanded. Figure 2.4 

provides a flowchart of the allocation procedure used. The allocation procedure of the 

Dyna-CLUE (latest version in 2006) at time (t) for each location (i) the land use/cover 

type (lu) with the highest total probability (𝑃𝑡𝑜𝑡𝑖,𝑡,𝑙𝑢). The total probability is defined 

as the sum of the location suitability (𝑃𝑙𝑜𝑐𝑖,𝑡,𝑙𝑢), neighborhood suitability (𝑃𝑛𝑏ℎ𝑖,𝑡,𝑙𝑢), 

conversion elasticity (𝑒𝑙𝑎𝑠𝑙𝑢) and competitive advantage (𝑐𝑜𝑚𝑝𝑡,𝑙𝑢) (Verburg et al., 

2002) as following: 

𝑃𝑡𝑜𝑡𝑖,𝑡,𝑙𝑢 = 𝑃𝑙𝑜𝑐𝑖,𝑡,𝑙𝑢 + 𝑃𝑛𝑏ℎ𝑖,𝑡,𝑙𝑢 + 𝑒𝑙𝑎𝑠𝑙𝑢 + 𝑐𝑜𝑚𝑝𝑡,𝑙𝑢 , (2.3) 

Location suitability and neighborhood suitability can be determined by either 

empirical methods (Verburg et al., 2004c), process and expert knowledge and the 
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(dynamic) analysis of neighborhood interactions similar to constrained cellular 

automata models (Verburg, De Nijs, Van Eck, Visser and de Jong, 2004b). 

The conversion elasticity is a measure of the cost of conversion of one land 

use type to another land use type and applied only to those locations where the land use 

type is found at time t. High values indicate high conversion cost (either monetary or 

institutional) and thus a higher total probability for the location to remain under the 

current land use type. Low values for elasticity may apply to annual crops, grassland 

and similar land use types while high values apply to forest, urban areas and permanent 

crops for which high costs of establishment have been made.  

The competitive advantage is iteratively determined for all land use types 

during an iterative procedure. Values are increased during the iteration when allocated 

area is smaller than area demanded while values are decreased when allocated area 

exceeds the demand. In the case of increasing demand, the value of the competitive 

advantage is likely to increase while lower values are obtained when the demand for a 

certain land use type decreases. Finally, the maximization of the total probability at 

each individual location is checked against a set of conversion rules as specified in a 

conversion matrix 
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Figure 2.4 Flowchart of the allocation module of the CLUE-S model (Verburg, 2010). 

 

For CLUE-S operation, schematic workflow and requirement parameter with 

file extension for LULC simulation is displayed in Figure 2.5. The technical limitation 

of CLUE-S is summarized as shown in Table 2.2. 
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Figure 2.5 Schematic flowchart of CLUE-S for LULC simulation. 
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Table 2.2 Limitation of CLUE-S model. 

Technical limitation of CLUE-S model 

1. The maximum number of land use types for land use change simulation is 12 classes. 

2. The total number of test sites as splitting areas is not more than 3 areas. 

3. The total number of independent variables in a regression equation using in CLUE-S model is not 

more than 20 variables. 

4. The total number of driving factors under stepwise multiple linear regression using in CLUE-S 

model is not more than 30 variables. 

5. Maximum extent of rows (X) and columns (Y) in grid format was 1,000 x 1,000 grid 

6. The maximum number of restrictions region is 98 regions. 

Source: Verburg et al. (2005) and Verburg (2006) 

 

2.4 Soil erosion model 

One of the most significant developments in soil and water conservation in the 20th 

century is the universal soil loss equation (USLE). Because of long times tested of 

erosion trials on plots over 10,000 annual records of erosion on plots and small 

catchments at 46 stations on the Great Plains (Wischmeier and Smith, 1978). The aim 

of Wischmeier and Smith was to establish an empirical model for predicting erosion on 

a cultivated field so that erosion control specialists could choose the kind of measures 

needed in order to keep erosion within acceptable limits given the climate, slope and 

production factors. The major development of an empirical technology the USLE was 

the culmination of decades of soil erosion experimentation conducted by university 

faculties and federal scientists across the United States. A complete technology was 

first published in 1965 by USDA Agriculture Handbook 282 and 537 (updated version) 

(Wischmeier and Smith, 1978). Nowadays application of USLE is used in around the 

world. The erosion prediction equation is composed of five factors for long-term 

average annual soil loss (A): 
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A = R × K × LS × C × P, (2.4) 

where A is annual soil loss (t/ha/yr), R is rainfall–runoff erosivity factor (MJ mm/ha/h 

per year). This is the kinetic energy of rainfall, multiplied by I30 (maximum intensity 

of rain in 30 minutes expressed in cm per hour). This index corresponds to the potential 

erosion risk in a given region where sheet erosion appears on a bare plot with a 9% 

slope, K is soil erodibility factor (t h/MJ mm). It depends on the organic matter and 

texture of the soil, its permeability and profile structure. It varies from 70/100 for the 

most fragile soil to 1/100 for the most stable soil. It is measured on bare reference plots 

22.2 m long on 9% slopes, tilted in the direction of the slope and having received no 

organic matter for three years, LS is slope length and steepness factor. It depends on 

both the length and gradient of the slope. C is vegetation cover factor. It is a simple 

relation between erosion on bare soil and erosion observed under a cropping system. 

The C factor combines plant cover, its production level and the associated cropping 

techniques. It varies from 1 on bare soil to 1/1000 under forest, 1/100 under grasslands 

and cover plants, and 1 to 9/10 under root and tuber crops, and P is the conservation 

support-practice. This factor takes account of specific erosion control practices such as 

contour tilling or mounding, or contour ridging. It varies from 1 on bare soil with no 

erosion control to about 1/10 with tied ridging on a gentle slope. 

 

2.5 Hydrologic model 

Soil and water assessment tool (SWAT) is a non-point source modeling, physically 

based, spatially distributed, continuous time hydrological model, and public domain 

model developed by the United States Department of Agriculture–Agricultural 

Research Service (USDA-ARS) (Neitsch, Arnold and Williams, 2011). The model 

 

 

 

 

 

 

 

 



33 
 

operates on a daily time step and allows a basin to be subdivided into grid cells or 

natural sub basins. There are two main components: (1) routing phase of the hydrologic 

cycle, and (2) land phase of the hydrologic cycle. Major modules in the model include 

hydrology, erosion/sedimentation, plant growth, nutrients, pesticides, land 

management, stream routing, and pond/reservoir routing (Van Griensven, Ndomba, 

Yalew and Kilonzo, 2012). An attempt is made to simulate the major hydrologic 

components and their interactions as simply and yet as realistically as possible. An 

attempt is also made to use inputs that are readily available over large areas so the model 

can be used routinely in planning and decision making (Arnold et al., 1998). 

 The hydrology model is based on the water balance equation: 

 𝑆𝑊𝑡 = 𝑆𝑊𝑜 + ∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑊𝑑𝑒𝑒𝑝 − 𝑄𝑔𝑤)𝑡
𝑖=1 , (2.5) 

where 𝑆𝑊𝑡 is the final soil water content (mm), 𝑆𝑊𝑜 is the initial soil water content on 

day i(mm), t is the time (days), 𝑅𝑑𝑎𝑦 is the amount of precipitation on day i (mm), 

𝑄𝑠𝑢𝑟𝑓 is the amount of surface runoff on day i (mm), 𝐸𝑎 is the amount of 

evapotranspiration on day i (mm), 𝑊𝑑𝑒𝑒𝑝 is the amount of water percolation into the 

deep aquifer on day i (mm), and 𝑄𝑔𝑤 is the amount of return flow on day i (mm). 

The basic SWAT model inputs are rainfall, maximum and minimum temperature, 

radiation, wind speed, relative humidity, land cover, soil and elevation. The watershed 

is subdivided into sub-basins that are spatially related to one another, and, further, into 

hydrological response units (HRUs), which are homogenous units that possess unique 

land-use/land-cover and soil attributes and account for the complexity of the landscape 

within the sub-basins. The sub basin watershed components can be categorized as 

follows: hydrology, weather, erosion and sedimentation, soil temperature, plant growth, 
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nutrients, pesticides and land management. In the land phase of the hydrological cycle, 

runoff is predicted separately for each HRU and routed to obtain the total runoff for the 

watershed. Once the loadings (water, sediment, nutrients and pesticides) to the main 

channel are determined, they are routed through the stream network of the watershed 

(Githu, Mutua and Bauwens, 2009). 

 The US Soil Conservation Service (SCS) curve number method was used to 

determine surface runoff. This is an empirical model that estimates the amounts of 

runoff under varying land use and soil types. The ranges of SCS curve number (CN) 

values originally derived by the SCS Engineering Division are obtained from the 

SWAT user’s manual. There is a function relate with hydrologic soil group, cover, 

hydrologic condition, land use classification, and antecedent moisture content (AMC).  

 Since a significant amount of SWAT's input data are of a spatial character for 

example those derived from stream network, drainage divide, land use, and soil type 

maps and GIS tools for extracting information for SWAT from readily available digital 

spatial data have been developed. Olivera et al. (2006) claimed that many studies used 

SWAT with spatial for example, developed an interface in many platforms such as 

GRASS, ARC/INFO, ArcView 3.x, and newly ARCSWAT. The ArcGIS-SWAT data 

model stores SWAT geographic, numeric, and characteristic input data and results. The 

geodatabase data structure, considered as a relational database with the capability of 

storing geographic information in addition to numbers and text, was used for the data 

model.  

Under this research, SWAT model are used to estimating surface runoff based on 

Soil Conservation Service Curve Number (SCS-CN) method that was developed by the 

U.S. Soil Conservation Service (SCS). This method has been widely applied to estimate 
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storm-runoff depth for every patch within a watershed based on runoff curve numbers 

(CN) (Soil Conservation Service, 1972). The SCS equation for storm-runoff depth is 

mathematically shown as follow: 

𝑄 =
(𝑃−0.2𝑆)2

𝑃+0.8𝑆
,  (2.6) 

where Q is storm runoff, P is rainfall (mm), and 𝑆 is potential maximum storage  

[𝑆 = (1000/CN) – 10] (mm). 

CN is the runoff curve number of the hydrologic soil group-land cover complex. 

To solve this equation, two input values are needed: P and CN. Precipitation data are 

available from meteorological observations. A runoff curve number is a quantitative 

description of land-cover and soil conditions that affect the runoff process. 

 

2.6 Economic land evaluation 

 Economic land evaluation is a method for predicting the micro-economic value of 

implementing a given land-use system on a given land area. This is a more useful 

prediction of land performance than a purely physical evaluation, since many land-use 

decisions are made on the basis of economic value. Measures of economic suitability 

include the gross margin, net present value, internal rate of return, benefit/cost ratio, 

and utility functions based on these (Rossiter, 1995). Economic suitability depends on 

three types of factors: (1) the in-situ resource quality, i.e. the response of the land to the 

use without regard to its location (Ricardo Theory) for example: predicted crop yield; 

(2) the accessibility, and by extension, all costs and benefits associated with the specific 

location as opposed to the resource quality (Von Thünen Theory), for example 

transportation costs for inputs and products; and (3) other spatial attributes of the site, 
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not including accessibility (e.g. size, shape, adjacency, and contiguity). For example 

more efficient field work if the parcel is the correct shape and size (Rossiter, 1994). 

The land use capacity of a land area for a land use, may be defined as the value of 

some economic measure, should the land area be dedicated to the use. This definition 

begs two others: the type of land area to be evaluated, and the economic measure to be 

used in the evaluation. It also leaves unspecified the key question: how should the 

physical land characteristics be costed? So, the economic land evaluation has five steps 

(Rossiter, 1995): 

(1) decide on the land units to be analyzed;  

(2) decide on the appropriate economic measure;  

(3) decide what economic factors to include in the evaluation, and the type of price 

to use in the analysis;  

(4) specify how physical land characteristics affects economic values, perhaps 

using in situ and geographical Land Qualities;  

(5) compute the economic land suitability; and  

(6) perform a sensitivity analysis to determine the effect of errors in physical 

factors and model assumptions on land suitability. 

2.6.1 Evaluation units 

Land evaluation attempts to determine the relative fitness of different land 

areas for different uses. Rossiter (1995) classified evaluation units as followings. 

(1) Map units of natural resource inventories. When the evaluation starts 

with data from a natural resources data base (e.g. a soil survey or climate map), the map 

unit as shown on the resource map as a single legend class, or as derived from an 

intersection of several maps (e.g., soil type overlaid with climate type), may be 
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considered sufficiently homogeneous with respect to the land characteristics implied by 

the legend, and forms the unit of analysis. This has been the usual approach for physical 

land evaluations based on soil survey interpretations or agro-ecological zones. All 

delineations of the map unit are considered to be the same, no matter where located, so 

that only the in-situ characteristics of the map unit, such as natural soil fertility, can be 

used to determine economic value. Economic results are normalized to a per-unit land 

area basis. 

(2) Map delineations of natural resource inventories. If economic suitability 

depends on geographical land characteristics, the legend category of a natural resource 

inventory must be divided into its separate delineations for analysis. Map delineations 

are individual connected areas of the map unit. The evaluation can consider the location 

of the delineation (either its centroid or nearest point) in relation to cultural features 

such as roads and markets; this is especially important for transport costs. The size and 

shape of the delineation, as well as topological relations such as adjacency and 

containment, can also be a land characteristic of economic importance. Economic 

results are usually normalized to a per unit land area basis. 

(3) Management units. A management unit is an area of land that the land 

manager intends to treat or allocate as a unit. Since each management unit has a unique 

location, the analysis can include geographic considerations. Management units based 

on the current land-use pattern, such as fields, are usually less homogeneous with 

respect to natural resources than map delineations of a natural resource inventory, 

because the boundaries of natural resources rarely correspond to the boundaries of 

management units. One way to deal with this heterogeneity within the evaluation unit 

is to ignore it, and simply use the dominant or most prevalent value of each land 

 

 

 

 

 

 

 

 



38 
 

characteristic, with a loss of precision in the analysis. Another approach is to define the 

evaluation unit as a compound unit consisting of several homogeneous constituents in 

a defined proportion. Each constituent is evaluated separately, and these results are 

combined in weighted linear proportion to arrive at a result for the management unit as 

a whole. 

(4) Production units. Some economic decisions are taken on a whole-farm 

(or other production unit) basis. Production units have global objectives (for example, 

profit maximization and risk minimization) and constraints (for example, labor and 

capital supply) that apply to a production unit considered as a whole, not to the 

individual management units of which it is made up. In some land use systems, a 

production unit must contain a defined mixture of several land uses. The usual way to 

evaluate a production unit is to evaluate each of its management units separately, and 

then combine these into an aggregate farm plan, considering whole-farm objectives and 

constraints. 

(5) Planning units. In regional or catchment planning, decisions are taken 

on the whole area, subject to objectives and constraints that are expressed over the entire 

region. For example, there may be a limited amount of irrigation water available for an 

entire irrigation district, or a catchment plan may be required to include a set of land 

uses. Planning units are evaluated like production units. 

2.6.2 Measures of economic suitability 

There are various “yardsticks” which may be used for economic land 

suitability evaluation. The chosen measure should correspond to the economic reality 

faced by decision makers, as well as their values and attitudes towards money and risk 
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Rossiter (1995). The EUROCONSULT agricultural compendium (1989) had compared 

economic measures as following: 

(1) Gross margin. This is the cash flow in to the land utilization type (LUT), 

less the cash flow out of the LUT, on a per unit area (normalized) or aggregate (per-

field or per-farm) basis, in one accounting period (usually a year). If the gross margin 

calculation includes the fixed costs of production, it is called the “net return”; otherwise 

the “gross return.” This measure does not take into account the time value of money. 

Capital costs can be ignored altogether by using rental prices. Thus, the gross margin 

is not sensitive to interest rates. It is an appropriate measure of economic suitability for 

annual or short-term rotational LUTs with few or no capital costs. 

(2) Capitalized value. This variant of the gross margin accounts for the time 

value of money. The annual return from a steady-state investment is a percentage of the 

total value of the investment determined by the interest rate. So, the total value can be 

calculated as: EV = GM / IR, where EV is the estate value, GM is the annual gross 

margin, and IR the interest rate in percent. It is an appropriate measure of economic 

suitability in the same situations as the gross margin. The capitalized value is an 

approximation to the portion of the land’s value that can be attributed to its productive 

capacity. 

(3) Discounted cash flow analysis. Money received in the future is less 

valuable than money in hand. To take into account this “time value of money,” amounts 

received or spent in the future are discounted to their present value according to the 

formula: 

 𝑃𝑉 = 𝐹𝑉 ∙ ⌈
100

100+𝐼𝑅
⌉

𝑌

, (2.7) 
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In this formula, 𝑃𝑉 is the present value, 𝐹𝑉 is the future value, 𝐼𝑅 is the 

interest rate in percent, and 𝑌 is the number of years from present, counting from zero. 

The present value of an annual cash flow becomes insignificant at some point in the 

future that depends on the interest rate. A typical use of discounted cash flow analysis 

is to evaluate the economic feasibility of agricultural projects such as land reclamation, 

where an initial investment is expected to yield benefits in the future. There are three 

measures derived from the discounted cash flow with which to evaluated land 

suitability, as follows: 

(a) Net present value (NPV). This is the total value of the cash flows to be 

generated by the LUT, summed over its planning horizon, discounted to the present. 

The NPV may be normalized if investments are expressed on a per unit area basis, 

otherwise it must be aggregated over the production unit. The NPV cannot be 

annualized, since each year is discounted differently.  

(b) Internal rate of return (IRR). This is the interest rate below which the 

“project” (land use option) becomes financially attractive. At higher prevailing interest 

rates than the IRR, an investor would be better off investing the required capital at the 

offered rate rather than investing in the project. Mathematically, it is the discount rate 

below which the NPV becomes positive. The IRR is dimensionless, with no spatial or 

temporal component, and so can be used to compare land uses with different planning 

horizons. The IRR is a rough measure of the financial risk of a project that is due to 

rising interest rates, and is often used to compare investment options. 

(c) Benefit-to-cost ratio (BCR). This is the present value of the cash-in 

divided by the present value of the cash out. A project is evidently, feasible if and only 

if the BCR>1. The BCR is a measure of the return to investment; thus the BCR is an 
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appropriate measure for the land user who wants to maximize the leverage of a limited 

investment. 

(4) Utility. The economic measures presented to this point are all expected 

values. Because of uncertainty in the production system, mainly due to uncertain 

weather and prices, the expected value will not be attained every year; the time series 

of net returns will rather have some variance. If land users had unlimited reserves to get 

through low-income years, they would rationally choose the land use with the greatest 

expected value. In practice, they are willing to trade some total income over the long 

term for smoother and more certain incomes in the short and medium terms. A measure 

of risk aversion is the degree to which land users are willing to forego overall benefit 

(high expected value) for more certainty (low variance).  

(5) Non-cash measures. Other measures of value than cash may be 

appropriate in certain socio-economic settings. Examples are calories or a nutritional 

index as “income” to be maximized and amount of an input (e.g., labor) to be 

minimized. The net cash flow must still be favorable. 

(6) Economic suitability classes. Once each land use-land area combination 

has been assigned an economic value by the land evaluation, the question arises as to 

its “suitability,” that is, the degree to which it satisfies the land user. The land use must 

be financially feasible (for example, it must result in a positive gross margin), but 

beyond this minimum standard, the concept of “suitability” depends on the financial 

expectations of the land users who will implement the LUT. The evaluator assigns 

dividing points between suitability classes, in the same units of measure as the 

economic analysis.  
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2.7 Multi-criteria spatial allocation model 

The multiple-criteria decision analysis (MCDA) can be solving the problem 

involves a set of alternative allocation plans evaluated on the basis of multiple, 

convicting and non-commensurate criteria by several interest groups Malczewski 

(2006). MCDA should be provided a rich collection of techniques and procedures for 

structuring decision problems, and designing, evaluating and prioritizing alternative 

decisions. Including GIS-MCDA is able to process that transforms and combines 

geographical data and value judgments to obtain information for decision making 

Malczewski (1999) stated that a number of multi-criteria decision rules have been 

implemented in the GIS environment for tackling land-use suitability problems. The 

decision rules can be classified into multi-objective and multi-attribute decision making 

methods. The multi-objective approaches are mathematical programming model 

oriented methods, while multi-attribute decision making methods are data oriented. 

Multi-attribute decision analysis (MADA) are also referred to as the discrete methods 

because they assume that the number of alternatives (plans) is given explicitly, while 

in the multi-objective decision analysis (MODA) the alternatives must be generated 

(they are identified by solving a multi-objective mathematical programming problem). 

Basically, the decision rules in GIS are the most often used both of WLC (weighted 

linear combination) and Boolean operators (Malczewski, 2004).  

This research emphasize on MADA in a part of WLC. The WLC is a decision rules 

that the most popular method for spatial MADA, sometime referred to as simple 

additive weighting (SAW) or scoring methods (Malczewski, 1999). SAW applies a 

concept of a weighted average based on the decision maker and assigned directly 

weights into each attribute of “relative importance” (Malczewski, 2000).  A total score 
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is then obtained for each alternative by multiplying the importance weight assigned for 

each attribute by scaled value given to the alternative on that attribute, and aggregate 

the products overall attributes suitability score. Given the input data, the decision rule 

evaluates each alternative, Ai by the following value function: 

 ij
j

ji XWA  , (2.8) 

where 

Ai = total score which obtained by multiplying the score and weight,  

Wj = The normalized weight,  

Xij = The score of the ith alternative with respect to the jth attribute, and  

Wj = 1. 

In SAW procedure involves the following 6 steps:  

(1) define the set of evaluation criteria (map layers) and the set of feasible 

alternatives,  

(2) standardize each criterion map layer,  

(3) define the weight (of relative importance) to each criterion map layer,  

(4) create the weighted standardized map layers,  

(5) generate the overall score for each alternative using add overlay 

operation, and  

(6) rank the alternatives according to the overall performance score that the 

cell with the highest score is the best cell (Malczewski, 2000). 
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2.8  Literature reviews 

2.8.1 CLUE-S model 

Verburg and Veldkamp (2001) demonstrated the role of spatially explicit 

models in land-use change research, a case study for cropping patterns in China. In this 

research, a modeling methodology was presented aiming at the analysis of the spatial 

and temporal dynamics of land use at the regional level. The methodology explored the 

dynamic functioning of land-use systems, which was essential to bridge the gap 

between studies identifying problems associated with land-use change. In addition the 

methodology included the nested simulation of different crop types to simulate a 

scenario of near-future (1991–2010) changes in land-use patterns. Results were 

presented for changes in the spatial distribution of cultivated land and special emphasis 

is given to shifts in the distribution of different crops. They found that in the northern 

part of the country a decrease in the proportion wheat within the cropping system is 

expected whereas in the southern part the proportion of rice is decreasing. Corn and 

vegetable crops are expected to become more important within the cropping system in 

these parts of the country. 

Verburg et al. (2002) applied CLUE-S model on land use change in 

Philippines and Malaysia to illustrate the functioning of the model and its validation. 

They claimed that the model can help to identify near-future critical locations in the 

face of environmental change through scenario analysis. 

Castella et al. (2007) developed the combining top-down and bottom-up 

modeling of land use/cover change to support public policies on natural resources 

management. Bac Kan province in northern Vietnam was selected as study area. Three 

models included SAMBA, LUPAS, and CLUE belonging to two land use and land 
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cover change approaches, were used in the study. The multi-agent model SAMBA was 

developed through an adaptive, bottom-up process while LUPAS and CLUE 

contributed to a top-down process. Applying these three methodologies at the same 

research site allowed a critical evaluation of their respective utility for land use analysis 

and planning. As results, they concluded that combined use of these modeling 

methodologies should be promoted when complex natural resource management issues 

at multiple scales need to be tackled. Three combined models played complementary 

roles in bridging knowledge gaps and increasing interactions between stakeholders 

along the continuum from research to development and policy formulation. 

Luo et al. (2010) combined System Dynamic model (SD) and CLUE-S 

model to improve land use scenario analyses at regional scale as a case study of 

Sangong watershed in Xinjiang, China. A SD model is used to calculate area changes 

in demand for land types as a whole while a CLUE model is used to transfer these 

demands to land use patterns. Without the spatial consideration, the SD model ensures 

an appropriate treatment of macro-economic, demographic and technology 

developments, and changes in economic policies influencing the demand and supply 

for land use in a specific region. With CLUE model the land use change has been 

simulated at a high spatial resolution with the spatial consideration of land use 

suitability, spatial policies and restrictions to satisfy the balance between land use 

demand and supply. The established SD model was fitted or calibrated with the 1987–

1998 data and validated with the 1998–2004 data; combining SD model with CLUE-S 

model, future land use scenarios were analyzed during 2004–2030. As results, they 

concluded that this methodology have the ability to reflect the complex behaviors of 

land use system at different scales to some extents and be a useful tool for analysis of 
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complex land use driving factors such as land use policies and assessment of its impacts 

on land use change. This work could be used for better understanding of the possible 

impacts of land use change on terrestrial ecosystem and provide scientific support for 

land use planning and managements of the watershed. 

2.8.2 Soil erosion model 

Kitahara, Okura, Sammori and Kawanami (2000) showed how to use 

the USLE in order to roughly estimate erosion yields from limited data of forest terrains 

in Japan. Herewith C and P factors in the USLE equation were improved and 

generalized by using erosion experiments and other data which were obtained and 

derived from previous Japanese studies. As results, they concluded that it is possible 

applications of the USLE to predictions of the soil losses from large basins or from 

districts in which both agricultural land and forest land with limited data were included. 

Fistikoglu and Harmancioglu (2002) studied environmental impact in the 

Gediz River, which discharges into the Aegean Sea along the western coast of Turkey. 

In this study USLE model was combined with GIS to identify soil erosion and examine 

mean sediment and organic N transport of non-point source (NPS) pollution loading by 

sediment. 

Shinde, Sharma, Tiwari and Singh (2011) studied soil erosion in Upper 

Damodar Valley catchment of India by using remote sensing and GIS data for predict 

soil erosion from USLE. In practice, slope steepness and length factor or topographic 

Factor (LS) which is an integral part of most soil erosion prediction models was 

extracted from SRTM DEM. While cover factor (C) operated by the supervised 

classification of LANDSAT ETM images. The soil erodibility factor (K) was computed 

using field and laboratory estimated physical-chemical properties of the surface soils. 
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Meanwhile rainfall factor (R) from average annual daily rainfall of six stations was 

created by Nearest Point method from Thiessen Polygon pattern. Output from ULSE 

was compared with India Soil and Land Use Survey (AISLUS) priority map. 

Song, Du, Kou and Ma (2011) applied USLE and GIS for evaluation of soil 

erosion and soil nutrients loss (total nitrogen and total phosphorus) in watershed area 

of the Danjiangkou Reservoir in Henan province, China. The R-factor (rainfall 

erosivity) was determined by interpolation using meteorological data from five stations. 

The K value was calculated by using EPIC (Erosion-productivity impact calculator) 

formula was obtained by using soil survey data. The LS-factors (slope length and 

steepness) were determined from the digital elevation model (DEM), while the C-factor 

(crop and management) was determined from remote sensing imageries by NDVI maps 

in three periods from Landsat 5 TM, ETM+ in 1991, 2000, and 2007. Together with the 

conservation practice factor (P) is respected by field experiments. Results presented 

about spatial distribution map of the soil erosion were estimated in study area from 

1991 to 2007. 

2.8.3 Hydrologic model 

Xue-Song, Fang-Hua, Hong-Guang and Dao-Feng (2003) studied the 

application of SWAT model in the upstream watershed of the Luome River. Integration 

GRASS-GIS with SWAT was used to examine sediment and runoff in large river basin. 

Monthly simulated flow and sediment loadings were compared with observed values 

for calibration and validation period. Coefficient of determination (R2) and Nash–

Sutcliffe efficiency (NSE) were used to evaluate model prediction. It was found that 

both coefficients are above 0.7 which shows that SWAT model could be a useful tool 

for water resources and soil conservation planning. 
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Ndomba, Mtalo and Killingtveit (2008) studied SWAT model application in 

a data scarce tropical complex catchment in Tanzania. This study showed that the 

technique in process of SWAT had data scare by the validation process involved the 

model initialization, calibration, verification and sensitivity analysis. Both manual and 

auto-calibration procedures were used to facilitate the comparison of the results with 

past studies in the same catchment. They conclude that a set of important parameters 

can be identified either by using observed or without observed flow data based on 

sensitivity analysis from six years simulations. This result suggested that SWAT model 

can be used in ungauged catchments for identifying hydrological controlling factors/ 

parameters. 

Lam, Schmalz and Fohrer (2011) using the eco-hydrological model soil and 

water assessment tool (SWAT) to evaluate the cost and effectiveness of best 

management practices (BMPs) for water quality improvement in the Kielstau 

catchment, Northern Germany. Herein, SWAT was applied to simulate flow, sediment, 

and nutrient load (Phosphorus and Nitrogen) from different point and diffuse sources 

in catchment. The basic input data included climate, topography, soil, land use, and 

agricultural data. In a part of simulate surface runoff volumes and peak runoff rate for 

each HRU used daily rainfall or sub-daily rainfall amounts. Surface runoff was 

calculated using a modification of the Soil Conservation Service curve number (SCS-

CN) method, which was a function of the soil’s permeability, land use and antecedent 

soil water conditions. The results of this study showed that good agreement between 

simulated and measured daily discharges with the Nash–Sutcliffe efficiency (NSE) and 

R2. Overall, the SWAT performed satisfactorily in simulating daily flow, sediment, and 

nutrient load at the Kielstau lowland catchment. 
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Rathjens and Oppelt (2012) presented a grid-based approach of model 

interface that enabled the user to incorporate spatial detail such as remote sensing data 

into a SWAT model run. The application of this concept resulted support in a loss of 

spatial information in the input data such as land-use or soil type for improving model 

results. In this study SWATgrid was developed to fill the gap for an interface that 

incorporates grid-based cell data into SWAT, a model input interface for setting up 

SWAT based on grid cells. In addition, digital landscape analysis tool TOPAZ 

(TOpographic PArametriZation) was used to create input file of SWAT model. The 

functionality of SWATgrid was demonstrated by comparing conventional SWAT 

model resulted derived by ArcSWAT, which corresponded well. 

Chen and Wu (2012) presented the alternative and integrate model by using 

the TOPographic MODEL (TOPMODEL) features for enhancing the physical 

representation of hydrologic processes with integration of the SWAT model. The new 

simulation method of base flow can also reflect the influence of the dynamics of that 

water table, which contains temporal and spatial information. In practice, a group of 

empirical equations of SWAT was modified included four hydrologic processes: 

surface runoff (remodeled), base flow (remodeled), groundwater re-evaporation 

(refined) and deep aquifer percolation (remove) by using the influences of topography 

and water table variation on stream flow generation of  the TOPMODEL. So 

TOPMODEL features was integrated into SWAT as a new model called that SWAT-

TOP. Comparison of observed and simulated from two models: SWAT-TOP and 

SWAT was here investigated. It was found that output from both model are similar 

results. But base flow by SWAT-TOP can indicate the dry and wet seasons distinctly 

and related soil water availability. While the SWAT simulation does not. SWAT-TOP 
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can model those processes reasonably. Therefore, it is possible to enhance the 

representations of the terrestrial hydrologic processes in an established model. 

2.8.4 Economic land evaluation 

In the agricultural sector Hawkins (2009) described CBA was used for 

agricultural projects or large estates, examples being irrigation projects and estates with 

perennial crops and corresponding processing facilities, e.g. palm oil. The basic idea 

here was to find out if the investment in construction and yearly maintenance and 

operational costs of the irrigation scheme is justified in terms of a higher agricultural 

production and agricultural incomes (benefits). 

Bateman, Lovett and Brainard (2003) studied environmental economic 

approach by using CBA integrate with GIS in case study of England and Wales. His 

work showed how farm incomes would change if only the non-market value of land 

was ‘monetized’ and added to some of the market values from changed land use (e.g. 

timber) and adapt transferred values to account for different site characteristics. 

Currently non-market land services and changed market values are integrated into farm 

incomes. The external benefit of forest comes from: recreation/education, amenity, 

wildlife habitat, ecology value, biodiversity, soil stability, hydrological (regulation, 

storage), carbon sinks (microclimate, regulation), berries/game, fuel, shelter, etc. This 

aggregate recreation values from forest area of valuation methods, predicting values 

and predicting visits and results conform well to prior expectations showing predicted 

demand to be linked to population distribution and site accessibility. In additional to 

timber valuation using GIS techniques was used to bring together a host of diverse 

datasets to permit modeling of timber yield and its net value. Moreover carbon sequence 

was considerate from three sources: the growth of live wood, changes in the carbon 
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content of woodland soils; and carbon liberation from felling waste and timber 

products. In assessment all the preceding analyses were synthesized provided the net 

benefit of converting land out of agriculture and into woodland. This appraisal was 

made from a number of standpoints. For example, two types of agricultural production 

(sheep and milk) can be assessed in two ways (farm-gate and social values). Similarly, 

a variety of woodland benefits can be used to assess in many forms (recreation, timber 

and carbon sequestration) in economic terms. 

Samranpong, Ekasingh and Ekasingh (2009) described economic land 

evaluation for major crops management in the Northern of Thailand. The aim of the 

study was to assess the economic land use planning dynamic system by using GIS-

based system and EconSuit, in a part of physical land evaluation and economic land 

evaluation. For physical land evaluation, a physical land suitability index was created 

using the FAO framework and the Project fuzzy land evaluation program. This program 

was implemented with fuzzy membership function determined using S-membership. 

The users can enable and assign factors and weights for physical land evaluation by use 

dynamic graphic interface. Besides economic land evaluation was assigned by field 

study data to homogeneous land area which was combined between land unit and land 

use as land mapping units using spatial interpolation. In addition, unit cost of input and 

outputs can be entered via the graphic user interface, interface, allowing constant 

updates of economic values in the system. Scenarios of agricultural land use planning 

may be formulated by users depending on policy or economic circumstances. 

2.8.5 Multi-criteria spatial allocation model 

Van den Bergh et al. (2001) presented the spatial evaluation from multi-

criteria decision analysis (MCDA) for spatial; economic-hydroecological modeling and 
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land use impact evaluation in the Vecht wetlands area, the Netherlands. The study had 

developed a triple layer models that integrate information and concepts from social and 

natural sciences to address the analysis and evaluation of land-use scenarios for a 

wetlands area. The study had resulted in a set of linked spatial hydrological, ecological 

and economic models, formulated at the level of grids and polders. The main activities 

incorporated in the system of models were housing, infrastructure, agriculture, 

recreation, and nature conservation. The formulation of alternative development 

scenarios was dominated by land use and land cover options that were consistent with 

the stimulation of agriculture, nature or recreation. Two aggregate performance 

indicators had been constructed from model output, namely net present value of 

changes and environmental quality. It was found that the spatial characteristics of these 

indicators are retained in a spatial evaluation that ranks scenarios. 

Nelson et al. (2009) presented Integrated Valuation of Ecosystem Services 

and Tradeoffs (InVEST) as a spatial explicit modeling tool to predict changes in 

ecosystem services, biodiversity conservation and commodity production levels. They 

simulated LULC from 1990 to three scenarios in 2050: plan trend, development, and 

conservation. Invest was used herewith to analyze water quality, soil conservation, 

storm peak management, carbon sequestration, biodiversity conservation, and market 

value of commodity production. Besides output from InVEST model were normalized 

all scores by their LULC. It was evident that scenarios that received high scores for a 

variety of ecosystem services also had high scores for biodiversity. Quantifying 

ecosystem services in a spatially explicit manner, and analyzing tradeoffs between them 

could help to make natural resource decisions more effective, efficient, and defensible. 
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Jeong, García-Moruno and Hernández-Blanco (2012) presented a spatial 

assessment for re-mixing buildings on the rural fringe of Spain. They were applied 

multi criteria decision analysis for rural building suitability. The parameters were 

categorized into five criterion groups: physical, comprises visual, economical 

situations, and environmental. These factors were transformed to commensurate unit 

by standardize from fuzzy set membership functions and assigning weights to factors 

through the Analytical Hierarchy Process (AHP). After that SAW method was applied 

for calculation of final grading values. So that the final was created a suitability re-

mixing index map for rural building integration with landscape. 

Rahman, Shim and Chongfa (2009) developed soil erosion hazard 

assessment by an integrated use of remote sensing, GIS and statistical approaches. For 

soil erosion hazard assessment, revised universal soil loss equation (RUSLE) was 

implemented in the study. Herewith nine factors for soil erosion by water included soil 

erodibility, slope, soil depth, rainfall, elevation, vegetation, fallow land, population 

density and presence of existing soil erosion. These factors were transformed to 

quantitative factor maps for rating score and standardization using the AHP. In addition, 

a Z-score analysis was applied to standardized factor maps for decrease the bias of any 

factor in the final evaluation. After that pair wise comparison matrix by the AHP was 

reapplied for factors weight assignment and WLC was then used to calculate soil 

erosion hazard index (SEHI). Final output of the study was presented in term of four 

levels of soil erosion hazard: very high, high, moderate, and low. Based on this study, 

comprehensive erosion hazard management strategies were anticipated for efficient 

management of present and future erosion disaster in the area. 
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Bunruamkaew and Murayama (2011) applied GIS with the AHP for 

ecotourism site suitability evaluation in Surat Thani Province, Thailand. In this study, 

related five factors (landscape/naturalness, wildlife, topography, accessibility, and 

community characteristics) were applied for potential ecotourism site assessment. 

Major criteria were also assigned to those factors included visibility, land use/cover, 

reservation/protection, species diversity, elevation, slope, proximity to cultural sites, 

distance from roads, and settlement size. In practice, four main steps of the 

methodology include: (1) finding suitable factors, (2) assigning factor priority, weight 

and rating using AHP, (3) generating ecotourism suitability map using WLC, and (4) 

classifying ecotourism potential sites. As results, it was found that the methodology 

proposed was useful to identify ecotourism sites by linking the criteria deemed 

important with the actual resources in the province. 
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CHAPTER III 

DATA AND METHODOLOGY 

 

Summary of collected and prepared data and details of methodology including 

Component 1: Historical and recent LULC extraction and driving force identification, 

Component 2: Local parameter of CLUE-S optimization and validation, Component 3: 

LULC simulation with three scenarios, Component 4: impact assessment and 

evaluation, soil erosion, water yield, and economic value, and Component 5: an optimal 

land use allocation are here explained in this chapter. 

 

3.1 Data 

The main input data for historical and recent LULC extraction and driving force 

identification and local parameter of CLUE-S model optimization for LULC scenario 

simulation include both primary and secondary data. At the same time the major data 

for impact assessment due to LULC change on soil erosion, water yield, and economic 

value and an optimal land use allocation in different scenarios for year 2023 are mostly 

secondary data. The list of data collection and preparation are summarized as shown in 

Table 3.1. 
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Table 3.1 List of collection and preparation data.  

Component Collection Preparation Scale Source 

Component 1:          

Historical  and recent  Color orthoimage data in 2003 LULC 2003 by visual interpretation 1: 4,000 LDD 

LULC extraction Thaichote 2013 LULC 2013 by visual interpretation 1: 10,000 GISTDA 

Component 1:          

Driving force DEM Elevation extraction 1: 50,000 RTSD 

identification DEM Slope extraction 1: 50,000 RTSD 

 DEM Aspect extraction 1: 50,000 RTSD 

 Rainfall data Rainfall interpolation   No scale TMD 

 Road network Buffering by distance  1: 50,000 RTSD 

 Stream network Buffering by distance 1: 50,000 RTSD 

 Soil data Drainage capacity 1: 50,000 LDD 

 Demography data Population density No scale NSO 

  Demography data Income No scale NSO  

 Administrative boundary Data extraction (Sub district) 1: 50,000 RTSD 

  Watershed classification Data extraction 1: 50,000 ONREPP 

Component 2:      

Local parameter of  Main parameters file  Main parameters text file  No scale CLUE-S 

CLUE-S  Regression parameters Regression parameters file No scale CLUE-S 

optimization Change matrix Change matrix file No scale CLUE-S 

 Land use requirements  Land use requirements No scale CLUE-S 

 Static location factor  Static location factor  No scale CLUE-S 

  

5
6
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Table 3.1 (Continued).  

Component Collection Preparation Scale Source 

 LULC 2003 LULC 2003 1: 10,000 Visual interpretation 

 Area restriction file Area restriction file No scale CLUE-S 

Component 2:          

CLUE-S  CLUE-S model parameters Validation No scale CLUE-S 

optimization and validation  LULC 2013 by simulation 

LULC 2013 by visual interpretation 

Validation 

Validation 

1: 10,000 

1: 10,000 

CLUE-S 

Visual interpretation 

Component 3:     

LULC simulation  LULC 2013 LULC 2013 visual interpretation 1: 10,000 Visual interpretation 

with three scenarios Land use requirements in 2023 by Scenario I Definition of Scenario I No scale Rate of LULC change between 

2003-2013  

 Land use requirements in 2023 by Scenario II Scenario of Scenario II No scale Agriculture production extension 

policy 

 Land use requirements in 2023 by Scenario III Scenario of Scenario III No scale Forest conservation and 

protection policy 

Component 4:         

Impact assessment:  

soil erosion 

Rainfall data 

Soil data 

Rainfall interpolation (R-factor) 

Soil type (K-factor) 

 No scale 

1: 50,000 

TMD 

LDD 

 DEM Slope (LS-factor) 1: 50,000 RTSD 

  

5
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Table 3.1 (Continued). 

Component Collection Preparation Scale Source 

 LULC 2013 data LULC 2013 Visual interpretation 

(C-factor) and (P-factor) comparison 

1: 10,000 CLUE-S 

 LULC 2023 simulation of Scenario I LULC 2023 simulation’s Scenario I  

(C-factor) and (P-factor) 

1: 10,000 CLUE-S 

 LULC 2023 simulation of Scenario II LULC 2023 simulation’s Scenario II  

(C-factor) and (P-factor) 

1: 10,000 CLUE-S 

  LULC 2023 simulation of Scenario III LULC 2023 simulation’s Scenario III  

(C-factor) and (P-factor) 

1: 10,000 CLUE-S 

Component 4:          

Impact assessment:  DEM Elevation 1: 50,000 RTSD 

water yield Rainfall data Rainfall interpolation No scale TMD 

 Soil data Soil type 1: 50,000 LDD 

 Runoff data (2000-2011), Gage height (2001-2011), 

climatology data (2002-2013) 

Calibration No scale RID, TMD 

 LULC 2003 by visual interpretation 

LULC 2013 by visual interpretation 

Calibration 

Comparison 

1: 10,000 

1: 10,000 

Visual interpretation 

Visual interpretation 

 LULC 2023 simulation of Scenario I 

LULC 2023 simulation of Scenario II 

LULC 2023 simulation of Scenario III 

LULC 2023 simulation’s Scenario I 

LULC 2023 simulation’s Scenario II 

LULC 2023 simulation’s Scenario III 

 

1: 10,000 

1: 10,000 

1: 10,000 

CLUE-S 

CLUE-S 

CLUE-S 

  

5
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Table 3.1 (Continued). 

Component Collection Preparation Scale Source 

Component 4:          

Impact assessment:  LULC 2013  Present value each a LULC types 1: 10,000 Visual interpretation 

economic value LULC 2023 simulation’s Scenario I  Present value each a LULC types 1: 10,000 CLUE-S 

 LULC 2023 simulation’s Scenario II Present value each a LULC types 1: 10,000 CLUE-S 

 LULC 2023 simulation’s Scenario III Present value each a LULC types 1: 10,000 CLUE-S 

Component 5:          

An optimal land  Soil erosion 2023 ‘s Scenario I Reclassification 1: 10,000 USLE 

use allocation  Soil erosion 2023 ‘s Scenario II Reclassification 1: 10,000 USLE 

 Soil erosion 2023 ‘s Scenario III Reclassification 1: 10,000 USLE 

 Water yield ‘s Scenario I Reclassification 1: 10,000 SWAT 

 Water yield ‘s Scenario II Reclassification 1: 10,000 SWAT 

 Water yield ‘s Scenario III Reclassification 1: 10,000 SWAT 

 Economic value ‘s Scenario I Reclassification 1: 10,000 PV 

 Economic value ‘s Scenario II Reclassification 1: 10,000 PV 

  Economic value ‘s Scenario III Reclassification 1: 10,000 PV 

 

5
9
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3.2 Methodology 

Research methodologies are designed to serve the main objectives of the research 

which are concerned to assess LULC and its change, to identify driving force for LULC 

change, to optimize local parameter of CLUE-S model for LULC scenario simulation, 

to assess and evaluate impact of LULC change on soil erosion, water yield and 

economic value for an optimal LULC in different scenarios allocation. Schematic 

diagram of research methodology of the study is displayed in Figure 3.1. It consists of 

one common activity and 5 research components. 

(1) Component 1. Historical and recent LULC extraction and driving force 

identification, 

(2) Component 2. Local parameter of CLUE-S optimization and validation, 

(3) Component 3. LULC simulation with three scenarios, 

(4) Component 4. Impact assessment and evaluation: soil erosion, water yield, and 

economic value. 

(5) Component 5. An optimal land use allocation. 

 

3.2.1 Component 1. Historical and recent LULC extraction and driving force 

identification  

Component 1 consists of two sub-components: historical and recent LULC 

extraction and driving force identification. For historical and recent LULC extraction, 

LULC in 2003 and LULC 2013 are visually interpreted from color orthoimage and 

Thaichote data, respectively by digitized via the screen at the scale of 1:10,000. The 

interpreted LULC in 2003 are used as baseline for LULC in 2013 simulation by    
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CLUE-S model while the interpreted LULC in 2013 is used to identify an optimum 

local parameter of CLUE-S model. 

In addition, accuracy assessment is performed for LULC in 2013 based on 

referenced LULC data from field survey by overall accuracy and Kappa hat coefficient 

of agreement. Number of samples and sampling method scheme is firstly decided and 

error matrix is then constructed for accuracy assessment. Sample sizes herein are based 

on the binomial probability theory by Fitzpatrick-Lins (1981) and stratified random 

sampling scheme is applied in the study. Schematic diagram for input, process and 

output of sub-component 1 displayed in Figure 3.2. 
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Figure 3.1 Overview of research methodology. 
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At the same time, driving force for LULC change is reviewed from previous 

studies (Table 3.2) and identify for stepwise regression analysis. The selected driving 

force (bio-physical, demographic, economic data and technology) include elevation, 

slope, aspect, distance from road, distance from stream, income, population density, 

annual rainfall, soil drainage, and watershed class. Herewith, stepwise binary logistic 

regression model is applied to predict driving force for LULC change. Verburg et al. 

(2005) stated that analysis of driving factors on statistical method is used to reveal and 

quantify the relations between the locations of land use and a set of explanatory factors. 

The set of explanatory factors is based upon the user's knowledge of the dominant 

factors causing land use change in the study area. 
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Table 3.2 Driving force for LULC change from preliminary study. 

Study site  
No. of 

driving force 
Detail Researcher (year) 

Brazilian Amazon 10 
Slope, geomorphology, lithology, soils, land suite, precipitation, cost distance to (main 

urban areas, mining areas and sawmills), population density and income 

De Souza Soler, Verburg and 

Veldkamp (2007) 

Central America 10 

Land use index, land use change, distribution of crop, areas affected by erosion compaction 

and Stalinization, land use projections, deforestation, forest surface, forest fragmentation 

and reforestation 

Farrow, and Winograd (2001) 

China 6 
Urbanization rate, distance to town, slope, elevation, distance to road, and population 

density 
Zheng et al. (2012) 

Kenya 6 
Elevation, slope, distances to rivers and towns, and lithology (igneous, metamorphic and 

sedimentary rocks) Population, 
Githui, Mutua and Bauwens(2009) 

Philippines and 

Malaysia 
11 

Geology,  Erosion vulnerability, distance to (stream ,to road ,to coast and to port), and 

Population density 
Verburg et al. (2002) 

South Korea 14 

Dem, aspect, slope, soil depth, soil drain, soil type, environmental conservation value of 

national land, distance to (city, highway, national park and local road); Restrict condition to 

(agricultural promotion zone, ecological zone and preservation zone) 

Oh, Yoo, Lee and Choi (2011) 

Taiwan  
Altitude, slope, distance to (major roads, river, built-up land and urban planning areas), soil 

drainage, soil erosion coefficient, and population density. 
Lin,Lin, Wang, and Hong (2008) 

Thailand 8 
Altitude, slope, distance to (main roads, streams, village, city), Soil types and population 

density. 

Trisurat, Alkemade and Verburg 

(2010) 

West of Africa 11 

Distances from (road, stream and forest), finally distance from settlement and population 

density (fertile soil, fuel wood collection, grazing in forests (settlements), subsistence 

agriculture, logging, population growth, and migration) 

Orekan (2007) 

6
4
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Therefore these are the explanatory factors in the statistical analysis based on 

the biophysical and socio-economic conditions of a location the relative probability of 

finding the different land use types at that location is defined. In this study, this 

operation is processed using SPSS software. Driving forces that have no significant 

contribution to the explanation of the LULC change is excluded from the final 

regression equation. 

Besides the test of driving forces with LULC types for probabilities, the 

goodness of fit for logistic regression is evaluated by receiver operating characteristic 

(ROC). The ROC characteristic is a measure for the goodness of fit of a logistic 

regression model similar to the R2 statistic in ordinary least square regression (Pontius 

and Schneider, 2001 and Swets, 1986). The ROC is based on a curve relating the true-

positive proportion and the false-positive proportion for the complete range of cut-off 

values in classifying the probability. A completely random model gives a ROC value 

of 0.5, while a perfect fit results in a ROC value of 1.0. The ROC curve can be defined 

under “Graphs -ROC curve” (Verburg et al., 2005). Schematic diagram for input, 

process and output of sub-component 1 is displayed in Figure 3.3. 

 

Figure 3.2 Methodology for historical and recent LULC extraction. 
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Figure 3.3 Methodology for driving force identification. 

 

3.2.2 Component 2. Local parameter of CLUE-S optimization and validation 

Under the component 2, the extracted significant driving factors for LULC 

change from the previous component is applied as initial land use allocation in 2013 

under CLUE-S model. Description of parameter file of CLUE-S model is summarized 

as shown in Table 3.3. 

In this study, an optimum local parameter of CLUE-S model is identified by 

comparison between the simulated LULC in 2013 from CLUE-S model and the 

interpreted LULC in 2013 from Thaichote data using Kappa analysis. If the overall 

accuracy and Kappa hat coefficient of agreement between the simulated LULC in 2013 

and actual LULC in 2013 is equal or more than 80 percent, the assigned parameter 

values of elasticity and conversion matrix are acceptance as optimum local parameters 

of CLUE-S model. This CLUE-S configuration then applies for LULC in 2023 

simulation with triple scenarios based on historical land use evolution, agriculture 
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production extension and forest conservation and prevention in the next component. 

Schematic diagram for input, processing, and output of component 2 is illustrated in 

Figure 3.4. 

 

Table 3.3 Description of local parameters optimization of CLUE-S model. 
 

Filename  Description  

MAIN.1  Main parameters file. Listed on exactly 19 lines. Some parameters settings 

will dictate whether the optional files must be specified or not.  

ALLOC1.REG  Regression parameters. Length of file depends on number of land use types 

and location factors.  

ALLOC2.REG  Neighbourhood results. These are additional regression parameters based on 

the enrichment factor equation.  

(It will be used if it requires) 

ALLOW.TXT  Change matrix. The number of rows and columns equal the land cover types, 

here 5 X 5 

NEIGHMAT.TXT  Neighbourhood settings. Defines the shape and size (in the form of a small 

weight matrix) of the analysis neighbourhood for every land use type.  

(It will be used if it requires) 

REGI*.*  Area restriction file. A grid that defines where land use changes can and 

cannot occur. The * is a wildcard here; it does not indicate the simulate year. 

All active cells must have the value 0, restricted cells a value of –9998, and all 

others cells –9999 (No data).  

DEMAND.IN*  Land use requirements. Calculated at the aggregate level and organized by 

rows (simulated years starting at 0) and columns (for every land use types). 

The * denotes a unique number, not simulated year.  

COV_ALL.0  Initial land use. A grid of all land use types at the start (year 0). Grid values 

must match the land use codes listed in the main parameters file.  

SC1GR#.FIL  Static location factor grid, where # is the number of the location factor 

SC1GR#.*  Dynamic location factor grid, where # is the number of a location factor. The 

* is the simulated year starting at 0, not a wildcard. 

(It will be used if it requires) 

Source: Adapted from Luijten, Miles and Cherrington (2006) 
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Figure 3.4 Local parameter of CLUE-S optimization and validation. 

 

3.2.3 Component 3 LULC simulation with three scenarios 

Basically, scenario definition describes about story line of the study area for 

the conversion of land use. It can define by historical record or condition of economic 

and conversation aspects as land use requirement (land demand). In this study, three 

scenarios are defined for LULC change simulation in 2023 including (1) historical land 

use evolution, (2) agriculture production extension, and (3) forest conservation and 

prevention.  

Scenario I: Historical land use evolution. The land use requirement (land 

demand) for LULC in 2023 simulation is based on annual change rate of each LULC 

class between 2003 and 2013. 
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Scenario II: Agriculture production extension. Under this scenario, 

government policy for alternative energy in the future is firstly reviewed and 

transformed into land demand for energy crops: cassava and sugarcane. Meanwhile, 

national park and watershed class I is preserved as a restriction areas for LULC in 2023 

simulation under CLUE-S model. 

Scenario III: Forest conservation and prevention. In contrast to the 

Scenario II, the existing government policy on forest conservation and prevention is 

investigated and transformed into forest land demand. Herewith boundary of national 

park, watershed class I and II and an existing forest area in 2013 is used as forest land 

demand for LULC simulation under CLUE-S model. 

In practice, parameters for land allocation include (1) spatial policies and 

restrictions, (2) land use type specific conversion setting with conversion elasticity and 

land use transition sequences, and (3) land use requirement are required under CLUE-

S model. Schematic diagram for input, processing, and output of component 3 is 

depicted in Figure 3.5. 
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Figure 3.5 Methodology for LULC simulation with three scenarios. 

 

3.2.4 Component 4. Impact assessment: Soil erosion, water yield, and 

economic value  

This component is the one of major component for the research methodology 

which are composed of three models: USLE, SWAT and PV models for impact 

assessment due to LULC change. Under this component LULC in 2013 by visual 

interpretation is firstly used to estimate soil loss using USLE model, water yield using 

SWAT model with SCS-CN method and economic value with present value (PV). 

Similarly, the triple derived simulated LULC scenario in 2023 by CLUE-S model are 

also used to estimate soil loss, water yield and economic value with corresponding 

models. After that the results about soil loss, water yield and economic value from year 

2013 are compared with the results from triple LULC scenarios from year 2023 for 

impact assessment. Schematic diagram for input, processing, and output of component 

4 is illustrated in Figure 3.6. 
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In practice, additional required data for estimation of soil loss by USLE 

model, water yield by SWAT model with SCS-CN method and economic value with 

PV from the interpreted LULC in 2013 and simulated LULC in 2023 of three scenarios 

are compiled from the concerned government agencies. 

For USLE model, rainfall-runoff erosivity (R), soil erodibility (K) and slope 

length (L) and steepness (S) factors are assumed as static for two periods while 

vegetation cover (C) and conservation support-practice (P) factors are dynamic as 

LULC change. Herein, average annual rainfall between 2003 and 2013 is applied for 

soil loss estimation in 2013 and 2023. The summary procedure for generating USLE 

factors are as follows: 

For R-factor, equation defined by LDD (2000b) for Northeastern Region of 

Thailand has been adopted in this study as:  

R = 0.4669 X – 12.1415. (3.1) 

Where, R is rainfall-runoff erosivity factor in MJ mm/ha/h per year and X is average 

annual rainfall (mm). In this study, Inverse Weighted Distance (IDW) has been used to 

interpolate the derived R value at four meteorological stations to be continuous data 

with grid cell of 25 m. 

For K factor, soil erodibility which is related to soil texture of soil group data 

was adopted from standard value of LDD (2000b) as summary in Table 3.4. 
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Table 3.4 Soil erodibility (K) value based on soil texture using in USLE. 

 

Soil Group Soil Texture Soil erodibility (K) value 

17 sandy clay loam 0.20 

25 loam 0.35 

29 silty clay 0.23 

31 silt loam 0.37 

35 sandy loam 0.29 

40 loamy sand 0.04 

46 clay loam 0.25 

47 clay 0.13 

48 loam 0.35 

52 silty clay loam 0.46 

55 silt loam 0.37 

56 loam 0.35 

62 loam 0.35 

Source: LDD (2000b) 

 

 For Slope length and steepness factor (LS), the reviewed equations is used to 

prepare LS factor from DEM as follows: 

(a) Slope Length, 

L = (λ/22.13)m, (3.2) 

Where, m is a variable slope-length exponent related to the ratio β of rill erosion (caused 

by flow) to interrill erosion (principally caused by raindrop impact) by the following 

equation (Foster et al., 1977): 

m = β/ (l + β)   and (3.3) 

 β can be computed from (McCool et. al., 1989) as: 

β=(Sinθ/0.0896)/(3.0(Sinθ)0.8+0.56) (3.4) 

 

(b) Steepness factor, S is computed from (McCool et al., 1987) as: 

S = (10.8Sinθ+0.03) for slope < 9% (3.5) 
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S = (16.8Sinθ-0.5) for slope ≥ 9% (3.6) 

Where, λ = Slope Length (cell size in meters) and θ = slope gradient map (degree) 

For vegetation cover (C) and conservation support-practice (P) factors, 

these factors which are related to LULC data were adopted from standard value of LDD 

(2000b) as summary in Table 3.5. 

 

Table 3.5 Value of C and P factors for LULC type using in USLE. 

LULC Type Vegetation cover (C) Conservation support practice (P) 

Urban and built up land 0.000 0.0 

Paddy field 0.280 0.1 

Cassava 0.525 1.0 

Maize 0.525 1.0 

Sugarcane 0.525 1.0 

Perennial tree/ orchard 0.150 1.0 

Forest land 0.003 0.1 

Water body 0.000 0.0 

Miscellaneous land 0.015 1.0 

Source: LDD (2000b) 

Similarly, for SWAT model with SCS-CN method, DEM and soil are 

assumed as static data for two periods while rainfall is dynamic as LULC change. In 

the study, actual daily rainfall in 2013 is applied for local optimum parameter of SWAT 

model to generate CN value and average annual rainfall between 2003 and 2013 is 

applied for water yield estimation in 2013 and 2023 by SCS-CN method. In this sub-

component, SWAT model is used to generate CN value for each hydrologic response 

unit (HRU) while SCS-CN method is used to estimate water yield. 

For economic value using PV, present value of price and yield of agricultural 

land use types (paddy field, sugarcane, cassava, maize) are compiled from Agricultural 

Situation  between 2006 and 2013 of OAE and perennial trees from Market 
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Organization for Farmers. Meanwhile, price and yield value of forest is compiled from 

the Technical report of Royal Forest Department by Wittawatchutikul and 

Jirasuktaveekul (2005). All of complied prices and yields are here used to predict 

economic value of LULC in 2023 for actual LULC in 2013 and three LULC scenarios. 

Finally, impact assessment of triple LULC change scenarios on soil erosion, 

water yield and economic values changes are subsequently analyzed in term of gain as 

positive impact and loss as negative impact between 2013 and 2023. Details of 

workflow for impact assessment based on soil loss using USLE model, water yield 

using SWAT model with SCS-CN method and economic value using PV are presented 

in Figures 3.7 - 3.9, respectively. 
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Figure 3.6 Overview of impact assessment and evaluation component. 
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Figure 3.7 Methodology for soil erosion assessment and its impact by USLE model. 
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Figure 3.8 Methodology for water yield assessment and its impact by SWAT 

model and SCS-CN method. 
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Figure 3.9 Methodology for economic assessment and its impact by PV model 
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For soil loss data, which represents effect of LULC change on the land, is 

normalized based on score range procedure for cost criteria (Young, Rinner and 

Patychuk, 2010) as: 

𝑥́𝑖𝑗 =
𝑥𝑗
𝑚𝑎𝑥−𝑥𝑖𝑗

𝑥𝑗
𝑚𝑎𝑥−𝑥𝑗

𝑚𝑖𝑛  (3.7) 

Meanwhile, water yield which is here assigned for availability of water for certain area 

(pixel) indicates positive effect on the land. The water yield is normalized based on 

score range procedure for benefit criteria ((Young et al., 2010) as: 

𝑥́𝑖𝑗 =
𝑥𝑖𝑗−𝑥𝑗

𝑚𝑖𝑛

𝑥𝑗
𝑚𝑎𝑥−𝑥𝑗

𝑚𝑖𝑛  (3.8) 

At the same time, economic value is normalized based on maximum score procedure 

for benefit criteria as: 

𝑥𝑖𝑗
′ = 𝑥𝑖𝑗/𝑥𝑗

𝑚𝑎𝑥  (3.9) 

where 

 
'

ijx is the standardized score for the ith object and the jth attribute; 

 ijx is the raw score, 
max

jx is the maximum score for the jth attribute;  

 
min

jx is minimum score for the jth attribute; and  

 
minmax

jj xx  is the range of a given criterion.  

 

Then the standardized score for each criterion are combined using SAW method with 

the specific weight according scenario characteristics as follows: 

For Scenario I: Historical land use evolution. The land use requirement (land 

demand) for LULC in 2023 simulation is based on annual change rate of each LULC 
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class between 2003 and 2013. Weighting for soil loss, water yield and economic values 

based on relative importance are 1, 1, and 1, respectively. 

For Scenario II: Agriculture production extension. Under this scenario, 

government policy for alternative energy in the future is transformed into land demand 

for energy crops: cassava and sugarcane. Weighting for soil loss, water yield and 

economic values based on relative importance are 1, 2, and 3, respectively. 

For Scenario III: Forest conservation and prevention. The existing 

government policy on forest conservation and prevention is transformed into forest land 

demand. Weighting for soil loss, water yield and economic values based on relative 

importance are 3, 2, and 1, respectively. 

Detail workflow for an optimized land allocation using MCDA basis and 

SAW method for triple scenarios are presented in Figure 3.10. 
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Figure 3.10 Methodology for an optimal land use allocation. 

 

 

 

 

 

 

 

 



 

CHAPTER IV 

LULC ASSESSMENT AND ITS CHANGE  

AND DRIVING FORCES FOR LULC CHANGE 

 

All recent experiment results related to historical and LULC extraction with 

accuracy assessment of LULC in 2013 and driving force identification of LULC change 

for each LULC type were presented with discussions in this chapter. 

 

4.1 Historical and recent LULC extraction 

LULC data in 2003 as historical record and recent LULC data in 2013 which were 

visually interpreted from color orthoimage and THAICHOTE data, respectively were 

displayed in Figures 4.1 and 4.2, respectively. Meanwhile, area of each LULC type was 

compared as shown in Table 4.1 and Figure 4.3.  

As results, it was found that major increasing LULC types were sugarcane and 

urban and built-up land with annual change rate of 171 and 66.5 ha per year, 

respectively and minor increasing LULC types were miscellaneous land, cassava, and 

water body with annual change rate of 28, 21.5 and 5.15 ha per year, respectively. In 

contrary major decreasing LULC types were perennial trees/orchard and maize with 

annual change rate of 128.5 and 108.9 ha per year, respectively and minor decreasing 

LULC type was forest land with annual change rate of 55.3 ha per year. Meanwhile, 

paddy field in this period was stable. The derived LULC change pattern of major LULC 
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classes (urban and built-up land, agricultural land, forest land, water body and 

miscellaneous land) between 2003 and 2013 from the study was similar to land use 

change pattern of land use classes of LDD between 2008 and 2011 (see Figure 1.2). 

In addition a transitional change matrix of LULC between 2003 and 2013 which 

provides from-to change class information was summarized as shown in Table 4.2 and 

displayed as LULC change map in Figure 4.4. Highlight from-to change class of energy 

crops (cassava and sugarcane) was also presented in Figure 4.5. As results, it was found 

that the exchangeable areas among field crops was existence. For example, areas of 

cassava in 2003 was changed to be maize and sugarcane in 2013 about 454 and 168 ha, 

respectively. Similarly, maize in 2003 was converted to be cassava and sugarcane in 

2013 about 661 and 1,383 ha, respectively. However, sugarcane in 2003 was only 

changed to be maize in 2013 about 287 ha. These exchangeable areas might be relate 

to price, landform, labors, and available of water. According to report of LDD on 

economic crop zonation in 2009, sugarcane provide higher return than cassava and 

maize. 
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Figure 4.1 Distribution of LULC in 2003. 
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Figure 4.2 Distribution of LULC in 2013.
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Table 4.1 Comparison of LULC change between 2003 and 2013. 

LULC 
Area in ha 

UR  PA  CA  MA SU PE  FO WA MI 

In 2003 1,800 237 4,232 19,694 9,074 7,452 26,522 1,108 7,046 

In 2013 2,465 237 4,446 18,603 10,786 6,167 25,970 1,165 7,326 

Change area 665 0 214 -1,091 1,712 -1,285 -552 57 280 

Annual change rate 66.5 0 21.4 -109.1 171.2 -128.5 -55.2 5.7 28 

Percentage of change 36.92 0 5.08 -5.53 18.85 -17.25 -2.08 5.15 3.98 

 

 

Figure 4.3 Area comparison of LULC types between 2003 and 2013. 

  

0

5,000

10,000

15,000

20,000

25,000

30,000

UR PA CA MA SU PE FO WA MI

A
re

a 
in

 h
a

Ca = Cassava Ma = Maize Pa = Paddy field

Fo = Forest land          Mi = Miscellaneous land             Pe = Perennial tree/orchards

Su = Sugarcane Ur = Urban and built-up land     Wa = Water body

2003 2013

 

 

 

 

 

 

 

 



87 

 

 

Figure 4. 4 Distribution of LULC change between 2003 and 2013. 

 

Table 4.2 LULC change between 2003 and 2013 as transitional matrix. 

 LULC 2013 (ha) 

L
U

L
C

 2
0
0
3

 (
h

a
) 

LULC types UR PA CA MA SU PE FO WA MI Total 

Urban and built-up land (UR) 1,800 - - - - - - - - 1,800 

Paddy field (PA) - 237 - - - - - - - 237 

Cassava (CA) 18 - 3,316 454 168 133 - - 143 4,231 

Maize (MA) 313 - 661 16,141 1,383 551 - 8 637 19,693 

Sugarcane (SU) 21 - - 287 8,448 293 - - 25 9,074 

Perennial tree/orchard (PE) 163 - 340 1,165 659 5,014 - 2 109 7,452 

Forestland (FO) 17 - 28 174 34 42 25,970 10 247 26,523 

Water body (WA) - - - - - - - 1,108 - 1,108 

Miscellaneous land (MI) 133 - 101 382 94 134 - 37 6,165 7,046 

 Total 2,465 237 4,446 18,603 10,786 6,167 25,970 1,165 7,326 77,165 
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Figure 4.5 Highlight of from-to change information from various classes to cassava 

and sugarcane between 2003 and 2013. 

 

4.1.1 Accuracy assessment of LULC in 2013 

LULC data in 2013 which was visually interpreted from THAICHOTE data 

was assessed accuracy based on the stratified random sampling scheme with sample 

points of 203 points (Figure 4.6). Detail of sample point for accuracy assessment was 

represented in Table 1 of Appendix B. It was found that overall accuracy and Kappa 

hat coefficient were 90.15 and 87.21 percent, respectively (Table 4.3). Based on 
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Fitzpatrick-Lins (1981), Kappa hat coefficient more than 80 percent represents strong 

agreement or accuracy between the interpretation map and the ground reference 

information. In addition, producer’s accuracy of most LULC types, which directly 

relates to omission error, provided accuracy more than 80 percent except cassava and 

miscellaneous land while user’s accuracy of most LULC types, which directly relates 

to commission error, provided accuracy more than 80 percent except cassava. Because 

many areas of cassava grew more than one year and its appearance was similar a bush 

or scrub in miscellaneous land. 

 

Figure 4.6 Distribution of sampling points for accuracy assessment.  
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Table 4.3 Accuracy assessment between reference data and LULC 2013. 

   Ground reference data in 2014 

 LULC types  UR PA CA MA SU PE FO WA MI total 

In
te

r
p

r
e
te

d
 L

U
L

C
 d

a
ta

 i
n

 2
0
1
3

 

Urban and built-up land (UR) 7 - - - - - - - - 7 

Paddy field (PA) - 1 - - - - - - - 1 

Cassava (CA) - - 6 2 - - - - - 8 

Maize (MA) - - 1 47 2 - 1 - 4 55 

Sugarcane (SU) - - - - 24 - - - 2 26 

Perennial tree/orchard (PE) - - - 3 - 17 - - - 20 

Forest land (FO) - - - 2 2 - 69 - - 73 

Water body (WA) - - - - - - - 1 - 1 

Miscellaneous land (MI) - - 1 - - - - - 11 12 

Total  7 1 8 54 28 17 70 1 17 203 

 Producer’s accuracy 100.00 100.00 75.00 87.04 85.71 100.00 98.57 100.00 64.71   

 User’s accuracy 100.00 100.00 75.00 85.45 92.31 85.00 94.52 100.00 91.67   

 Overall accuracy 90.15                   

 Kappa hat coefficient 87.21                   

 

4.2 Driving force identification for LULC change 

With reference to Section 3.2, selected driving factor for LULC change included 

elevation, slope, aspect, distance from road, distance from stream, income, population 

density, annual rainfall, soil drainage, watershed classes (Figure 4.7) were firstly 

prepared in raster format with cell size of 100 m. Then they used to identify driving 

force for each LULC type by stepwise binary logistic regression. The output of the 

identified driving force for each LULC type with Receiver Operating Characteristic 

(ROC) was summarized in Table 4.4. It was found that ROC which represents the 

goodness of fit for logistic regression analysis varied between 0.651 and 0.929 for 

miscellaneous land and paddy field, respectively. These values can be acceptable when 

they vary between 0.5 (completely random) and 1.0 (perfect discrimination) as 

suggestion by Pontius and Schneider (2001) and Swets (1986).  
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Details of driving force for each LULC and multiple linear regression equation 

from binary logistic regression analysis were separately explained in the following 

section. 
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(a) Elevation (m) 

 
(b) Slope (%) 

 

Figure 4.7 Driving factors for LULC change. 
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(c) Aspect (directions) 

 

 
(d) Distance from road (m) 

 

Figure 4.7 Driving factors for LULC change (Continued). 
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(e) Distance from stream (m) 

 

 
(f) Income (Average monthly income per capita in baht) 

 

Figure 4.7 Driving factors for LULC change (Continued). 
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(g) Population density (persons per sq. km) 

 

 
(h) Annual rainfall (mm) 

 

Figure 4.7 Driving factors for LULC change (Continued). 
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(i) Soil drainage classes 

 

 
(j) Watershed classes 

 

Figure 4.7 Driving factors for LULC change (Continued). 
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Table 4.4 Identified driving force for each LULC type as equation form with ROC. 

Driving forces UR PA CA MA SU PE FO WA MI 

Constant -8.329 -60.9 2.225 15.047 -52.655 -16.829 5.456 -0.949 10.338 

Elevation (X1) - - 0.001 -0.003 - 0.008 -0.005 -0.031 - 

Slope (X2) 0.023 -0.48 -0.029 -0.01 -0.04 -0.018 0.049 -0.033 0.004 

Aspect (X3) -0.001 0.007 - - 0.001 - 0.001 - -0.001 

Distance from road (X4) -0.005 - -0.001 -0.0004 -0.001 -0.001 0.002 0.001 -0.0004 

Distance from stream (X5) - - 0.001 -0.001 - -0.0002 -0.001 -0.004 -0.001 

Income (X6) 0.002 -0.01 -0.001 - -0.008 - 0.002 0.005 0.001 

Population density (X7) 0.813 -4.88 0.297 -1.393 -2.178 -0.56 1.211 -2.31 -1.593 

Annual rainfall (X8) - 0.049 -0.002 -0.01 0.054 0.009 -0.007 - 0.001 

Soil drainage (X9) 0.195 0.956 0.036 -0.108 0.14 - -0.085 -0.933 - 

Watershed classes (X10) - 2.864 0.337 -0.304 0.253 0.113 -0.575 0.94 - 

ROC 0.82 0.929 0.681 0.627 0.808 0.703 0.894 0.893 0.651 

Numbers of DF 6 7 9 8 8 7 10 8 7 
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4.2.1 Driving force for urban and built-up land 

Multivariate linear regression equation as a binomial logit model for urban 

and built-up land was as follows: 

𝐿𝑜𝑔 (
𝑃𝑖

1−𝑃𝑖
) = –8.329 + 0.023X2 – 0.001X3 – 0.005X4 + 0.002X6 +  

0.813X7 + 0.195X9 , (4.1) 

where 

X2  is Slope (%); 

X3  is Aspect (degree); 

X4  is Distance from road (m); 

X6  is Income (baht per capita); 

X7  is Population density (person per sq. km); and 

X9  is Soil drainage (very poor, poor, moderate, and good). 

According to Equation 4.1, four factors including slope, income, population 

density, and soil drainage had positive relationship to a probability for urban and built-

up land occurrence while two factors including aspect, and distance from road had 

negative relationship to its probability. The most important factor for urban and built-

up land occurrence was population density. This implies that when population densities 

increases, the probability for urban and built-up land occurrence increases. 

4.2.2 Driving force for paddy field 

Multivariate linear regression equation as a binomial logit model for paddy 

field are as follows: 

𝐿𝑜𝑔 (
𝑃𝑖

1−𝑃𝑖
) = -60.9  – 0.48X2 + 0.0007X3 – 0.01X6 – 4.88X7 + 

0.049X8 + 0.956X9 + 2.864X10 , (4.2) 

where 
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X2  is Slope (%); 

X3  is Aspect (degree); 

X6  is Income (baht per capita); 

X7  is Population density (person per sq. km); 

X8  is Annual rainfall (mm); 

X9  is Soil drainage (very poor, poor, moderate, and good); and 

X10 is Watershed class (I, II, III, and IV). 

According to Equation 4.2, four factors including aspect, annual rainfall, soil 

drainage and watershed class had positive relationship to a probability for paddy field 

occurrence while three factors including slope, income and population density had 

negative relationship to its probability. The most important factors for paddy field 

occurrence were population density and watershed class. This implies that when 

population densities decreases and watershed class increases (i.e. undulating or flood 

plain), the probability for paddy field occurrence increases. In study site most of paddy 

field situates in flood plain along the main rivers within watershed class IV. 

4.2.3 Driving force for cassava 

Multivariate linear regression equation as a binomial logit model for 

cassava was as follows: 

𝐿𝑜𝑔 (
𝑃𝑖

1−𝑃𝑖
) = 2.225 + 0.001X1 – 0.029X2 – 0.001X4 + 0.001X5 –  

 0.002X6 + 0.297X7 – 0.002X8 + 0.036X9 + 0.337X10 , (4.3) 

where 

X1  is Elevation (m); 

X2  is Slope (%); 

X4  is Distance from road (m); 
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X5  is Distance from stream (m); 

X6  is Income (baht per capita); 

X7  is Population density (person per sq. km); 

X8  is Annual rainfall (mm); 

X9  is Soil drainage (very poor, poor, moderate, and good); and 

X10 is Watershed class (I, II, III, and IV). 

According to Equation 4.3, five factors including elevation, distance from 

stream, population density, soil drainage and watershed class had positive relationship 

to a probability for cassava occurrence while four factors including slope, distance from 

road, income and annual rainfall had negative relationship to its probability. The most 

important factors for cassava occurrence were watershed class and population density. 

This implies that when watershed class (i.e. watershed class 3 or 4) and population 

densities increases, the probability for cassava occurrence increases. In the study area 

cassava was frequently found in undulating terrain. 

4.2.4 Driving force for maize 

Multivariate linear regression equation as a binomial logit model for 

cassava was as follows: 

𝐿𝑜𝑔 (
𝑃𝑖

1−𝑃𝑖
) = 15.047 – 0.003X1 – 0.01X2 – 0.0004X4 - 0.001X5 – 

 1.393X7 – 0.01X8 - 0.108X9 - 0.304X10 , (4.4) 

where 

X1  is Elevation (m); 

X2  is Slope (%); 

X4  is Distance from road (m); 

X5  is Distance from stream (m); 
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X7  is Population density (person per sq. km); 

X8  is Annual rainfall (mm); 

X9  is Soil drainage (very poor, poor, moderate, and good); and 

X10 is Watershed class (I, II, III, and IV). 

According to Equation 4.4, all eight factors including elevation, slope, 

distance from road,  distance from stream,  population density, annual rainfall, soil 

drainage and watershed class had negative relationship to a probability for maize 

occurrence. The most important factors for maize occurrence were population density, 

watershed class and soil drainage. This implies that when these factors decreases, the 

probability for maize occurrence increases. Maize is frequently occurred in hilly areas 

with poor soil drainage in remote area far from settlement in the study area. 

4.2.5 Driving force for sugarcane 

Multivariate linear regression equation as a binomial logit model for 

sugarcane was as follows: 

𝐿𝑜𝑔 (
𝑃𝑖

1−𝑃𝑖
)  = –52.655 – 0.04X2 + 0.001X3 – 0.001X4 – 0.008X6 – 

 2.178X7 + 0.054X8 + 0.14X9 + 0.253X10 , (4.5) 

where 

X2  is Slope (%); 

X3  is Aspect (degree); 

X4  is Distance from road (m); 

X6  is Income (baht per capita); 

X7  is Population density (person per sq. km); 

X8  is Annual rainfall (mm); 

X9  is Soil drainage (very poor, poor, moderate, and good); and 
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X10 is Watershed class (I, II, III, and IV). 

According to Equation 4.5, four factors including aspect, annual rainfall, soil 

drainage and watershed class had positive relationship to a probability for sugarcane 

occurrence while four factors including slope, distance from road, elevation, distance 

from stream, income, and population density had negative relationship to its probability. 

The most important factor for sugarcane occurrence was population density. This 

implies that when population densities decreases, the probability for sugarcane 

occurrence increases. Most of sugarcane plantations in the study area situates in 

lowland up to undulating areas with large patches and far from settlement areas. 

4.2.6 Driving force for perennial tree/orchard 

Multivariate linear regression equation as a binomial logit model for 

perennial tree/orchard was as follows: 

𝐿𝑜𝑔 (
𝑃𝑖

1−𝑃𝑖
) = –16.829 + 0.008X1 – 0.018X2 – 0.001X4 – 0.0002X5 – 

 0.56X7 + 0.009X8 + 0.113X10 , (4.6) 

where 

X1  is Elevation (m); 

X2  is Slope (%); 

X4  is Distance from road (m); 

X5  is Distance from stream (m); 

X7  is Population density (person per sq. km); 

X8  is Annual rainfall (mm); and 

X10 is Watershed class (I, II, III, and IV). 

According to Equation 4.6, three factors including elevation, annual rainfall, 

and watershed class had positive relationship to a probability for perennial tree/orchard 
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occurrence while four factors including slope, distance from road, distance from stream 

and population density had negative relationship to its probability. The most important 

factor for perennial tree/orchard occurrence was population density. This implies that 

when population densities increases, the probability for perennial tree/orchard 

occurrence decreases. In fact, perennial tree/orchard might be more utilized as number 

of population increase. 

4.2.7 Driving force for forest land 

Multivariate linear regression equation as a binomial logit model for cassava 

was as follows: 

𝐿𝑜𝑔 (
𝑃𝑖

1−𝑃𝑖
) = 5.456 – 0.005X1 + 0.049X2 + 0.001X3 + 0.002X4 –  

0.001X5 + 0.002X6 – 1.211X7 – 0.007X8 –  

0.085X9 – 0.894X10 , (4.7) 

where 

X1  is Elevation (m); 

X2  is Slope (%); 

X3  is Aspect (degree); 

X4  is Distance from road (m); 

X5  is Distance from stream (m); 

X6  is Income (baht per capita); 

X7  is Population density (person per sq. km); 

X8  is Annual rainfall (mm); 

X9  is Soil drainage (very poor, poor, moderate, and good); and 

X10 is Watershed class (I, II, III, and IV). 
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According to Equation 4.7, five factors including slope, aspect, distance from 

road, income and population density had positive relationship to a probability for forest 

land occurrence while five factors including elevation, distance from stream,  annual 

rainfall, soil drainage and watershed class had negative relationship to its probability. 

The most important factors for forest land occurrence were population density and 

watershed class. This implies that when watershed class (i.e. watershed class I or II) 

and population densities decreases, the probability for forest land occurrence increases. 

Most of forest land in the study area situates in the mountainous areas and far from 

settlement areas. 

4.2.8 Driving force for water body 

Multivariate linear regression equation as a binomial logit model for water 

body was as follows: 

𝐿𝑜𝑔 (
𝑃𝑖

1−𝑃𝑖
) = –0.949 – 0.031X1 – 0.033X2 + 0.001X4 – 0.004X5 + 

 0.005X6 – 2.31X7 – 0.933X9 + 0.94X10 , (4.8) 

where 

X1  is Elevation (m); 

X2   is Slope (%); 

X4  is Distance from road (m); 

X5  is Distance from stream (m); 

X6  is Income (baht per capita); 

X7  is Population density (person per sq. km); 

X9  is Soil drainage (very poor, poor, moderate, and good); and 

X10 is Watershed class (I, II, III, and IV). 
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According to Equation 4.8, three factors including distance from road, 

income, and watershed class had positive relationship to a probability for water body 

occurrence while five factors including elevation, slope, distance from stream, 

population density, and soil drainage had negative relationship to its probability. The 

most important factor for water body occurrence was population density. This implies 

that when population densities decreases, the probability for water body occurrence 

increases. Major source for water use in the study area is Lam Phra Phloeng Dam. 

4.2.9 Driving force for miscellaneous land 

Multivariate linear regression equation as a binomial logit model for 

miscellaneous land was as follows: 

𝐿𝑜𝑔 (
𝑃𝑖

1−𝑃𝑖
) = 10.338 + 0.004X2 – 0.001X3 – 0.0004X4 – 0.001X5 + 

 0.001X6 – 1.593X7 + 0.001X8 , (4.9) 

where 

X2   is Slope (%); 

X3   is Aspect (degree); 

X4   is Distance from road (m); 

X5  is  Distance from stream (m); 

X6   is  Income (baht per capita); 

X7    is  Population density (person per sq. km); and 

X8   is  Annual rainfall (mm), 

According to Equation 4.9, three factors including slope, income, and annual 

rainfall had positive relationship to a probability for miscellaneous land occurrence 

while four factors including aspect, distance from road,  distance from stream, and 

population density had negative relationship to its probability. The most important 
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factor for miscellaneous land occurrence was population density. This implies that 

when population densities increases, the probability for miscellaneous land decreases. 

In turn miscellaneous land which includes abandoned cultivated areas might be more 

utilized as number of population increase. 

As results mentioned in Sections 4.2.1 - 4.2.9, it was found that the most 

common important driving force for all LULC types change was population density 

while the most important driving force for field crops (cassava, maize, and sugarcane) 

included slope, distance from road, population density, annual rainfall, soil drainage, 

and watershed classes. Specific driving force factors for LULC type change were used 

by CLUE-S model for LULC simulation in each scenario. 

 

 

 

 

 

 

 

 



 

CHAPTER V 

SIMULATION OF LULC SCENARIOS  

BY CLUE-S MODEL 

 

An optimum parameters for LULC change simulated by CLUE-S model and LULC 

simulation of three scenarios including (1) historical land use evolution, (2) agriculture 

production extension, and (3) forest conservation and prevention were here explained 

and discussed. 

 

5.1 Optimum local parameter of CLUE-S model 

For local parameter of CLUE-S model optimization, conversion matrix which 

shows the possibility for LULC change among LULC types was firstly considered and 

set up. Elasticity which represents cost for change among LULC types was then set up 

according to the transitional LULC change matrix between 2003 and 2013 and run the 

CLUE-S model for LULC simulation in 2013. After that the simulated LULC in 2013 

was compared with the interpreted LULC in 2013 for accuracy assessment (overall 

accuracy and Kappa hat coefficient of agreement). If the overall accuracy and kappa hat 

coefficient equal or more than 80 percent, the assigned parameter values of elasticity 

and conversion matrix are acceptance as optimum local parameter of CLUE-S model. 

Under CLUE-S model, change of LULC in conversion matrix can be assigned as 1 

when it was allowed or as 0 when it not allowed. In this study any LULC classes in 
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2003 do not allow to change to be paddy field because area of paddy field between 2003 

and 2013 do not change. At the same time paddy field in 2003 allows to change to be 

any classes of LULC in 2013. In contrast, urban and built-up land in 2003 do not allow 

to change to be any classes of LULC in 2013. Similarly, water body in 2003 do not 

allow to change to be any classes of LULC in 2013 except urban and built-up land. 

Conversion matrix for LULC change between 2003 and 2013, which applied under 

CLUE-S model in this study, displayed in Table 5.1. 

Meanwhile the default value of elasticity for each LULC type change was set up 

according to the transition probability matrix for LULC change between 2003 and 2013 

as shown in Table 5.2. Herewith elasticity values for urban and built-up land, paddy 

field, cassava, maize, sugarcane, perennial tree/orchard, forest land, water body, and 

miscellaneous land were 1.0, 1.0, 0.8, 0.8, 0.9, 0.7, 1.0, 1.0, and 0.9, respectively. 

Both conversion matrix and elasticity values were then used to simulate LULC in 

2013 under CLUE-S model. Later on the simulated LULC in 2013 was compared with 

the interpreted LULC in 2013 for accuracy assessment (overall accuracy and Kappa hat 

coefficient). 

Table 5.1 Conversion matrix of possible change between 2003 and 2013. 

  Possible change in 2013 

L
U

L
C

 i
n

 2
0
0

3
 

LULC Types UR PA CA MA SU PE FO WA MI 

Urban and built-up land (UR) 1 0 0 0 0 0 0 0 0 

Paddy field (PA) 1 1 1 1 1 1 1 1 1 

Cassava (CA) 1 0 1 1 1 1 1 1 1 

Maize (MA) 1 0 1 1 1 1 1 1 1 

Sugarcane (SU) 1 0 1 1 1 1 1 1 1 

Perennial tree/orchard (PE) 1 0 1 1 1 1 1 1 1 

Forest land (FO) 1 0 1 1 1 1 1 1 1 

Water body (WA) 1 0 0 0 0 0 0 1 0 

Miscellaneous land (MI) 1 0 1 1 1 1 1 1 1 

Note 0 is not allowed and 1 is allowed  
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Table 5.2 Transition probability matrix for LULC change between 2003 and 2013. 

   LULC in 2013 

L
U

L
C

 i
n

 2
0

0
3
 

LULC Types UR PA CA MA SU PE FO WA MI Total 

Urban and built-up land (UR) 1 0 0 0 0 0 0 0 0 1 

Paddy field (PA) 0 1 0 0 0 0 0 0 0 1 

Cassava (CA) 0 0 0.78 0.11 0.04 0.03 0 0 0.03 1 

Maize (MA) 0.02 0 0.03 0.82 0.07 0.03 0 0 0.03 1 

Sugarcane (SU) 0 0 - 0.03 0.93 0.03 0 0 0 1 

Perennial tree/orchard (PE) 0.02 0 0.05 0.15 0.09 0.68 0 0 0.01 1 

Forestland (FO) 0 0 0 0.01 0 0 0.98 0 0.01 1 

Water body (WA) 0 0 0 0 0 0 0 1 0 1 

Miscellaneous land (MI) 0.02 0 0.01 0.05 0.01 0.02 0 0.01 0.87 1 

 

As results, it was found that overall accuracy and Kappa hat coefficient was 84.194 

and 80.004 percent, respectively (Table 5.3). Both accuracy values were more than 80 

percent as requirement. However, in the study systematic trials by varying elasticity 

values was also conducted to examine the change of accuracy as a result shown in Table 

5.4 and Figure 5.1. It was found that overall accuracy and Kappa hat coefficient by 

varying elasticity values do not have a significant change. Therefore, an optimum local 

parameter for LULC simulation in 2013 under CLUE-S model was default values 

according to the transition probability matrix of LULC change between 2003 and 2013. 

This findings can be used as guideline for set up elasticity value when CLUE-S model 

was applied for LULC prediction. 
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Table 5.3 Accuracy assessment by comparison of interpreted LULC in 2013 (column) 

and simulated LULC in 2013 (row). 

  Interpreted LULC in 2013 (ha) 

S
im

u
la

te
d

 L
U

L
C

 i
n

 2
0

1
3

 (
h

a
) 

Types  UR PA CA MA SU PE FO WA MI Total 

Urban and built-up land (UR) 1,800 - 23 99 4 248 275 - 21 2,470 

Paddy field (PA) - 237 - - - - - - - 237 

Cassava (CA) 18 - 3,317 525 170 197 44 - 143 4,414 

Maize (MA) 313 - 637 15,253 1,363 472 - 8 632 18,678 

Sugarcane (SU) 25 - 14 1,173 8,578 817 116 - 37 10,760 

Perennial tree/orchard (PE) 144 - 319 968 529 4,095 - - 87 6,142 

Forestland (FO) 17 - 28 165 30 39 25,462 10 229 25,980 

Water body (WA) 10 - - 3 1 30 11 1,108 - 1,163 

Miscellaneous land (MI) 138 - 108 417 111 269 62 39 6,177 7,321 

Total 2,465 237 4,446 18,603 10,786 6,167 25,970 1,165 7,326 77,165 

 Overall accuracy 84.194          

  Kappa hat coefficient 80.004                    

 Producer's accuracy 73.03 100 74.6 81.99 79.53 66.4 98.04 95.11 84.31  

 User's accuracy 72.87 100 75.14 81.67 79.72 66.67 98.01 95.31 84.37  
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Table 5.4 Systematic adjustment for elasticity value and accuracy assessment. 

No. UR PA CA MA SU PE FO WA MI Overall Accuracy Kappa hat 

sim01 1.0 1.0 0.8 0.8 0.9 0.7 1.0 1.0 0.9 84.194 80.004 

sim02 1.0 1.0 0.9 0.9 1.0 0.8 1.0 1.0 1.0 85.461 81.542 

sim03 1.0 0.9 0.7 0.7 0.8 0.6 0.9 1.0 0.8 85.442 81.517 

sim04 1.0 0.8 0.6 0.6 0.7 0.5 0.8 1.0 0.7 85.366 81.420 

sim05 1.0 0.7 0.5 0.5 0.6 0.4 0.7 1.0 0.6 85.061 81.033 

sim06 1.0 1.0 1.0 0.8 0.9 0.7 1.0 1.0 0.9 85.460 81.540 

sim07 1.0 1.0 0.9 0.8 0.9 0.7 1.0 1.0 0.9 85.461 81.541 

sim08 1.0 1.0 0.7 0.8 0.9 0.7 1.0 1.0 0.9 85.463 81.543 

sim09 1.0 1.0 0.6 0.8 0.9 0.7 1.0 1.0 0.9 85.424 81.495 

sim10 1.0 1.0 0.5 0.8 0.9 0.7 1.0 1.0 0.9 85.385 81.445 

sim11 1.0 1.0 0.4 0.8 0.9 0.7 1.0 1.0 0.9 85.215 81.228 

sim12 1.0 1.0 0.3 0.8 0.9 0.7 1.0 1.0 0.9 84.811 80.717 

sim13 1.0 1.0 1.0 1.0 0.9 0.7 1.0 1.0 0.9 85.465 81.546 

sim14 1.0 1.0 0.8 0.9 0.9 0.7 1.0 1.0 0.9 85.458 81.537 

sim15 1.0 1.0 0.8 0.7 0.9 0.7 1.0 1.0 0.9 85.458 81.537 

sim16 1.0 1.0 0.8 0.6 0.9 0.7 1.0 1.0 0.9 85.459 81.539 

sim17 1.0 1.0 0.8 0.5 0.9 0.7 1.0 1.0 0.9 85.451 81.529 

sim18 1.0 1.0 0.8 0.4 0.9 0.7 1.0 1.0 0.9 85.466 81.548 

sim19 1.0 1.0 0.8 0.3 0.9 0.7 1.0 1.0 0.9 85.474 81.557 

sim20 1.0 1.0 0.8 0.8 0.9 0.7 0.9 1.0 0.9 85.452 81.530 

sim21 1.0 1.0 0.8 0.8 0.9 0.7 0.8 1.0 0.9 85.402 81.465 

sim22 1.0 1.0 0.8 0.8 0.9 0.7 0.7 1.0 0.9 85.140 81.133 

sim23 1.0 1.0 0.8 0.8 0.9 0.7 0.6 1.0 0.9 84.762 80.653 

sim24 1.0 1.0 0.8 0.8 0.9 0.7 0.5 1.0 0.9 84.273 80.033 

sim25 1.0 1.0 0.8 0.8 0.9 0.7 0.4 1.0 0.9 83.782 79.410 

sim26 1.0 1.0 0.8 0.8 0.9 0.7 0.3 1.0 0.9 83.407 78.934 

sim27 1.0 1.0 0.8 0.8 0.9 0.7 1.0 1.0 1.0 85.458 81.537 

sim28 1.0 1.0 0.8 0.8 0.9 0.7 1.0 1.0 0.8 85.460 81.540 

sim29 1.0 1.0 0.8 0.8 0.9 0.7 1.0 1.0 0.7 85.463 81.543 

sim30 1.0 1.0 0.8 0.8 0.9 0.7 1.0 1.0 0.6 85.466 81.548 

sim31 1.0 1.0 0.8 0.8 0.9 0.7 1.0 1.0 0.5 85.455 81.534 

sim32 1.0 1.0 0.8 0.8 0.9 0.7 1.0 1.0 0.4 85.459 81.538 

sim33 1.0 1.0 0.8 0.8 0.9 0.7 1.0 1.0 0.3 85.455 81.534 

sim34 1.0 1.0 0.8 0.8 0.9 1.0 1.0 1.0 0.9 85.461 81.541 

sim35 1.0 1.0 0.8 0.8 0.9 0.9 1.0 1.0 0.9 85.461 81.541 

sim36 1.0 1.0 0.8 0.8 0.9 0.8 1.0 1.0 0.9 85.464 81.544 

sim37 1.0 1.0 0.8 0.8 0.9 0.6 1.0 1.0 0.9 85.468 81.549 

sim38 1.0 1.0 0.8 0.8 0.9 0.5 1.0 1.0 0.9 85.456 81.535 

sim39 1.0 1.0 0.8 0.8 0.9 0.4 1.0 1.0 0.9 85.458 81.537 

sim40 1.0 1.0 0.8 0.8 0.9 0.3 1.0 1.0 0.9 85.459 81.539 

sim41 1.0 1.0 0.8 0.8 1.0 0.7 1.0 1.0 0.9 85.459 81.538 

sim42 1.0 1.0 0.8 0.8 0.8 0.7 1.0 1.0 0.9 85.454 81.532 

sim43 1.0 1.0 0.8 0.8 0.7 0.7 1.0 1.0 0.9 85.463 81.543 

sim44 1.0 1.0 0.8 0.8 0.6 0.7 1.0 1.0 0.9 85.465 81.546 

sim45 1.0 1.0 0.8 0.8 0.5 0.7 1.0 1.0 0.9 85.459 81.538 

sim46 1.0 1.0 0.8 0.8 0.4 0.7 1.0 1.0 0.9 85.459 81.538 

sim47 1.0 1.0 0.8 0.8 0.3 0.7 1.0 1.0 0.9 85.464 81.544 
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Figure 5.1 Variation of overall accuracy and kappa hat coefficient during adjustment 

of elasticity value. 

 

With reference to Table 5.3, it was found that the highest producer’s accuracy for 

each LULC type simulation in 2013 was paddy field with value of 100 percent while 

the lowest producer’s accuracy was perennial trees/orchards with value of 66.40           

percent. This result implied that the best output for LULC simulation by CLUE-S model 

was paddy field while the worst was perennial trees/orchards. At the same time, the 

highest user’s accuracy for each LULC type simulation in 2013 was also paddy field 

with value of 100 percent while the lowest producer’s accuracy was also perennial 

trees/orchards with value of 66.67 percent. This result inferred that the best preference 

simulated LULC from the users should be paddy field while the worst preference from 

the users should be perennial trees/orchards. 
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5.2 LULC simulation of three scenarios 

Three scenarios of LULC in 2023 included Scenario I: Historical land use 

evolution, Scenario II: Agriculture production extension, and Scenario III: Forest 

conservation and prevention were simulated based on an optimum local parameters of 

CLUE-S model with a specific land use requirement for each scenario which was 

derived in the previous section. In addition, land use requirement for each scenario had 

to be prepared in advance according the characteristics of each scenario and then used 

to simulate LULC in 2023under CLUE-S model. 

5.2.1 LULC in 2023 simulation of Scenario I (Historical land use evolution) 

Land use requirement for Scenario I (Historical land use evolution) was based 

on the rate of LULC change occurring between 2003 and 2013 (see Table 4.1). 

Herewith, annual land use demand for Scenario I between 2013 and 2023 was calculated 

and presented in Table 5.5. Herein, increasing LULC classes were urban and built-up 

land, cassava, sugarcane, water body and miscellaneous land with annual increasing 

rate about 66.5, 21.4, 171.2, 5.7, and 28 ha per year, respectively. On the contrary 

decreasing LULC classes were maize, perennial trees/orchards and forest land with 

annual decreasing rate about 109.1, 128.5 and 55.2 ha per year, respectively. In 

principle, the land use requirement dictates the final area of each LULC type in 2023 

by using simulation of CLUE-S model. The distribution of the simulated LULC in 2023 

for Scenario I was presented in Figure 5.2 while Table 5.6 represented the transition 

matrix of LULC change between the existing LULC in 2013 by visual interpretation 

and the simulated LULC in 2023 under Scenario I and Figure 5.3 displayed LULC 

change between actual LULC in 2013 and the simulated LULC in 2023 of Scenario I. 
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Table 5.5 Annual land use requirement for Scenario I by each LULC type. 

Year 
Area in ha 

UR PA CA MA SU PE FO WA MI 

2013 2,465 237 4,446 18,603 10,786 6,167 25,970 1,165 7,326 

2014 2,532 237 4,468 18,494 10,955 6,039 25,915 1,171 7,354 

2015 2,598 237 4,489 18,385 11,129 5,910 25,859 1,176 7,382 

2016 2,665 237 4,511 18,276 11,298 5,782 25,804 1,182 7,410 

2017 2,731 237 4,532 18,167 11,470 5,653 25,749 1,188 7,438 

2018 2,798 237 4,554 18,059 11,638 5,525 25,694 1,194 7,466 

2019 2,864 237 4,575 17,950 11,812 5,396 25,638 1,199 7,494 

2020 2,931 237 4,597 17,841 11,981 5,268 25,583 1,205 7,522 

2021 2,997 237 4,618 17,732 12,153 5,139 25,528 1,211 7,550 

2022 3,064 237 4,640 17,623 12,324 5,011 25,472 1,216 7,578 

2023 3,130 237 4,661 17,514 12,496 4,882 25,417 1,222 7,606 

 

 

Figure 5.2 Distribution of simulated LULC in 2023 for Scenario I.  
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Table 5.6 Transition matrix of LULC change between 2013 and 2023 of Scenario I. 

 LULC 2023 of Scenario I  (ha)  

L
U

L
C

 2
0
1
3
 (

h
a

) 

Types  UR PA CA MA SU PE FO WA MI Total 

Urban and built-up land (UR) 2,465  -     -     -     -     -     -     -     -    2,465 

Paddy field (PA)  -    237  -     -     -     -     -     -     -    237 

Cassava (CA)  -     -    4,446  -     -     -     -     -     -    4,446 

Maize (MA) 28  -    58 17,593 924  -     -     -     -    18,603 

Sugarcane (SU)  -     -     -     -    10,786  -     -     -     -    10,786 

Perennial tree/orchard (PE) 358  -    89  -    623 4,843  -    41 213 6,167 

Forestland (FO) 285  -    40  -    145  -    25,428 7 65 25,970 

Water body (WA)  -     -     -     -     -     -     -    1,165  -    1,165 

Miscellaneous land (MI)  -     -     -     -     -     -     -     -    7,326 7,326 

Total 3,136 237 4,633 17,593 12,478 4,843 25,428 1,213 7,604 77,165 

 Land use requirement 3,130 237 4,661 17,514 12,496 4,882 25,417 1,222 7,606  

 Deviation value (%) -0.19 0 0.6 -0.45 0.14 0.8 -0.04 0.74 0.03  

 

 

Figure 5.3 Distribution of LULC change between actual LULC in 2013 and the 

simulated LULC in 2023 of Scenario I.  
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As results, it was found that areas of LULC type which had been increased 

were urban and built-up land, cassava, sugarcane, water body and miscellaneous land 

while area of maize, perennial tree/orchard, and forest land had been decreased, and 

paddy field. Herein, the increased area of urban and built-up land, cassava, and 

sugarcane came from maize, perennial tree/orchard and forest land and the increased 

area of water body and miscellaneous land came from perennial tree/orchard and forest 

land. In contrary, some areas of perennial tree/orchard and forest land was converted to 

urban and built-up land, cassava, sugarcane, water body and miscellaneous land and 

some areas of maize was changed to urban and built-up land, cassava, and sugarcane. 

The pattern of LULC change between 2013 and 2023 as simulated LULC of Scenario I 

was identical to LULC change pattern between 2003 and 2013. This finding implies the 

CLUE-S model can provides the good result for LULC prediction according the 

historical land use evolution in the past. 

However, it was found that there were some difference between the area of 

each LULC types which was specified in land use requirement for CLUE-S model and 

the actual allocated areas. The deviation value varied between -0.45 to 0.80 percent. In 

principle, the deviation value depends on iteration variables which indicates the 

maximum different allowance between the required and allocated area of CLUE-S 

model. 

5.2.2 LULC in 2023 simulation of Scenario II (Agriculture production extension) 

Under this scenario, areas of cassava and sugarcane are intensively extension 

due to government policy on energy crop for LULC simulation in 2023. At the same 

time forest land need to conserve and preserve and area of urban and built-up, paddy 

field and water body is fixed.  
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For land use requirement of Scenario II, areas of urban and built-up land, 

paddy field and water body were fixed for every year. Meanwhile area of the simulated 

forest land in 2023 was modified by considering the existing forest land in 2013 and 

boundary of watershed class I and national park. At the same time, the rest areas from 

others LULC types in 2013 (maize, perennial tree/orchards and miscellaneous land) 

were devoted for cassava and sugarcane expansion in 2023 at the ratio of 50 and 50 

(Bank of Thailand, 2012). The annual land use requirement for Scenario II between 

2013 and 2023 was presented in Table 5.7. Whilst the distribution of the simulated 

LULC in 2023 for Scenario II was presented in Figure 5.4 and the transition matrix of 

LULC change between the existing LULC in 2013 by visual interpretation and the 

simulated LULC in 2023 under Scenario II was presented in Table 5.8 and Figure 5.5 

presented LULC change between actual LULC in 2013 and the simulated LULC in 

2023 for cassava and sugarcane of Scenario II. 

As results obtaining from this scenario, most of the increasing area of cassava 

and sugarcane came from maize, forest land and miscellaneous land. Herein, areas of 

maize, perennial tree/orchard, forest land, and miscellaneous land in 2013 were 

converted to be cassava and sugarcane about 18,603, 6,167, 13,769, and 7,326 ha, 

respectively. This result was dictated by the specified land use requirement accordance 

with the government policy on energy crop. 
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Table 5.7 Annual land use requirement of Scenario II by each LULC type. 

Year 
Area in ha 

UR PA CA MA SU PE FO WA MI 

2013 2,465 237 4,446 18,603 10,786 6,167 25,970 1,165 7,326 

2014 2,465 237 7,037 16,743 12,743 5,550 24,632 1,165 6,593 

2015 2,465 237 9,628 14,882 14,699 4,934 23,294 1,165 5,861 

2016 2,465 237 12,218 13,022 16,657 4,317 21,956 1,165 5,128 

2017 2,465 237 14,809 11,162 18,613 3,700 20,618 1,165 4,396 

2018 2,465 237 17,400 9,302 20,569 3,084 19,280 1,165 3,663 

2019 2,465 237 19,991 7,441 22,527 2,467 17,942 1,165 2,930 

2020 2,465 237 22,582 5,581 24,483 1,850 16,604 1,165 2,198 

2021 2,465 237 25,173 3,721 26,440 1,233 15,266 1,165 1,465 

2022 2,465 237 27,763 1,860 28,397 617 13,928 1,165 733 

2023 2,465 237 30,354 - 30,354 - 12,590 1,165 - 

 

 

Figure 5.4 Distribution of the simulated LULC in 2023 for Scenario II. 
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Table 5.8 Transition matrix of LULC change between 2013 and 2023of Scenario II. 

 LULC 2023 of Scenario II   (ha) 

L
U

L
C

 2
0
1
3
 (

h
a

) 

Types  UR PA CA MA SU PE FO WA MI Total 

Urban and built-up land (UR) 2,465  -     -     -     -     -     -     -     -    2,465 

Paddy field (PA)  -    237  -     -     -     -     -     -     -    237 

Cassava (CA)  -     -    4,446  -     -     -     -     -     -    4,446 

Maize (MA)  -     -    11,517  -    7,086  -     -     -     -    18,603 

Sugarcane (SU)  -     -     -     -    10,786  -     -     -     -    10,786 

Perennial tree/orchard (PE)  -     -    3,813  -    2,354  -     -     -     -    6,167 

Forestland (FO)  -     -    6,375  -    7,394  -    12,199 2  -    25,970 

Water body (WA)  -     -     -    -     -    -     -    1,165 -    1,165 

Miscellaneous land (MI)  -     -    4,547  -    2,779  -     -     -     -    7,326 

Total 2,465 237 30,698 -    30,399 -    12,199 1,167 -    77,165 

 Land use requirement 2,465 237 30,354 - 30,354 - 12,590 1,165 -  

 Deviation value (%) 0 0 -1.13 - -0.15 - 3.11 -0.17 -  

 

 

Figure 5.5 Distribution of LULC change between actual LULC in 2013 and the 

simulated LULC in 2023 for cassava and sugarcane of Scenario II. 
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In addition, there were some difference between the area of each LULC types 

specified in the land use requirement of CLUE-S model and the actual allocated areas. 

It was found that the deviation value ranked between -1.13 to 3.11 percent. Herein, area 

of water body which was fixed for land use requirement under CLUE-S model increased 

2 ha. 

5.2.3 LULC in 2023 simulation of Scenario III (Forest conservation and 

prevention) 

Under this scenario, land use requirement for each LULC was based on the 

national conservation and preservation program on forest (National Economic and 

Social Development Board, 2011). Herein a simulated forest land in 2023 was 

calculated according to areas of watershed class I and II, national park’s boundary and 

existing forest in 2013. Similarly to Scenario II areas of urban and built-up, paddy field 

and water body were fixed for every year. The other LULC types (cassava, maize, 

perennial tree/orchards, and miscellaneous land) were modified according LULC 

change rate between 2003 and 2013. Annual land use demand for Scenario III between 

2013 and 2023 was presented in Table 5.9 while the distribution of simulated LULC in 

2023 for scenario III was presented in Figure 5.6. At the same time, the transition matrix 

of LULC change between the existing LULC in 2013 by visual interpretation and the 

simulated LULC in 2023 under Scenario III was presented in Table 5.10 and Figure 5.7 

presented LULC change between actual LULC in 2013 and the simulated LULC in 

2023 for forest land of Scenario III. 
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Table 5.9 Land use requirement of Scenario III by each LULC type. 

Year 
Area in ha 

UR PA CA MA SU PE FO WA MI 

2013 2465 237 4,446 18603 10,786 6167 25970 1165 7326 

2014 2,465 237 4,370 18,286 10,602 6,062 26,777 1,165 7,201 

2015 2,465 237 4,294 17,969 10,419 5,957 27,583 1,165 7,076 

2016 2,465 237 4,219 17,652 10,234 5,852 28,390 1,165 6,951 

2017 2,465 237 4,143 17,335 10,050 5,747 29,196 1,165 6,827 

2018 2,465 237 4,067 17,018 9,866 5,642 30,003 1,165 6,702 

2019 2,465 237 3,991 16,701 9,684 5,536 30,809 1,165 6,577 

2020 2,465 237 3,916 16,384 9,499 5,431 31,616 1,165 6,452 

2021 2,465 237 3,840 16,067 9,316 5,326 32,422 1,165 6,327 

2022 2,465 237 3,764 15,750 9,132 5,221 33,229 1,165 6,202 

2023 2,465 237 3,688 15,433 8,948 5,116 34,035 1,165 6,078 

 

 

Figure 5.6 Distribution of the simulated LULC in 2023 for Scenario III. 
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Table 5.10 Transition matrix of LULC change between 2013 and 2023of Scenario III. 

 LULC 2023 of Scenario III  (ha)  

L
U

L
C

 2
0
1
3
 (

h
a

) 

Types  UR PA CA MA SU PE FO WA MI Total 

Urban and built-up land (UR) 2,149 - - - - - 316 - - 2,465 

Paddy field (PA) - 237 - - - - - - - 237 

Cassava (CA) 10 - 3,815 357 - - 264 - - 4,446 

Maize (MA) - - - 15,143 - - 3,460 - - 18,603 

Sugarcane (SU) 122 - - 407 9,225 - 1,032 - - 10,786 

Perennial tree/orchard (PE) 157 - - 84 - 5,347 579 - - 6,167 

Forestland (FO) - - - - - - 25,970 - - 25,970 

Water body (WA) - - - - - - 10 1,155 - 1,165 

Miscellaneous land (MI) 77 - - - - - 970 - 6,279 7,326 

Total 2,515 237 3,815 15,991 9,225 5,347 32,601 1,155 6,279 77,165 

 Land use requirement 2,465 237 3,688 15,433 8,948 5,116 34,035 1,165 6,078  

 Deviation value (%) -2.03 0 -3.43 -3.62 -3.1 -4.51 4.21 0.86 -3.31  

 

 

Figure 5.7 Distribution of LULC change between actual LULC in 2013 and the 

simulated LULC in 2023 for forest land of Scenario III. 
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As results, most of increasing area of forest land came from maize, sugarcane, 

and miscellaneous land. Herein areas of maize, sugarcane, and miscellaneous land were 

converted to be forest land about 3,460, 1,032 and 970 ha, respectively. Meanwhile 

forest land between 2013 and 2023 had increased about 6,631 ha. Similar to Scenario 

II, this result was dictated by the specified land use requirement according to the 

national conservation and preservation program of the Government. 

Furthermore, there were some difference between the area of each LULC 

types specified in the land use requirement and the actual allocated areas. It was found 

that the deviation value ranked between -4.51 to 4.21 percent. The deviation values 

depend on iteration variables which determine a criteria for model convergence. Herein, 

urban and built-up land increased about 366 ha and water body decreased about 10 ha 

even though they were fixed for land use requirement under CLUE-S model. 

 

5.3 Comparison of simulated LULC 2023 with LULC 2013 

According to the summary table of the simulated data in three scenarios (Table 5.11 

and Figure 5.8), the areas of each simulated LULC type in 2023 reflect the 

characteristics of each scenario as defined in Section 3.2.3 of Chapter III.  

For Scenario I: Historical land use evolution, increasing LULC types were urban 

and built-up land, cassava, sugarcane, water body and miscellaneous land while 

decreasing LULC types were maize, perennial trees/orchards and forest land. In fact, 

change of LULC between the baseline data (LULC in 2013) and simulated LULC of 

Scenario I (LULC in 2023) were increased and decreased according to the transition 

probability matrix for LULC change between 2003 and 2013. In another word, LULC 

change for Scenario I was based on the evolution of LULC change during 2003-2013 

 

 

 

 

 

 

 

 



124 

 

without any policy. The characteristic of this scenario are frequently applied in LULC 

change simulation under CLUE-S model for baseline data generation and its result is 

then used to compare with other scenarios with policy such as the previous works of 

Verburg et al. (2002), Verburg and Veldkamp (2004a), Orekan (2007), Verburg et al. 

(2008), Warlina (2009), Luo et al. (2010), Soba et al. (2010), Zhang, Liu, Pan and Yu 

(2011), Sun et al. (2012), Zhou et al. (2013), El-Khoury et al. (2014) and Zheng et al. 

(2015). 

In contrast, Scenario II: Agriculture production extension and Scenario III: Forest 

conservation and prevention, areas of both the simulated LULC types in 2023 had 

increased and decreased according to policies setting for each scenario. In case of 

Scenario II, areas of cassava and sugarcane had increased about 26,252 and 19,613 ha, 

respectively between 2013 and 2023 meanwhile forest land had decreased about 13,771 

ha. Likewise, in case of Scenario III, area of forest land had increased from 25,970 ha 

in 2013 to 32,601 ha in 2023 while areas of major agricultural type including cassava, 

maize, sugarcane, and perennial trees/orchards had decreased about 631, 2,612, 1,561, 

and 820 ha, respectively in this period. The characteristic of these scenarios (II and III) 

had been applied in LULC change simulation under CLUE-S model such as the 

previous works of Verburg and Veldkamp (2004) about impact of land use change on 

forest fragmentation, Castella et.al (2007) and Orekan (2007) on sustainable 

management of natural, Githui et al. (2009) for estimating the impacts of land-cover 

change on runoff,  Trisurat et al. (2010) about effects of development on the forest 

biodiversity, Zhang et al. (2011) on effects of the non-point source pollution control 

and El-Khoury et al. (2014) for monitoring environmental degradation in basin. 
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Table 5.11 Area and change of LULC type between 2013 (by visual interpretation) 

and 2023 (by simulation of 3 scenarios). 

Item Year 
LULC Types (ha) 

UR PA CA MA SU PE FO WA MI 

Baseline 

data 
2013 2,465 237 4,446 18,603 10,786 6,167 25,970 1,165 7,326 

Simulated 

data 

Scenario I 3,136 237 4,633 17,593 12,478 4,843 25,428 1,213 7,604 

Scenario II 2,465 237 30,698 - 30,399 - 12,199 1,167 - 

Scenario III 2,515 237 3,815 15,991 9,225 5,347 32,601 1,155 6,279 

Change 

Scenario I 671 - 187 -1,010 1,692 -1,324 -542 48 278 

Scenario II - - 26,252 -18,603 19,613 -6,167 -13,771 2 -7,326 

Scenario III 50 - -631 -2,612 -1,561 -820 6,631 -10 -1,047 

 

 

Figure 5.8 Comparison of LULC type area between LULC in 2013 and the simulated 

LULC in 2023 of three scenarios. 

 

 

 

 

 

 

 

 



 

CHAPTER VI 

IMPACT OF LULC CHANGE ON SOIL EROSION, 

WATER YIELD AND ECONOMIC VALUES 

 

Under this chapter, three models included USLE model, SWAT model with SCS-

CN method, and PV were used to assess and evaluate impact (positive, negative and 

neural) due to LULC change in 2023. In this study, impact of LULC change on soil 

loss, water yield, and economic values between actual LULC in 2013 and simulated 

LULC in 2023 of three scenarios and among three scenarios were separately described 

and discussed. 

 

6.1 Soil erosion assessment and its impact due to LULC change 

The USLE model (Equation 2.4) was here used to assess soil loss of actual LULC 

in 2013 and the simulated LULC in 2023 for each scenario. Herewith common static 

factors of soil erosion included rainfall-runoff erosivity (R), soil erodibility (K), slope 

length (L), and steepness (S) were firstly generated as shown in Figures 6.1 - 6.4. At 

the same time dynamic factors according to actual LULC in 2013 and the simulated 

LULC in 2023 for each scenario included vegetation cover (C) and conservation 

support practice (P) which vary with LULC types were also separately generated as 

shown in Figures 6.5 - 6.12. 
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After that soil loss assessment for each relevant LULC was calculated using Model 

Builder under ArcGIS environment (Figure 6.13). Distribution of soil loss and its 

severity for actual LULC in 2013 and the simulated LULC in 2023 for each scenario 

according LDD standard was separately displayed in Figures 6.14 - 6.17.  
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Figure 6.1 Rainfall-runoff erosivity (R)  factor map. 

 

 
 

Figure 6.2 Soil erodibility (K) factor map. 
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Figure 6.3 Slope length (L) factor map. 

 

 
Figure 6.4 Steepness (S) factor map. 
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Figure 6.5 Vegetation cover (C) factor map for actual LULC in 2013. 

 

 
 

Figure 6.6 Vegetation cover (C) factor map for LULC in 2023 of Scenario I. 
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Figure 6.7 Vegetation cover (C) factor map for LULC in 2023 of Scenario II. 

 

 
 

Figure 6.8 Vegetation cover (C) factor map for LULC in 2023 of Scenario III. 
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Figure 6.9 Conservation support practice (P) factor map for actual LULC in 2013. 

 
Figure 6.10 Conservation support practice (P) factor map for LULC in 2023 of 

Scenario I. 
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Figure 6.11 Conservation support practice (P) factor map for LULC in 2023 of 

Scenario II.  

 
 

Figure 6.12 Conservation support practice (P) factor map for LULC in 2023 of 

Scenario III. 
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Figure 6.13 Schematic diagram of Model Builder for soil loss assessment. 

 

 

 
 

Figure 6.14 Distribution of soil loss and its severity for actual LULC in 2013. 
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Figure 6.15 Distribution of soil loss and its severity for LULC in 2023 of Scenario I. 
 

 

Figure 6.16 Distribution of soil loss and its severity for LULC in 2023 of Scenario II. 
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Figure 6.17 Distribution of soil loss and its severity for LULC in 2023 of Scenario 

III. 

 

At the same time, area of soil loss severity class from LULC in 2013 and LULC in 

2023 of each scenario (I to III) were compared and summarized as shown in Table 6.1 

and Figure 6.18. It was evident that the most dominate soil loss severity class occurred 

in 2013 and 2023 in the study area was very low (0-6.25 ton/ha/year). It covered area 

of 67.70, 67.89, 49.82 and 73.66 percent for LULC 2013 and LULC in 2023 of Scenario 

I, II and III, respectively. In contrast, the least dominant soil loss class occurring in this 

period was very severe (more than 625 ton/ha/year) and covered area of 0.16, 0.17, 0.71 

and 0.03 percent, respectively. Meanwhile, the moderate severity class from LULC in 

2023 of Scenario II was higher than others and covered area of 24.05 percent. 
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Table 6.1 Area of soil loss and its severity for LULC in 2013 and LULC in 2023 of 

each scenario. 

Severity 

Class 

Loss Rate 

(t/ha/y) 

LULC2013 Scenario I Scenario II Scenario III 

ha % ha % ha % ha % 

Very low ≤ 6.25 52,241 67.70 52,391 67.89 38,452 49.82 56,838 73.66 

Low 6.25 – 31.25 6,380 8.27 6,039 7.83 5,364 6.95 5,311 6.88 

Moderate 31.25 – 125 12,018 15.57 12,074 15.65 18,556 24.05 10,456 13.55 

Severe 125 - 625 6,402 8.30 6,532 8.46 14,248 18.46 4,535 5.88 

Very serve > 625 124 0.16 129 0.17 545 0.71 25 0.03 

Minimum value by cell (t/ha/y) 0 0 0 0 

Maximum value by cell (t/ha/y) 1,165.9 1,165.9 1,256.3 984.0 

Mean value by cell (t/ha/y) 32.6 33.1 71.2 23.3 

Actual soil loss (t/ha/y) 40,213,210 40,856,714 87,959,870 28,779,226 

 

 

 

Figure 6.18 Comparison of soil loss severity level for LULC in 2013 and LULC in 

2023 of each scenario. 

 

In addition, mean annual soil loss from LULC in 2013 and LULC in 2023 of each 

scenario by cell were 32.6, 33.1, 71.2 and 23.3 ton/ha/year, respectively. Meanwhile 

actual total soil loss from LULC in 2013 and LULC in 2023 of each scenario by 
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summation of all cells were 40,213,210, 40,856,714, 87,959,870, and 28,779,226 

ton/ha/year respectively. 

As results, it was clear that LULC in 2023 of Scenario II, which represents for 

agriculture production extension for energy crops, comparatively generates actual total 

soil loss higher than LULC in 2013 and others scenarios. In fact actual total soil loss 

under Scenario II was higher than LULC in 2013 and LULC in 2023 of Scenario I about 

twofold and higher than LULC in 2023 of Scenario III about threefold. 

For impact of LULC change on soil loss, soil loss severity class which was derived 

from LULC in 2013 was used as baseline data to compare with soil loss severity class 

from LULC in 2023 of each scenario as gain and loss using post classification 

algorithm. The results of soil loss change as gain and loss due to LULC change between 

actual LULC in 2013 and simulated LULC in 2023 of three scenario were presented in 

term of gain and loss of severity classes in Table 6.2 to 6.4. At the same time, spatial 

distribution of gain (positive change) and loss (negative change) of severity classes 

between LULC in 2013 and LULC in 2023 of each scenario which represented a 

quantity from-to change information of soil loss severity during two periods were 

displayed in Figures 6.19 - 6.21. 

  

 

 

 

 

 

 

 

 



139 

Table 6.2 Soil loss severity class change between LULC in 2013 and LULC in 2023 

of Scenario I. 

 Soil loss 

severity class 

LULC in 2023 of Scenario I (ha)  

 Very low Low Moderate Severe Very severe Total 

L
U

L
C

 i
n

 2
0

1
3

 (
h

a
) 

Very low 52,050 72 63 52 4 52,241 

Low 230 5,950 200 0 0 6,380 

Moderate 105 14 11,811 88 0 12,018 

Severe 6 3 0 6,392 1 6,402 

Very severe 0 0 0 0 124 124 

Total 52,391 6,039 12,074 6,532 129 77,165 

 

 

Table 6.3 Soil loss severity class change between LULC in 2013 and LULC in 2023 

of Scenario II. 

 Soil loss 

severity class 

LULC in 2023 of Scenario II (ha)  

 Very low Low Moderate Severe Very severe Total 

L
U

L
C

 i
n

 2
0

1
3

 (
h

a
) 

Very low 38,451 1,933 5,437 6,117 303 52,241 

Low 1 3,431 1,894 952 102 6,380 

Moderate 0 0 11,225 792 1 12,018 

Severe 0 0 0 6,387 15 6,402 

Very severe 0 0 0 0 124 124 

Total 38,452 5,364 18,556 14,248 545 77,165 

 

 

Table 6.4 Soil loss severity class change between LULC in 2013 and LULC in 2023 

of Scenario III. 

 Soil loss 

severity class 

LULC in 2023 of Scenario III (ha)  

 Very low Low Moderate Severe Very severe Total 

L
U

L
C

 i
n

 2
0

1
3

 (
h

a
) 

Very low 52,238 3 0 0 0 52,241 

Low 1,043 5,308 29 0 0 6,380 

Moderate 1,573 0 10,427 18 0 12,018 

Severe 1,885 0 0 4,517 0 6,402 

Very severe 99 0 0 0 25 124 

Total 56,838 5,311 10,456 4,535 25 77,165 
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Figure 6.19 Distribution of gain and loss severity class of Scenario I. 

 

Figure 6.20 Distribution of gain and loss severity class of Scenario II. 
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Figure 6.21 Distribution of gain and loss severity class of Scenario III. 

 

As results, it was found that areas of gain and loss severity classes for LULC in 

2023 of Scenario I, which represented historical land use evolution, were 358 and 480 

ha, respectively with gain and loss ratio about 0.7458. In contrast, areas of gain and loss 

severity classes for LULC in 2023 of Scenario II, which represented agriculture 

production extension for energy crops, were 1 and 17,546 ha, respectively with gain 

and loss ratio about 0.0001. Meanwhile areas of gain and loss severity classes for LULC 

in 2023 of Scenario III, which represented forest conservation and prevention, were 

4,600 and 50 ha, respectively with gain and loss ratio about 92. These results implied 

that the simulated LULC 2023 for Scenario I creates more soil loss in the future due to 

LULC change according to historical land use evolution. Herein, areas of cassava and 

sugarcane in 2023, which create more soil loss according to C and P factors (see Table 

 

 

 

 

 

 

 

 



142 

3.5), increased while areas of perennial trees/orchards and forest land in 2023, which 

create less soil loss, decrease. 

In contrast, the simulated LULC 2023 for Scenario II, which aims to increase areas 

of cassava and sugarcane as energy crops, generates more soil loss in the future. 

Because area of perennial tree/orchard, forest land, and miscellaneous land in 2013 

were converted to be cassava and sugarcane in 2023. In the opposite direction, the 

simulated LULC 2023 for Scenario III, which aims to conserve and preserve forest 

land, creates less soil loss in the future. Because area of maize, sugarcane and 

miscellaneous land were converted to be forest land. In fact, forest land increased about 

6,631 ha between 2013 and 2023. 

In addition, soil loss severity class change between Scenario I and Scenario II and 

Scenario I and Scenario III as transition matrix were also extracted as presented in 

Tables 6.5 - 6.6, respectively. Herewith both tables also explain from-to change of 

severity class between two scenarios in term of gain and loss. It was found that areas of 

gain and loss severity class of simulated LULC in 2023 between Scenario I (historical 

land use evolution) and Scenario II (agriculture production extension) were 0 and 

17,114 ha, respectively. This result implies that the simulated LULC in 2023 of 

Scenario II create more soil loss than Scenario I and increases more soil loss severity. 

For example, very low severity class of Scenario I was changed to be low, moderate, 

severe and very severe classes in Scenario II about 1,876, 5,612, 6,152 and 300, ha, 

respectively. On the contrary, it was found that areas of gain and loss severity class of 

simulated LULC in 2023 between Scenario I (historical land use evolution) and 

Scenario III (forest conservation and preservation) were 21,265 and 0 ha, respectively. 

This result implies that the simulated LULC in 2023 of Scenario III create less soil loss 
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than Scenario I and reduce soil loss severity. For example, areas of very severe (492 

ha), severe (8,549 ha), moderate (7,019 ha), and low (2,328 ha) classes of Scenario I 

became very low severity class in Scenario III. These results show severe negative 

impact of LULC change under Scenario II when it compares to Scenario III as 

representing forest conservation and prevention or even Scenario I as representing the 

historical land use evolution. 

 

Table 6.5 Soil loss severity class change between Scenario I and Scenario II. 

 Soil loss 

severity class 

Scenario II (ha)  

 Very low Low Moderate Severe Very severe Total 

S
ce

n
a

ri
o

 I
 (

h
a

) 

Very low 38,451 1,876 5,612 6,152 300 52,391 

Low 0 3,488 1,479 970 102 6,039 

Moderate 0 0 11,465 608 1 12,074 

Severe 0 0 0 6,518 14 6,532 

Very severe 0 0 0 0 129 129 

Total 38,451 5,364 18,556 14,248 546 77,165 

 

Table 6.6 Soil loss severity class between Scenario I and Scenario III. 

 Soil loss 

severity class 

Scenario III (ha)  

 Very low Low Moderate Severe Very severe Total 

S
ce

n
a

ri
o

 I
 (

h
a

) 

Very low 38,451 0 0 0 0 38,451 

Low 2,328 3,036 0 0 0 5,364 

Moderate 7,019 1,678 9,859 0 0 18,556 

Severe 8,549 572 597 4,530 0 14,248 

Very severe 492 25 1 4 24 546 

Total 56,839 5,311 10,457 4,534 24 77,165 

 

In summary, it can be here stated that vegetation cover (C) and conservation 

support practice (P) factors, which are dynamic and directly relate to LULC type of 

LULC change play an important role on amount of soil erosion because other factors 
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including rainfall-runoff erosivity (R), soil erodibility (K), slope length (L), and 

steepness (S) are here assumed as static factors to estimate soil loss for LULC in 2013 

and LULC in 2023 of three scenarios. As results, it can be concluded that LULC change 

creates a positive and negative effect to soil erosion. In this study, increasing of cassava 

and sugarcane under Scenario II created more actual total soil loss. In contrast, 

increasing of forest land under Scenario III reduce actual total soil loss. These 

characteristics was conformed to the previous work of Ongsomwang and Thinley 

(2009) who assessed soil erosion and its change in Upper Lam Phra Phloeng watershed 

between 2000 and 2008. They stated that the higher erosion rate can be attributed to 

increasing usage of land for agricultural purpose. Furthermore, this observation can be 

confirmed by simple linear regression using Trend Analysis of MS-Excel. Herewith the 

relationship between the percentage of agricultural land (paddy field, cassava, maize, 

sugarcane, and perennial tree/orchard) and forest land from actual LULC in 2013 and 

simulated LULC of three scenario, which represent LULC change, were regressed with 

actual total soil loss as shown in Figure 6.22. Herein the simple linear equation between 

percentage of agricultural land and actual total soil loss showed positive relationship 

with R2 at 99.93% as: 

y = 1.7113x - 48.114, (6.1) 

where y is actual total soil loss in million ton/ha/year and x is the percentage of 

agricultural land of the watershed area.  

 Meanwhile the simple linear equation between percentage of forest land and 

actual total soil loss showed negative relationship with R2 at 96.84% as: 

y = 122.18 - 2.3335x, (6.2) 
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Where y is actual total soil loss in million ton/ha/year and x is percentage of forest land 

of the watershed area.  

 
 

(a) 

 

 
(b) 

 

Figure 6.22 Simple linear regression analysis between percentage of agricultural land 

(a) and forest land (b) with actual total soil loss.  

y = 1.7113x - 48.114

R² = 0.9993
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6.2 Water yield estimation and its impact due to LULC change 

SWAT model with SCS-CN method was here used to estimate water yield of actual 

LULC in 2013 and the simulated LULC in 2023 for each scenarios. Herein SWAT 

model with an optimum local parameters was firstly used to generate CN value in each 

hydrologic response unit (HRU) for LULC in 2013 and SCS-CN method were then 

used to estimate theirs water yield (runoff depth). 

6.2.1 CN value of hydrologic response unit by SWAT model 

In this study the basic biophysical factors included actual LULC in 2003, soil 

data, and DEM which cover two hydrological station two, namely M145 for model 

calibration, and M171 for model validation, and daily rainfall and runoff in 2003 were 

prepared to simulate water yield and to identify an optimum local parameters 

identification for creating CN value in hydrologic response unit of LULC in 2013 and 

the simulated LULC in 2023 of three scenario. Figures 6.23 - 6.25 displayed three basic 

biophysical factors including LULC in 2003, soil data, and DEM, respectively; and 

Table 6.7 summarized monthly rainfall from Chok Chai meteorological station 

(431401) and runoff data from M145 and M171 stations, respectively. 

 

 

 

 

 

 

 

 

 



147 

 

Figure 6.23 LULC in 2003 and sub watershed of hydrological station.  

 

Figure 6.24 Distribution of soil data and sub watershed of hydrological station. 

 

 

 

 

 

 

 

 



148 

 

Figure 6.25 Distribution of elevation and sub watershed of hydrological station. 

 

Table 6.7 Monthly rainfall from Chok Chai meteorological station (431401) and runoff 

data from M145 and M171 stations. 

Month 

Monthly rainfall (mm) 

Hydrological station Rain station 

M145 M171 431401 

January 4.81 8.63 0.00 

February 2.83 6.20 26.70 

March 10.34 16.37 48.10 

April 15.40 19.15 2.80 

May 15.58 23.06 106.70 

June 11.85 17.05 185.90 

July 21.94 37.16 127.20 

August 20.48 23.02 114.90 

September 56.45 71.59 164.70 

October 88.45 119.08 83.70 

November 5.04 12.89 0.40 

December 1.25 4.54 0.00 

Total 254.43 358.75 861.10 
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For SWAT model calibration under sub-watershed of M145 station, input 

variables included land use, soil and slope class which are related to hydrologic 

response unit were proportional set up as 0, 0, and 0, respectively. Herewith, original 

size of each land use type which are related to soil and slope was used to generate 

hydrologic response unit. Meanwhile, selected hydrologic parameters included surface 

runoff lag times (Surlag), base flow alpha factor (Alpha_BF), and available water 

capacity of the first layer (SOL_AWC1) were varied to identify the optimum local 

parameters of SWAT model using Nash-Sutcliffe efficiency (NSE) and R2. The 

optimum local parameters of SWAT model which provides the optimized accuracy of 

NSE and R2 were as follows. 

(1) Surface runoff lag times equals 0.1 day. 

(2) Base flow alpha factor equals 0.9 day. 

(3) Available water capacity of the first layer equals 0 mm. 

Herein, the accuracy of NSE and R2 were 0.74 and 0.76, respectively. Table 

6.8 compared the actual and estimated monthly runoff of M145 station sub-watershed 

and Figure 6.26 demonstrated the runoff duration curve between the actual and 

estimated runoff values from station and SWAT model. Meanwhile Figure 6.27 

displayed a simple linear regression between the actual runoff values from station M145 

and estimated values from SWAT model. Detail of model calibration and accuracy 

assessment was represented in Table 1 of Appendix C. 
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Table 6.8 Comparison between actual and estimated monthly runoff of M145 station. 

Month 

Runoff (mm) 

Actual Estimate 

January 4.81 0.00 

February 2.83 0.28 

March 10.34 1.21 

April 15.40 0.12 

May 15.58 0.99 

June 11.85 14.92 

July 21.94 29.69 

August 20.48 31.74 

September 56.45 36.23 

October 88.45 86.19 

November 5.04 29.31 

December 1.25 11.03 

Total 254.43 241.71 

 

 

Figure 6.26 Actual and estimated runoff from station and SWAT model of M145. 
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Figure 6.27 Simple linear regression analysis between actual runoff from station M145 

and estimated runoff from SWAT model. 

 

For SWAT model validation under Sub-watershed of M171, the derived 

optimum local parameters of SWAT model from M145 sub-watershed was validated to 

reconfirm the efficient of the SWAT model. The derived accuracy of NSE and R2 were 

0.75 and 0.79, respectively. This result was similar to calibration process. Therefore, 

the derived optimum local parameters of SWAT model were further used to generate 

CN value in each hydrologic response unit of actual LULC in 2013 and the simulated 

LULC in 2023 of three scenarios as shown in Figures 6.28 - 6.31. 
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Figure 6.28 Distribution of runoff curve numbers for actual LULC in 2013. 

 

 

 
Figure 6.29 Distribution of runoff curve numbers for the simulated LULC in 2023 of 

Scenario I.  
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Figure 6.30 Distribution of runoff curve numbers for the simulated LULC in 2023 of 

Scenario II. 

 

 
Figure 6.31 Distribution of runoff curve numbers for the simulated LULC in 2023 of 

Scenario III. 
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6.2.2 Water yield estimation using SCS-CN method 

Based on the derived runoff curve numbers (CN) of hydrologic soil groups 

(HSG) from each hydrologic response unit from SWAT model, the potential maximum 

storage (S) of actual LULC in 2013 and the simulated LULC in 2023 of three scenario 

were calculated as: 

S = 25.4 × 
1000

CN
 – 10 ; (6.3) 

Where S is potential maximum storage in mm, and CN is runoff curve number of 

hydrologic soil group–land cover complex. Figures 6.32 - 6.35 displayed potential 

maximum storage (S) for actual LULC in 2013 and the simulated LULC in 2023 of 

three scenario. 

 

 
Figure 6.32 Distribution of potential maximum storage (S) for LULC in 2013. 
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Figure 6.33 Distribution of potential maximum storage (S) for the simulated LULC in 

2023 of Scenario I. 

 

 
Figure 6.34 Distribution of potential maximum storage (S) for the simulated LULC in 

2023 of Scenario II. 

 

 

 

 

 

 

 

 



156 

 
Figure 6.35 Distribution of potential maximum storage (S) for the simulated LULC in 

2023 of Scenario III. 

 

After that water yield was estimated based on the average monthly rainfall 

from 2002-2011 (Figure 6.36) using runoff depth equation (Equation 2.6). In practice, 

water yield (runoff depth) estimation for actual LULC in 2013 and the simulated LULC 

in 2023of each scenario was separately implemented using Model Builder under 

ArcGIS environment (Figure 6.37). Distribution of water yield by pixel for actual 

LULC in 2013 and the simulated LULC in 2023of each scenario displayed in Figure 

6.38 to Figure 6.41 while summary of water yield by pixel for actual LULC in 2013 

and the simulated LULC in 2023of each scenario was presented in Table 6.9. 
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Figure 6.36 Average monthly rainfall from 2002-2011. 

 

Figure 6.37 Schematic diagram of Model Builder for water yield estimation. 
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Figure 6.38 Distribution of water yield for LULC in 2013. 

 

 

 
Figure 6.39 Distribution of water yield for the simulated LULC in 2023 of Scenario I. 
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Figure 6.40 Distribution of water yield for the simulated LULC in 2023 of Scenario 

II. 

 
Figure 6.41 Distribution of water yield for the simulated LULC in 2023 of Scenario 

III.  
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Table 6.9 Summary of water yield value by pixel for three scenarios. 

Water yield data LULC 2013 Scenario I Scenario II Scenario III 

Minimum (mm) 0.16 0.16 0.16 0.16 

Maximum (mm) 106.32 106.32 106.32 106.32 

Mean (mm) 48.97 49.30 59.79 46.93 

Total in mm 60,460,484.79 60,856,521.32 73,813,681.57 57,945,451.26 

Total in million cu. m 37.79 38.04 46.13 36.22 

 

As results, it was found that the minimum and maximum values of water 

yield by pixel for LULC in 2013 and the simulated LULC in 2023 of Scenario I, II, and 

III were equal with value of 0.16 mm and 106.32 mm, respectively. These results occur 

because the derived water yield (runoff depth) was directly relate rainfall and CN value, 

which associated with LULC and soil types data, were stable. Herewith the common 

minimum and maximum CN value which exist in LULC in 2013 and the simulated 

LULC in 2023 generate water yield with the same values. However, the value of mean 

and total water yield from LULC in 2013 and the simulated LULC in 2023 of three 

scenarios were different from each other. In fact, the highest total water yield (runoff 

depth) was occurred in Scenario II with amount of 46.13 million cu. m. These results 

shows influence of LULC changes on water yield because soil types and rainfall values 

for LULC in 2013 and the simulated LULC in 2023 of three scenarios were stable and 

identical. 

In addition, the total water yield value, which directly relate to surface runoff, 

reflects the characteristics of LULC. Herewith, the simulated LULC in 2023 of 

Scenario III, which represents forest conservation and prevention, provides the lowest 

water yield for surface runoff meanwhile the simulated LULC in 2023 of Scenario II, 

 

 

 

 

 

 

 

 



161 

which represents agriculture production extension for energy crops, provides the 

highest water yield for surface runoff.  

For impact of LULC change on water yield, the relationship between the 

percentage of agricultural land and forest land from actual LULC in 2013 and simulated 

LULC in 2023 of three scenarios was separately regressed with total water yield (runoff 

depth) as results shown in Figure 6.42. Herein the simple linear equation between 

percentage of agricultural land and total water yield (depth) showed positive 

relationship with R2 at 99.72% as: 

y = 36.748 + 0.4652x, (6.4) 

where y is total water yield (runoff depth) in million millimeter and x is percentage of 

agricultural land of the watershed area.  

Meanwhile the simple linear equation between percentage of forest land and 

total water yield (runoff depth) showed negative relationship with R2 at 95.63% as: 

y = 82.935 - 0.631x, (6.5) 

where y is total water yield (runoff depth) in million millimeter and x is the percentage 

of forest land of the watershed area.  

As results, it was found that when percentage of agricultural land increases, 

water yield (runoff depth) increases. In the opposite direction, when percentage of 

forest land increases, water yield (runoff depth) decreases. It was implied that LULC 

change impact on total water yield for surface runoff. This finding agreed with the study 

of Ongsomwang and Koonto (2013) about the impact of land use change on water 

runoff using SWAT model. They stated that the most important factors on water runoff 

quantity were land use types and land use changes. 
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(a) 

 

 

(b) 

Figure 6.42 Simple linear regression analysis between percentage of agricultural land 

(a) and forest land (b) with total water yield (runoff depth) 
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6.3 Economic value estimation and its impact due to LULC change 

 Future value for LULC in 2013 and the simulated LULC in 2023 of three scenarios 

was estimated from its present return value using PV equation (Equation 2.7). 

 Table 6.10 showed present value (income) for agricultural types and forest land 

which were derived from government agencies’ reports meanwhile the future value of 

LULC types was displayed in Table 6.11. These future value in 2023 of LULC types 

except urban and built-up land, water body and miscellaneous land were directly 

applied to generate distribution map of economic value for LULC in 2013 and the 

simulated LULC in 2023 of three scenarios as shown in Figures 6.43 - 6.46. Basic 

statistic data of economic value by pixel for LULC in 2013 and the simulated LULC in 

2023 of three scenarios was summarized as shown in Table 6.12. 

 

Table 6.10 Present value (price, yield and income) of LULC type in agricultural and 

forest land. 

LULC type Price (baht/kg.) Yield (kg/hectare) Income (baht/hectare) 

Paddy field 1 14.62 2,530 36,996.70 

Cassava 1 2.02 20,835 42,114.48 

Maize 1 7.84 4,093 32,098.16 

Sugarcane 1 1 73,238 72,973.85 

Perennial tree 2 13.33 6,846 91,232.14 

Forest land 3   250,000 

Source 

1 OAE (2012-2013) 

2. Market Organization for Farmers (2014) 

3. Wittawatchutikul and Jirasuktaveekul (2005) 
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Table 6.11 Future value of LULC type in agricultural and forest land by year 2023. 

LULC type 
Present 

value (Baht) 

Discount 

Rate* in % 

Period from 

Present (year) 

Future value 

(Baht) 

Paddy field 36,996.70 7 10 72,778 

Cassava 42,114.48 7 10 82,846 

Maize 32,098.16 7 10 63,142 

Sugarcane 72,973.85 7 10 143,551 

Perennial tree 91,232.14 7 10 179,467 

Forest 250,000 7 10 491,788 

* Discount rate was based on Bank for Agriculture and Agricultural Cooperatives (2014) 

 

 

 
Figure 6.43 Distribution of economic value from agriculture and forest land for 

LULC in 2013. 
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Figure 6.44 Distribution of economic value from agriculture and forest land for the 

simulated LULC in 2023 of Scenario I. 

 

Figure 6.45 Distribution of economic value from agriculture and forest land for the 

simulated LULC in 2023 of Scenario II. 
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Figure 6.46 Distribution of economic value from agriculture and forest land for the 

simulated LULC in 2023 of Scenario III. 

 

In summary, economic value of agriculture and forest land for LULC in 2013 and 

the simulated LULC in 2023 of three scenarios were 16,987.05 million Baht, 16,677.33 

million Baht, 12,923.64 million Baht and 19,660.13 million Baht, respectively. 

Meanwhile basic statistic data of economic value by pixel for LULC in 2013 and the 

simulated LULC in 2023 was presented in Table 6.12. 
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Table 6.12 Basic statistic of economic value for LULC in 2013 and the simulated 

LULC in 2023 of three scenarios. 

Economic value LULC2013 Scenario I Scenario II Scenario III 

Minimum (Baht) 3,946 3,946 4,549 3,946 

Maximum (Baht) 30,737 30,737 30,737 30,737 

Mean (Baht) 13,759 13,508 10,468 15,924 

Total in Baht 16,987,053,440 16,677,332,110 12,923,638,890 19,660,126,530 

Total in million Baht 16,987.05 16,677.33 12,923.64 19,660.13 

 

As results, it was found that the future minimum and maximum economic values 

by pixel for LULC in 2013 and the simulated LULC in 2023 of Scenario I and III were 

equal to value of 0 baht and 30,737 baht, respectively. These results occurred because 

the derived economic values was directly relate income of LULC type. Herein urban 

and built-up land, water body and miscellaneous land were not estimated future 

economic value while forest land provided the highest economic value. However, the 

mean and total economic values from LULC in 2013 and the simulated LULC in 2023 

of three scenarios were different from each other. In fact, the future highest economic 

value was occurred in Scenario III while future lowest economic value was occurred in 

Scenario II. These results show influence of LULC changes on economic return. 

 For impact of LULC change on economic value, the relationship between the 

percentage of agricultural land and forest land from LULC in 2013 and simulated 

LULC in 2023 was separately regressed with total economic value to demonstrate the 

impact of LULC change on economic value as shown in Figure 6.47. Herein, the simple 

linear equation between percentage of agricultural land and total economic value 

showed negative relationship with R2 at 91.69% as: 
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y = 26.421 - 0.1729x (6.6) 

where y is total economic value in billion baht, and x is the percentage of agricultural 

land of the watershed area.  

 In the meantime the simple linear equation between percentage of forest land and 

total economic value in billion baht showed positive relationship with R2 at 98.72% as: 

y = 8.816 + 0.2485x (6.7) 

Where y is total future value in billion baht, and x is the percentage of forest land of the 

watershed area.  

 As results, it was found that when percentage of agricultural land increases, total 

future value decrease. In the opposite direction, when percentage of forest land 

increases, total future value increase. This finding implies that LULC change impact on 

economic value. However, when economic value of agricultural land and forest land 

are compared, it is required to consider the return period of the product, i.e. field crops 

require short term period (1-3) while forestry product need long term period (30 years). 
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(a) 

 

 

(b) 

Figure 6.47 Simple linear regression analysis between percentage of agricultural land 

(a) and forest land (b) with total economic value. 
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CHAPTER VII 

AN OPTIMAL LAND USE ALLOCATION 

 

7.1 An optimal land use allocation with three scenarios 

Under this component, the derived soil loss, water yield and economic values of 

each scenario in 2023 were firstly separately normalized and combined using SAW 

method of MCDA to create total scores with specific weight according scenario 

characteristics. The total score from each scenario was then classified for suitability 

classes (low, moderate and high) for land use allocation. After that the result was 

overlaid with the simulated LULC in 2023 for an optimal land use allocation in 2023. 

The derived land use allocation with suitability class was further analyzed by overlay 

analysis with actual LULC in 2013 for land use allocation of each scenario in detail. 

In this study, the derived soil loss, water yield and economic values form each 

scenario were normalized with a specific procedure to represent negative, positive and 

neutral factors for SAW operation. Herein, soil loss as negative factor was normalized 

using score range procedure for cost criteria (Equation 3.1) meanwhile water yield as 

positive factor was normalized using score range procedure for benefit criteria 

(Equation 3.2.). At the same time, economic value of LULC as neutral factor was 

normalized using maximum score procedure for benefit criteria (Equation 3.3). The 

minimum and maximum value of each factors from three scenarios before and after 

normalization was summarized in Table 7.1. The normalized data of soil loss, water 
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yield and economic values of Scenario I, II, and III were presented in Figures 7.1, 7.2 

and 7.3, respectively.  

 

Table 7.1 Minimum and maximum values for each scenario factor before and after 

normalization of three scenarios. 

Scenario Factors 
Before normalization After normalization 

Minimum Maximum Minimum Maximum 

I 

Soil loss 0.00 1,256.33 0 1 

Water yield/runoff 3.51 80.99 0 1 

Economic value 3,946.00 30,737.00 0.128379 1 

II 

Soil loss 0.00 1,256.33 0 1 

Water yield/runoff 3.51 80.99 0 1 

Economic value 4,549.00 30,737.00 0.147998 1 

III 

Soil loss 0.00 1,256.33 0 1 

Water yield/runoff 3.51 80.99 0 1 

Economic value 3,946.00 30,737.00 0.128379 1 
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(a) 

 
(b) 

Figure 7.1 Normalized factors of Scenario I: (a) soil loss, (b) water yield, and (c) 

economic values. 
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(c) 

Figure 7.1 Normalized factors of Scenario I: (a) soil loss, (b) water yield, and (c) 

economic values (Continued). 
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Figure 7.2 Normalized factors of Scenario II: (a) soil loss, (b) water yield, and (c) 

economic values. 

(a) 

 

(b) 
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Figure 7.2 Normalized factors of Scenario II: (a) soil loss, (b) water yield, and (c) 

economic values (Continued).  

(c) 
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Figure 7.3 Normalized factors of Scenario III: (a) soil loss, (b) water yield, and (c) 

economic values. 

(a) 

 

(b) 
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Figure 7.3 Normalized factors of Scenario III: (a) soil loss, (b) water yield, and (c) 

economic values (Continued). 

 

In addition, an optimal weight, which was assigned according to characteristics of 

defined scenario and the relative important of three factors were here summarized as 

shown in Table 7.2. 

 

Table 7.2 Assigned weight of each factor for three scenarios. 

Scenario 
Weighting 

Soil loss Water yield/runoff Economic value 

I 1 1 1 

II 1 2 3 

III 3 2 1 

 

(c) 
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Later on, all three factors for each scenario were separately combined with SAW 

method to calculate total score and then reclassified into three suitability classes (low, 

moderate, and high) for land use allocation. Herein, equal interval method was applied 

for Scenario I as same as the assignment of factor weighting which was assigned as 

equal weight. Because Scenario I, which represents the historical land evolution, has 

no relative important among three factors. Suitability classes with equal interval method 

for Scenario I was therefore reasonable. At the same time, natural break method, which 

appropriates for the skewed distribution data, was applied for Scenario II and III which 

have relative important among three factors. For Scenario II, economic value which 

represents positive impact is the most important factor while soil loss which represents 

negative impact is the most important factor in Scenario III (see Table 7.2). The 

suitability classes (low, moderate, and high) for land use allocation of Scenario I to III 

were displayed in Figures 7.4 - 7.6, respectively. Areas of suitability classes (low, 

moderate, and high) for land use allocation of each scenario was summarized in Table 

7.3.  
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Figure 7.4 Suitability class for land use allocation of Scenario I (Historical land use 

evolution). 

 
Figure 7.5 Suitability class for land use allocation of Scenario II (Agriculture 

production extension). 
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Figure 7.6 Suitability class for land use allocation of Scenario III (Forest conservation 

and prevention). 

 

Table 7.3 Area and percent of suitability class for land use allocation of Scenario I to III. 

Scenario Suitability class for land use allocation 
Area in 

ha % 

I 

Low 519 0.80 

Moderate 31,793 48.75 

High 32,900 50.45 

Total 65,212 100.00 

II 

Low 19,665 26.74 

Moderate 30,618 41.64 

High 23,250 31.62 

Total 73,533 100.00 

III 

Low 5,175 7.70 

Moderate 40,979 60.97 

High 21,062 31.33 

Total 67,216 100.00 
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As results it was found that the dominant suitability classes for an optimal land use 

allocation of Scenario I were moderate and high and covered area of 31,793 and 32,900 

ha or 48.75 and 50.45 percent, respectively. At the same time, the suitability classes for 

an optimal land use allocation of Scenario II were low, moderate and high and covered 

area of 19,665, 30,618 and 23,250 ha or 26.74, 41.64 and 31.62 percent, respectively. 

Meanwhile, the dominant suitability classes for an optimal land use allocation of 

Scenario III were moderate and high covered area of 40,979 and 21,062 ha or 60.97 

and 31.33 percent, respectively.  

Details of an optimal land use allocation in 2023 for each scenario by overlay 

analysis between the simulated LULC in 2023 by CLUE-S model and suitability class 

by SAW method can be separately described in following sections. 

7.1.1 An optimal land use allocation for Scenario I 

By means of overlay analysis between the simulated LULC type in 2023 of 

Scenario I and the suitability classes for land use allocation based on its scenario 

characteristic (Table 7.4), it was found that most of the simulated agricultural land in 

2023 (paddy field, cassava, maize, sugarcane and perennial tree/orchard) were allocated 

in moderate suitability class which covered area of 31,793 ha or 48.75 percent and some 

areas of agricultural land were located in high suitability class. Meanwhile, all 

simulated forest land in 2023 were allocated in high suitability class and covered area 

of 25,427 ha or 38.99 percent. The distribution of an optimal land use allocation of 

Scenario I by each suitability class was displayed in Figure 7.7. 
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Table 7.4 Area of suitability class for an optimal land use allocation of Scenario I. 

Suitability 

Class 

Land use type (ha) 

Paddy 

field Cassava Maize Sugarcane 

Perennial 

tree/orchard 

Forest 

land Total Percentage 

Low 0 18 475 24 3 0 520 0.80 

Moderate 205 3,678 16,297 7,805 3,808 0 31,793 48.75 

High 32 937 821 4,649 1,033 25,428 32,900 50.45 

Total 237 4,633 17,593 12,478 4,843 25,428 65,212 100.00 

 

 

Figure 7.7 Distribution of an optimal land use allocation with suitability class of 

Scenario I. 

 

Furthermore, the relationship between the simulated LULC in 2023 of 

Scenario I with suitability class and actual LULC in 2013 can be identified by overlay 

analysis as summary in Table 7.5. As results, it can be observed that most of allocated 
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agricultural land and forest land in 2023 in moderate and high suitability classes came 

from actual LULC in 2013 and their areas covered area of 65,213 ha or about 96.34 

percent of total areas (62,824 ha). Few changed LULC type between actual LULC in 

2013 and the simulated LULC in 2023 located in multiple suitability classes and 

covered area of 1,880 ha or 2.88 percent of total area. These areas play important role 

in term of environment impact. Therefore, low or moderate suitability classes of 

changed LULC type between actual LULC in 2013 and the simulated LULC in 2023, 

which covered area of 10 and 927 ha, should be carefully implemented in long term (8-

10 years) and medium term (4 - 7 years), respectively to minimize environmental 

impact. 

 

Table 7.5 Relationship between the simulated LULC in 2023 of Scenario I with 

suitability class and actual LULC in 2013. 

Actual 

LULC in 2013 

Simulated 

LULC 2023 

Suitability class (ha) 

Remark Low Moderate High total 

Paddy field Paddy field  0 205 32 237 Non-change 

Cassava Cassava 18 3,511 917 4,446 Non-change 

Maize Cassava 0 55 3 58 Change 

Forest Cassava 0 34 7 41 Change 

Miscellaneous land Cassava 0 79 10 89 Change 

Maize  Maize 475 16,297 821 17,593 Non-change 

Sugarcane  Sugarcane 14 7,046 3,726 10,786 Non-change 

Maize  Sugarcane 4 422 498 924 Change 

Forest land  Sugarcane 4 46 95 145 Change 

Miscellaneous land Sugarcane 2 291 330 623 Change 

Perennial 

tree/orchard 

Perennial 

tree/orchard  3 3,808 1,033 4,844 Non-change 

Forest land Forest land 0 0 25,428 25,428 Non-change 
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7.1.2 An optimal land use allocation for Scenario II 

According to overlay analysis between the simulated LULC type in 2023 of 

Scenario II and the suitability classes for land use allocation based on its scenario 

characteristic (Table 7.6), it was revealed that most of the simulated cassava areas in 

2023 which totally required 30,699 ha were allocated in low and moderate suitability 

classes and covered area of 15,921 and 14,777 ha, respectively. Meanwhile the 

simulated sugarcane areas in 2023, which also totally required 30,699 ha, were 

allocated in low, moderate, and high suitability classes and covered area of 3,539, 

15,808, and 11,052 ha, respectively. At the same time the simulated forest land in 2023 

with some restriction rules were only allocated in high suitability class and covered area 

of 12,199 ha. The distribution of an optimal land use allocation of Scenario II by each 

suitability class was displayed in Figure 7.8. 

 

Table 7.6 Area of suitability class for an optimal land use allocation of Scenario II.  

Suitability Class 

Land use type (ha) 

Paddy field Cassava Sugarcane Forest land Total Percent 

Low 205 15,921 3,539 0 19,665 26.74 

Moderate 32 14,777 15,808 0 30,618 41.64 

High 0 0 11,052 12,199 23,250 31.62 

Total 237 30,699 30,399 12,199 73,533 100.00 
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Figure 7.8 Distribution of an optimal land use allocation with suitability class of 

Scenario II. 

 

In addition, the relationship between the simulated LULC in 2023 of 

Scenario II with suitability class and actual LULC in 2013 can be identified by overlay 

analysis as summary in Table 7.7. As results, it was found that changed LULC type 

between actual LULC in 2013 and the simulated LULC in 2023 which located with 

multiple suitability classes covered area of 45,865 ha or 62.37 percent of total area 

(73,533 ha). This phenomena occurred due to policy setting for energy crop. Therefore, 

these areas should pay more attention during implementation due to environment 

impact by soil erosion. Herewith, low and moderate suitability classes of cassava and 

sugarcane in 2023, which covered area of 16,832 and 21,719 ha, respectively, should 
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be carefully implemented in long term (8-10 years) and medium term (4-7 years), 

respectively. In contrast, high suitability class of cassava and sugarcane which covered 

area of 7,315 ha in 2023 could be implemented in short term (1-3 years) due to minimal 

environmental impact by soil erosion. 

 

Table 7.7 Relationship between the simulated LULC in 2023 of Scenario II with 

suitability class and actual LULC in 2013. 

Actual 

LULC2013 

Simulated 

LULC2023 

Suitability class (ha) 

Remark Low Moderate High total 

Paddy field  Paddy field  205 32 0 237 Non-change 

Cassava Cassava 2,265 2,181 0 4,446 Non-change 

Maize Cassava 5,957 5,561 0 11,517 Change 

Perennial tree  Cassava 1,876 1,937 0 3,813 Change 

Forest  Cassava 3,782 2,594 0 6,375 Change 

Miscellaneous land Cassava 2,042 2,505 0 4,547 Change 

Sugarcane Sugarcane 363 6,686 3,737 10,786 Non-change 

Maize Sugarcane 610 3,147 3,329 7,086 Change 

Perennial tree  Sugarcane 83 1,242 1,029 2,354 Change 

Forest land Sugarcane 2,178 3,402 1,814 7,394 Change 

Miscellaneous land Sugarcane 306 1,331 1,143 2,779 Change 

Forest land Forest land 0 0 12,199 12,199 Non-change 

 

7.1.3 An optimal land use allocation for Scenario III 

By means of overlay analysis between the simulated LULC type in 2023 of 

Scenario III and the suitability classes for land use allocation according its scenario 

characteristic (Table 7.8), it was found that the simulated forest land in 2023 were 

allocated in moderate and high suitability classes and covered area of 22,682 and 9,920 

ha, respectively. Meanwhile the simulated agricultural land (paddy field, cassava, 

maize, sugarcane, and perennial tree/orchard) in 2023 were allocated in low, moderate 
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and high suitability classes. The distribution of an optimal land use allocation of 

Scenario II by each suitability class was displayed in Figure 7.9. 

Table 7.8 Area of suitability class for an optimal land use allocation of Scenario III.  

Suitability 

Class 

Land use type (ha) 

Paddy 

field Cassava Maize Sugarcane 

Perennial 

tree/orchard Forest land Total Percent 

Low 0 228 1,710 385 2,852 0 5,175 7.70 

Moderate 205 2,195 8,971 5785 1,141 22,682 40,979 60.97 

High 32 1,392 5,309 3055 1,354 9,920 21,062 31.33 

Total 237 3,815 15,990 9225 5,347 32,602 67,216 100.00 

 

 

Figure 7. 9 Distribution of an optimal land use allocation with suitability class of 

Scenario III. 
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The relationship between the simulated LULC in 2023 of Scenario III with 

suitability class and actual LULC in 2013 can be further identified by overlay analysis 

as summary in Table 7.9. As results, it was found that some unusual changed LULC 

type between actual LULC in 2013 and the simulated LULC in 2023 can be occurred 

due to policy setting for conservation and prevention forest land. In this study, land 

requirement of forest land were calculated from areas of watershed class I and II, 

national park’s boundary and existing forest in 2013. In fact, any LULC type in 2013 

can be changed to be forest land in 2023. Herein, urban and built-up land (316 ha) and 

water body (10 ha) in 2013 became forest land in 2023. Consequently, the changed 

LULC type between actual LULC in 2013 and the simulated LULC in 2023 should 

carefully considered during implementation due to environment impact by soil erosion. 

Herewith, low and moderate suitability classes of forest land in 2023 which covered 

area of 3,142 and 3,490 ha, respectively should be carefully implemented in long term 

(8-10 years) and medium term (4-7 years), respectively. Conversely, high suitability 

class of forest land in 2023 which covered area of 6,631 ha can be implemented in short 

term (1-3 years) due to minimal environmental impact of soil erosion. Meanwhile, non- 

changed area of forest land between actual LULC in 2013 and the simulated LULC in 

2023 covered area of 25,970 ha. In addition, changed areas of maize between actual 

LULC in 2013 and the simulated LULC in 2023 covered area of 848 ha should be 

carefully considered according suitability classes. In this case, low and moderate 

suitability classes of maize in 2023 which covered area of 184 and 514 ha should be 

implemented in long term (8-10 years) and medium term (4-7 years) while high 

suitability class which covered area of 150 ha can be implemented in short term (1-3 

years).  
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Table 7.9 Relationship between the simulated LULC in 2023 of Scenario III with 

suitability class and actual LULC in 2013. 

Actual 

LULC in 2013 

Simulated 

LULC in 2023 

Suitability class (ha) 

Remark Low Moderate High total 

Paddy field Paddy field 0 205 32 237 Non-change 

Cassava Cassava 228 2,195 1,392 3,815 Non-change 

Maize Maize 1,525 8,457 5,160 15,143 Non-change 

Sugarcane Maize 113 244 50 407 Change 

Cassava Maize 54 209 94 357 Change 

Perennial tree/Orchard  Maize 17 61 6 84 Change 

Sugarcane Sugarcane 385 5,785 3,055 9,225 Non-change 

Perennial tree/Orchard Perennial tree/Orchard  2,852 1,141 1,354 5,347 Non-change 

Forest land Forest land 0 19,540 6,429 25,970 Non-change 

Urban and built-up land Forest land 0 179 137 316 Change 

Maize Forest land 0 1,558 1,902 3,460 Change 

Sugarcane Forest land 0 525 507 1,032 Change 

Cassava Forest land 0 82 182 264 Change 

Perennial tree/Orchard  Forest land 0 224 356 579 Change 

Miscellaneous land Forest land 0 570 400 970 Change 

Water body Forest land 0 4 6 10 Change 

 

In brief, an optimal land use allocation of each scenario based on suitability 

class, which was generated by combination of negative, neural and positive factors 

under MCDA with SAW method can provide easily solution to minimized 

environmental impact. However, the detail of annual allocated land use type in short, 

medium and long terms should be prepared in operation plan. 

 

 

 

 

 

 

 

 



 

CHAPTER VIII 

CONCLUSION AND RECOMMENDATIONS 

 

Under this chapter, four main results which were reported according to objectives 

in the study including (1) LULC assessment and its change and driving forces for LULC 

change (Chapter IV), (2) simulation of LULC scenarios by CLUE-S model (Chapter 

V), (3) impact of LULC change on soil erosion, water yield and economic values 

(Chapter VI) and (4) an optimal land use allocation (Chapter VII) are here separately 

concluded and recommended for future research and development. 

 

8.1 Conclusion 

8.1.1 LULC assessment and its change and driving forces for LULC change 

Major LULC data in 2003 as historical record and recent LULC data in 2013, 

which were visually interpreted from color orthophoto and Thaichote data, were urban 

and built-up land and sugarcane with annual change rate of 66.5 and 171 ha per year, 

respectively. At the same period minor increasing LULC types were cassava, water 

body, and miscellaneous land with annual change rate of 21.5, 5.15, and 28 ha per year, 

respectively. On the contrary major decreased LULC types were maize and perennial 

trees/orchard with annual change rate of 108.9 and 128.5 ha per year, respectively and 

minor decreased LULC type was forest land with annual change rate of 55.3 ha per 

year. Meanwhile, paddy field in this period was stable. The derived LULC change 

pattern of major LULC classes between 2003 and 2013 from the study was similar to 
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land use change pattern of LDD between 2008 and 2011. The major cause of 

exchangeable areas may related to price, landform, labors, and available of water. In 

addition, accuracy assessment of the visually interpreted LULC in 2013 by overall 

accuracy and Kappa hat coefficient were 90.625 and 87.418 percent, respectively. 

Furthermore, the most common important driving force for all LULC types 

change was population density while the most important driving force for field crops 

(cassava, maize, and sugarcane) included slope, distance from road, population density, 

annual rainfall, soil drainage, and watershed classes. 

8.1.2 Simulation of LULC scenarios by CLUE-S model 

Three scenarios of LULC in 2023 included Scenario I: Historical land use 

evolution, Scenario II: Agriculture production extension, and Scenario III: Forest 

conservation and prevention were here simulated based on an optimum local parameters 

of CLUE-S model with a specific land use requirement for each scenario. 

For Scenario I (Historical land use evolution) based on annual change rate 

between 2003 and 2013, it was found that increased LULC types were urban and built-

up land, cassava, sugarcane, water body and miscellaneous land while decreased LULC 

types were maize, perennial trees/orchards and forest land. The pattern of LULC change 

during 2013 to 2023 was identical to LULC change pattern between 2003 and 2013. 

On the contrary, for Scenario II (Agriculture production extension) based on 

energy crop policy with some limitations of conserved and preserved forest land and 

fixing of urban and built-up land, paddy field and water body areas, it was found that 

most of the increased area of cassava and sugarcane came from maize, perennial 

tree/orchard, forest land and miscellaneous land. Herein, areas of them in 2013 were 

converted to be cassava and sugarcane about 18,603, 6,167, 13,769, and 7,326 hectares, 
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respectively. Meanwhile, for Scenario III (Forest conservation and prevention) based 

on the national conservation and preservation program on forests and fixing of urban 

and built-up land, paddy field and water body areas, it was revealed that most of 

increased area of forest land came from maize, sugarcane, and miscellaneous land. 

Herein areas of them were converted to be forest land about 3,460, 1,032 and 970 ha, 

respectively. Meanwhile forest land between 2013 and 2023 had increased about 6,631 

ha. 

As a result, it can be concluded that the CLUE-S model can provides the 

good result for LULC prediction according the historical land use evolution in the past 

and the derived results from CLUE-S model are controlled by the specified land use 

requirement in each scenario. 

8.1.3 Impacts of LULC change on soil erosion, water yield and economic 

values 

Three models included USLE model, SWAT model with SCS-CN method, 

and PV model were here used to assess and evaluate impact (positive, negative and 

neural) due to LULC change in 2023. 

(1) Soil erosion assessment and its impact due to LULC change 

For soil erosion assessment, the most dominate soil loss severity class from 

actual LULC in 2013 and simulated LULC in 2023 of three scenarios was very low (0-

6.25 ton/ha/year) and covered area of 67.70, 67.89, 49.82 and 73.66 percent, 

respectively. In contrast, the least dominant soil loss severity class occurring in this 

period was very severe (more than 625 ton/ha/year) and covered area of 0.16, 0.17, 0.71 

and 0.03, respectively. Meanwhile, areas of the moderate soil loss severity class (31.25–

125 ton/ha/year) from LULC in 2023 of Scenario II was greater than others and covered 
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area of 18,556 ha or 24.05 percent of the study area. In addition, mean annual soil loss 

from LULC in 2013 and LULC in 2023 of each scenario by cell were 32.6, 33.1, 71.2 

and 23.3 ton/ha/year, respectively and actual total soil loss from them by summation of 

all cells were 40,213,210, 40,856,714, 87,959,870, and 28,779,226 ton/ha/year 

respectively. As results, it was found that LULC in 2023 of Scenario II, which 

represents for agriculture production extension for energy crops, generates actual total 

soil loss higher than LULC in 2013 and others scenarios. Herein actual total soil loss 

under Scenario II was higher than LULC in 2013 and LULC in 2023 of Scenario I about 

twofold and higher than LULC in 2023 of Scenario III about threefold. 

For impact of LULC change on soil loss, soil loss severity class which was 

derived from LULC in 2013 was used as baseline data to compare with soil loss severity 

class from LULC in 2023 of each scenario as gain and loss using post classification 

comparison algorithm. It was evident that areas of gain and loss of soil loss severity 

classes for LULC in 2023 of Scenario I were 358 and 480 ha, respectively with gain 

and loss ratio about 0.7458. On the contrary, areas of gain and loss severity classes for 

LULC in 2023 of Scenario II were 1 and 17,546 ha, respectively with gain and loss 

ratio about 0.0001. Meanwhile areas of gain and loss severity classes for LULC in 2023 

of Scenario III were 4,600 and 50 ha, respectively with gain and loss ratio about 92. As 

results, it can concluded that LULC change creates a positive and negative effect to soil 

erosion. In this study, increasing of cassava and sugarcane under Scenario II created 

more actual total soil loss while increasing of forest land under Scenario III reduce 

actual total soil loss. 
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(2) Water yield estimation and its impact due to LULC change 

SWAT model with SCS-CN method was here used to estimate water yield 

of actual LULC in 2013 and the simulated LULC in 2023 for each scenarios. Herein 

SWAT model with an optimum local parameters was firstly used to generate CN value 

in each hydrologic response unit (HRU) for LULC in 2013 and SCS-CN method were 

then used to estimate theirs water yield (runoff depth). In this study, an optimum local 

parameter of SWAT model which provides the optimized accuracy of NSE (0.75) and 

R2 (0.76) by calibration process over M145 hydrological station sub-watershed were 

(1) surface runoff lag times of 0.1 day, (2) base flow alpha factor of 0.9 day, and (3) 

available water capacity of the first layer of 0 mm. 

For water yield estimation by SCS-CN method, the minimum and maximum 

values of water yield by pixel for LULC in 2013 and the simulated three scenarios 

LULC in 2023 were equal with value of 0.16 and 106.32 mm, respectively. However, 

the value of mean and total water yield from LULC in 2013 and the simulated three 

scenarios LULC in 2023 were different from each other. These results shows influence 

of LULC changes on water yield because soil types and rainfall values for LULC in 

2013 and the simulated LULC in 2023 of three scenarios were stable and identical. In 

addition, the total water yield value, which directly relate to surface runoff, reflected 

the characteristics of LULC. Herein, the simulated LULC in 2023 of Scenario III, which 

represents forest conservation and prevention, provides the lowest water yield for 

surface runoff meanwhile the simulated LULC in 2023 of Scenario II, which represents 

agriculture production extension for energy crops, provides the highest water yield for 

surface runoff. It was clear that total water yield as runoff depth of LULC in 2013 and 
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LULC in 2023 of Scenario I, II, and III were 37.79, 38.04, 46.13, and 36.22 million cu. 

m, respectively. 

For impact of LULC change on water yield, the relationship between the 

percentage of agricultural land and forest land from actual LULC in 2013 and simulated 

LULC in 2023 of three scenarios was separately regressed with total water yield. It was 

discovered that when the percentage of agricultural land increases, water yield (runoff 

depth) increases while the percentage of forest land increases, water yield (runoff depth) 

decreases. 

(3) Economic value estimation and its impact due to LULC change 

Future values for LULC in 2013 and the simulated LULC in 2023 of three 

scenarios except urban and built-up land, water body and miscellaneous land were 

estimated using PV model based on present return value from government agencies’ 

reports and spatially compared for its impact due to LULC change. 

It was found that economic value of agriculture and forest land for LULC in 

2013 and the simulated LULC in 2023 of three scenarios were 16,987.05, 16,677.33, 

12,923.64, and 19,660.13 million Baht, respectively. The future maximum values of 

economic by pixel for LULC in 2013 and the simulated LULC in 2023 of three 

scenarios was equal with value of 30,737 Baht, respectively. But the minimum value 

for LULC 2023 of Scenario II was different from others because maize disappeared in 

LULC data of Scenario II. These results occurred because the derived economic values 

directly related to LULC types. At the same time, mean and total economic values from 

LULC in 2013 and the simulated LULC in 2023 of three scenarios were different from 

each other. These results showed the influence of LULC changes on economic return.  
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For impact of LULC change on economic value, the relationship between the 

percentage of agricultural land and forest land from LULC in 2013 and simulated 

LULC in 2023 was separately regressed with total economic value to demonstrate the 

impact of LULC change on economic value. As results, it was clear that when the 

percentage of agricultural land increases, total future value decreases while when the 

percentage of forest land increases, total future value increases. 

8.1.4 An optimal land use allocation 

The derived soil loss, water yield and economic values of each scenario in 

2023 were here firstly separately normalized and combined using SAW method of 

MCDA to create total scores with specific weight according scenario characteristics. 

Then the total score from each scenario was classified for suitability classes (low, 

moderate and high) for land use allocation in 2023. The results were further compared 

with actual LULC in 2013 for an optimal land use allocation in 2023 of each scenario 

in detail later on. 

As a result, it was found that the dominant suitability classes for an optimal 

land use allocation of Scenario I were moderate and high and covered area of 31,793 

and 32,900 ha or 48.75 and 50.45 percent, respectively. The suitability classes for an 

optimal land use allocation of Scenario II were low, moderate and high and covered 

area of 19,665, 30,618 and 23,250 ha or 26.74, 41.64 and 31.62 percent, respectively. 

Meanwhile, the dominant suitability classes for an optimal land use allocation of 

Scenario III were moderate and high covered area of 40,979 and 21,062 ha or 60.97 

and 31.33 percent, respectively. 

For an optimal land use allocation of Scenario I in detail, low or moderate 

suitability classes of changed LULC type between actual LULC in 2013 and the 
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simulated LULC in 2023 covered area of 10 and 927 ha should be carefully 

implemented in long term (8-10 years) and medium term (4-7 years), respectively to 

minimize environmental impact.  

For an optimal land use allocation of Scenario II in detail, low and moderate 

suitability classes of cassava and sugarcane in 2023 covered area of 16,832 and 21,719 

ha, respectively should be carefully implemented in long term (8-10 years) and medium 

term (4-7 years), respectively. While high suitability class of cassava and sugarcane 

covered area of 7,315 ha can be implemented in short term (1-3 years) due to minimal 

environmental impact by soil erosion. 

For an optimal land use allocation of Scenario III in detail, low and moderate 

suitability classes of forest land in 2023 covered area of 3,142 and 3,490 ha, 

respectively should be carefully implemented in long term (8-10 years) and medium 

term (4-7 years), respectively. In contrast, high suitability class of forest land in 2023 

covered area of 6,631 ha can be implemented in short term (1-3 years) due to minimal 

environmental impact of soil erosion. Meanwhile, non-changed area of forest land 

between actual LULC in 2013 and the simulated LULC in 2023 covered area of 25,970 

ha. 

In conclusion, it appears that integration of LULC change model (CLUE-S 

model), hydrologic model (SWAT model and SCS-CN method), soil erosion model 

(USLE model) and economic value measures (PV model) can be used as an efficiently 

tools for an optimal land use allocation by considering LULC change and its impact. 

  

 

 

 

 

 

 

 

 



198 

 

8.2 Recommendations 

Many objectives were here investigated including LULC assessment and change 

its driving forces, simulation of LULC scenario, the impact of LULC change on soil 

erosion, water yield and economic values and an optimal land use allocation in Upper 

Lam Phra Phloeng Watershed, Nakhon Ratchasima, Thailand. The possibly expected 

recommendations could be made for further studies as follows. 

(1)  For study driving force for LULC change, it should be considered more 

significant factors at local scale (social attitude and culture) as driving factor plays an 

important role for land allocation under CLUE-S model based on binary logistic 

regression. 

(2)  According to LULC change simulation using CLUE-S model, it can 

provides the optimal information about spatial and non-spatial data for land use planner 

or managers based on the specified land use requirement in each scenario, especially 

Scenario II and III. These simulated scenarios were set up based on government policy 

as top-down approach. Therefore, bottom-up approach for LULC change simulation 

based the requirement of local people or local government organization should be 

examined in the future using a participatory approach. 
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Table A-1 Overview of existing land use change models. 
 

Model Name/ 

Citation  
Name of model, if 
any, and citation  

Model Type  
Technical, 

descriptive 
terms  

Components/ Modules  
Different models, or sub 

models or modules, that work 
together  

What It Explains / 

Dependent Variable  

Other Variables  
Description of other sets of variables in 

the model  

Strengths  Weaknesses  

1.General 

Ecosystem Model 
(GEM) (Fitz et al., 

1996)  

Dynamic 

systems model  

14 Sectors (modules), e.g. 

Hydrology, Macrophytes 
Algae Nutrients Fire Dead 

organic matter Separate 

database for each sector  

Captures feedback among 

abiotic and biotic 
ecosystem components  

103 input parameters, in a set of linked 

databases, representing the modules, 
e.g., Hydrology Macrophytes Algae 

Nutrients Fire Dead organic matter  

Spatially dependent model, 

with feedback between units 
and across time Includes 

many sectors Modular, can 

add or drop sectors Can adapt 
resolution, extent, and time 

step to match the process 

being modeled  

Limited human 

decision making  

2.Patuxent 

Landscape Model 

(PLM) (Voinov et 
al., 1999)  

Dynamic 

systems model  

Based on the GEM model (#1, 

above), includes the following 

modules, with some 
modification: 1) Hydrology 2) 

Nutrients 3) Macrophytes 4) 

Economic model  

Predicts fundamental 

ecological processes and 

land-use patterns at the 
watershed level  

In addition to the GEM variables, it -

adds dynamics in carbon-to-nutrient 

ratios -introduces differences between 
evergreen and deciduous plant 

communities -introduces impact of 

land management through fertilizing, 
planting, and harvesting of crops and 

trees  

In addition to the strengths of 

the GEM, the PLM 

incorporates several other 
variables that add to its 

applicability to assess the 

impacts of land management 
and best management 

practices  

Limited consideration 

of institutional factors  

3. CLUE Model  

(Conversion of  

Land Use and Its 

Effects) 
(Veldkampet and 

Fresco, 1996a)  

Discrete, finite  

state model  

1) Regional biophysical  

module  

2) Regional land-use 

objectives module 3) Local 
land-use allocation module  

Predicts land cover in the 

future  

Biophysical drivers: Land suitability 

for crops, Temperature/Precipitation, 

Effects of past land use (may explain 

both biophysical degradation and 
improvement of land, mainly for 

crops)  

Impact of pests, weeds, diseases 
Human Drivers: Population size and 

density Technology level, Level of 

affluence Political Structures (through 
command and control, or fiscal 

mechanisms) Economic conditions 

Attitudes and values 

Covers a wide range of  

biophysical and human 

drivers  

at differing temporal and 
spatial scales  

Limited consideration 

of institutional and  

economic variables  

4. CLUE-CR  

(Conversion of  

Land Use and Its 
Effects – Costa 

Rica) (Veldkamp 

and Fresco 1996b)  

Discrete finite 

state model  

CLUE-CR an application of 

CLUE (#3, above) Same 

modules  

Simulates top-down and 

bottom-up effects of land-

use change in Costa Rica  

Same as CLUE (#3, above)  Multiple scales - local, 

regional, and national Uses 

the outcome of a nested 
analysis, a set of 6x5 scale-

dependent land-use linear 

regressions as model input, 
which is reproducible, unlike 

a specific calibration exercise 

Authors acknowledge 

limited consideration 

of institutional and 
economic factors  
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Table A-1 Overview of existing land use change models. (Continued). 
Model Name/ 

Citation  

Model Type  
 

Components/ Modules  
 

What It Explains / 

Dependent Variable  

Other Variables  
 

Strengths  Weaknesses  

5. Area base model  

(Hardieetand 
Parks,1997)  

Area base  

model, using a  
modified 

multinomial 

logit model  

Single module  Predicts land-use 

proportions at county  
level  

Land base - classified as farmland,  

forest, and urban/other uses  
County average farm revenue Crop 

costs per acre Standing timber prices  

Timber production costs  

Land quality (agricultural suitability)  

Population per acre  

Average per capita personal income  
Average age of farm owners  

Irrigation  

Uses publicly available data 

Incorporates economic (rent), 
and landowner characteristics 

(age, income) and population 

density Incorporates the 

impact of land heterogeneity 

Can account for sampling 

error in the county-level land-
use proportions and for 

measurement error incurred 

by the use of county averages  

An extended dataset 

over longer time 
periods would improve 

the model's predictions 

Long-term forecasts 

run 

the risk of facing an 

increasing probability 
of structural change, 

calling for revised 

procedures  

6. Mertensetand 

Lambin, 1997  

Univariate 

spatial models  

Multiple univariate models, 

based on deforestation pattern 

in study area  
1) Total study area 2) Corridor 

pattern 3) Island pattern 4) 

Diffuse pattern Each model 
runs with all four independent 

variables separately  

Frequency of deforestation  All four models run with all four 

independent variables:  

1) Road proximity  
2) Town proximity  

3) Forest-cover fragmentation  

4) Proximity to a forest/non-forest edge  

Presents a strategy for 

modeling deforestation by 

proposing a typology of 
deforestation patterns In all 

cases, a single variable model 

explains most of the 
variability in deforestation  

Does not model 

interaction between 

factors  

7. Chomitzetand 

Gray, 1996  

Econometric 

(multinomial 
logit) model  

Single module, with multiple 

equations  

Predicts land use, 

aggregated in three classes: 
Natural vegetation Semi-

subsistence agriculture 

Commercial farming  

Soil nitrogen Available phosphorus 

Slope Ph Wetness Flood hazard 
Rainfall National land Forest reserve 

Distance to markets, based on 

impedance levels (relative costs of 
transport) Soil fertility  

Used spatially disaggregated 

information to calculate an 
integrated distance measure 

based on terrain and presence 

of roads Also, strong 
theoretical underpinning of 

Von Thünen’s model  

Strong assumptions 

that can be relaxed by 
alternate specifications 

Does not explicitly 

incorporate prices  

8. Gilruth et al., 
1995  

Spatial dynamic 
model 

Several subroutines for  
different tasks  

Predicts sites used for 
shifting cultivation in terms 

of topography and 

proximity to population 

centers  

Site productivity (# of fallow years) 
Ease of clearing, Erosion hazard, Site 

proximity and Population, as function 

of village size  

Replicable Tries to mimic 
expansion of cultivation over 

time  

Long gap between 
data collection; does 

not include impact of 

land-quality and 

socioeconomic 

variables  
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Table A-1 Overview of existing land use change models. (Continued). 
Model Name/ 

Citation  

Model Type  
 

Components/ Modules  
 

What It Explains / 

Dependent Variable  

Other Variables  
 

Strengths  Weaknesses  

9.Wood et al.,1997  Spatial Markov 
model  

Temporal and spatial  
land-use change Markov 

models  

Land-use change  Models under development  Investigating Markov 
variations, which relax strict 

assumptions associated with 

the Markov approach 
Explicitly considers both 

spatial and temporal change  

Not strictly a 
weakness, this is a 

work in progress and, 

hence, has not yet 
included HDM factors  

10. CUF  
(California  

Urban Futures) 

(Landis 1995, 
Landis et al., 1998)  

Spatial 
simulation  

Population growth sub model 
Spatial database, various 

layers merged to project 

Developable Land Units 
(DLUs) Spatial Allocation 

sub model Annexation-

incorporation sub model 

Explains land use in a 
metropolitan setting, in 

terms of demand 

(population growth) and 
supply of land 

(underdeveloped land 

available for 
redevelopment)  

Population growth, DLUs, and 
intermediate map layers with: Housing 

prices Zoning Slope Wetlands 

Distance to city center Distance to 
freeway or BART station Distance to 

sphere-of-influence boundaries  

Underlying theory of parcel 
allocation by population 

growth projections and price, 

and incorporation of 
incentives for intermediaries 

-developers, a great strength 

Large-scale GIS map layers 
with detailed information for 

each individual parcel in 14 

counties provide high realism 
and precision  

Compresses long 
period (20 years) in a 

single model run Has 

no feedback of 
mismatch between 

demand and supply on 

price of developable 
land/housing stock 

Does not incorporate 

impact of interest 
rates, economic 

growth rates, etc.  

11. LUCAS (Land-
use Change 

Analysis System) 

(Berry et al., 1996)  

Spatial 
stochastic 

model  

1) Socioeconomic module  
2) Landscape change module 

3) Impacts module  

Transition probability 
matrix (of change in land 

cover) Module 2 simulates 

the landscape change 
Module 3 assesses the 

impact on species habitat  

Module 1 variables: Land cover type 
(vegetation) Slope Aspect Elevation 

Land ownership Population Density  

Distance to nearest road Distance to 
nearest economic market center Age 

of trees  

Module 2: Transition matrix and same 
as Module 1, to produce land-cover 

maps Module 3: Utilizes land-cover 
maps  

Model shows process (the 
TPM), output (new land-use 

map), and impact (on species 

habitat), all in one, which is 
rare and commendable Is 

modular and uses low-cost 

open source GIS software 
(GRASS)  

LUCAS tended to 
fragment the landscape 

for low-proportion 

land uses, due to the 
pixel-based 

independent-grid 

method Patch-based 
simulation would 

cause less 
fragmentation, but 

patch definition 

requirements often 
lead to their 

degeneration into one-

cell patches  
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Table A-1 Overview of existing land use change models. (Continued). 

Model Name/ 

Citation  

Model Type  
 

Components/ Modules  
 

What It Explains / 

Dependent Variable  

Other Variables  
 

Strengths  Weaknesses  

12. Wear and 

Mangold, 1998  

Simple log 

weights  

Single module  Predicts area of timberland 

adjusted for population 

density  

Raw timberland Population density 

(per county)  

Simple and powerful 

indicator of forest 

sustainability, of the impact 

of human settlement 

decisions on one forest 

function --its role as 
timberland  

Limited consideration 

of human decision 

making and other 

forest goods and 

services  

13. Wear et 

al.,1999  

Logit model  Single module  Predicts the probability of 

land being classified as 
potential timberland  

Population per square mile Site index 

Slope Two dummy variables defining 
ease of access to a site  

Includes several biophysical 

variables  

Includes only basic 

human choice 
variables, e.g., 

population density  

14. Swallow et  
al., 1997  

Dynamic model  Three components:  
1) Timber model  

2) Forage production function  

3) Non-timber benefit 
function  

Simulates an optimal 
harvest sequence  

Present values of alternative possible 
states of the forest, using the three 

model components  

The long time horizon, and 
the annual checking of 

present values under alternate 

possible states of the forest 
makes it a useful forest 

management tool for 

maximizing multiple-use 
values  

Authors note that the 
optimal management 

pattern on any 

individual stand or set 
of stands requires 

specific analysis rather 

than dependence on 
rules of thumb  

15. NELUP  

(O’Callaghan  
1995)  

General 

systems 
framework 

Economic 

component uses 
a recursive 

linear planning 
model  

1) Regional agricultural 

economic model of land use at 
catchment levels  

2) Hydrological model  

3) Ecological model  

Explains patterns of  

agricultural and forestry  
land use under different 

scenarios  

Variable types include:  

Soil characteristics  
Meteorological data Parish census data  

Input/output farm data  

Species  
Land cover  

Uses land cover to link market 

forces, hydrology, and 
ecology in a biophysical 

model of land use Uses 

mostly publicly available 
data, especially in the 

economic model, which 
greatly aids transferability  

Limited institutional  

variables  
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Table A-1 Overview of existing land use change models. (Continued). 
Model Name/ 

Citation  
Model Type  
 

Components/ Modules  
 

What It Explains / 

Dependent Variable  
Other Variables  
 

Strengths  Weaknesses  

16. NELUP -

Extension 
(Oglethorpe and 

O’Callaghan 1995)  

Linear planning  

model at farm 
level  

Four submodels for farm 

types  
1) Lowland and mainly arable  

2) Lowland mainly grazing 

livestock  

3) Dairy  

4) Hill  

Maximizes income Profit is 

the dependent variable.  

Level of farm activity Gross margin 

per unit of farm activity, Fixed 
resources, represented as physical 

constraints  

Detailed farm -level model, 

with extensive calibration, 
Farmers shown as rational 

profit-maximizing beings, 

but also includes the impact 

of off-farm income  

Limited institutional 

variables  

17. FASOM 
(Forest and 

Agriculture Sector 

Optimization 
Model) (Adams et 

al.,1996)  

Dynamic, non-
linear, price 

endogenous, 

mathematical 
programming 

model  

Three submodels :  
1) Forest sector transition 

timber supply model  

2) Agricultural sector that is 
optimized with the forest 

sector sub model 

3) Carbon sector for terrestrial 
carbon  

Allocation of land in the 
forest and agricultural 

sectors Objective function 

maximizes the discounted 
economic welfare of 

producers and consumers 

in the U.S. agriculture and 
forest sectors over a nine-

decade time horizon  

Forest sector variable groups: 
Demand functions for forest products 

Timberland area, age-class dynamics 

Production technology and costs 
Agricultural sector variables: Water 

Grazing Labor Agricultural demand 

Imports/exports Carbon sector 
variables: Tree and ecosystem carbon 

Additional variables: Land transfer 

variables  

Incorporates both agriculture 
and forest land uses Price of 

products and land is 

endogenous The model is 
dynamic, thus changes in one 

decade influence land-use 

change in the next decade 
Good for long-term policy 

impacts  

Broad scale means that 
land capability 

variations within 

regions are not taken 
into account  

18. CURBA 

(California Urban 

and Biodiversity 
Analysis Model) 

(Landis et al., 

1998)  

Overlay of GIS 

layers with 

statistical urban 
growth 

projections  

1) Statistical model of urban 

growth  

2) Policy simulation and 
evaluation model  

3) Map and data layers of 

habitat types, biodiversity, and 
other natural factors  

The interaction among the 

probabilities of 

urbanization, its interaction 
with habitat type and 

extent, and, impacts of 

policy changes on the two  

Slope and elevation Location and types 

of roads Hydrographic features 

Jurisdictional boundaries Wetlands and 
flood zones Jurisdictional spheres of 

influence Various socioeconomic data 

Local growth policies Job growth 
Habitat type and extent maps  

Increases understanding of 

factors behind recent 

urbanization patterns Allows 
projection of future urban 

growth patterns, and of the 

impact of projected urban 
growth on habitat integrity 

and quality  

Human decision 

making not explicitly 

considered Further, 
errors are likely from 

misclassification of 

data at grid level or 
misalignment of map 

feature boundaries 

Errors also possible 
from limitations in 

explaining historical 

urban growth patterns  
19. Clarke et 

al.,1998, Kirtland 

et al., 2000  

Cellular 

automata model  

Simulation module consists of 

complex rules Digital dataset 

of biophysical and human 
factors  

Change in urban areas over 

time  

Extent of urban areas Elevation Slope 

Roads  

Allows each cell to act 

independently according to 

rules, analogous to city 
expansion as a result of 

hundreds of small decisions 

Fine-scale data, registered to 
a 30 m UTM grid  

Does not unpack 

human decisions that 

lead to spread of built 
areas Does not yet 

include biological 

factors  

 

Source: Agarwal et al., 2001  
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LIST OF REFERENCE POINTS 
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Table B.1 Detail of sample point for accuracy assessment. 

ID Easting (X) Northing (Y) Visual interpretation Ground reference 

1 795,125 1,596,236 Forest land Forest land 

2 781,125 1,601,836 Maize Maize 

3 788,525 1,603,636 Miscellaneous land Miscellaneous land 

4 790,925 1,609,136 Forest land Forest land 

5 801,425 1,598,136 Miscellaneous land Miscellaneous land 

6 798,525 1,606,336 Maize Maize 

7 801,725 1,594,436 Maize Maize 

8 801,725 1,603,536 Maize Maize 

9 803,025 1,588,236 Forest land Forest land 

10 789,125 1,593,236 Forest land Forest land 

11 791,225 1,608,836 Forest land Forest land 

12 796,525 1,596,436 Maize Maize 

13 804,225 1,589,336 Forest land Forest land 

14 795,725 1,619,136 Forest land Forest land 

15 794,825 1,605,336 Maize Maize 

16 785,625 1,601,336 Maize Maize 

17 783,125 1,597,536 Forest land Forest land 

18 768,525 1,601,636 Forest land Forest land 

19 796,825 1,608,336 Forest land Forest land 

20 805,725 1,601,036 Maize Maize 

21 786,625 1,608,836 Sugarcane Sugarcane 

22 791,325 1,596,936 Perennial tree/orchard Perennial tree/orchard 

23 789,425 1,607,336 Maize Maize 

24 795,925 1,608,136 Maize Maize 

25 799,225 1,605,136 Forest land Forest land 

26 789,625 1,604,936 Maize Maize 

27 792,225 1,617,336 Maize Maize 

28 789,425 1,607,936 Maize Maize 

29 769,725 1,600,336 Forest land Forest land 

30 788,025 1,595,536 Perennial tree/orchard Perennial tree/orchard 

31 789,325 1,598,136 Maize Maize 

32 787,825 1,593,136 Forest land Forest land 

33 789,925 1,601,336 Sugarcane Sugarcane 

34 783,525 1,594,836 Forest land Forest land 

35 803,625 1,591,436 Urban and built-up land Urban and built-up land 

36 805,025 1,607,936 Forest land Forest land 

37 786,425 1,608,336 Maize Maize 

38 796,325 1,594,536 Cassava Cassava 

39 788,025 1,614,336 Maize Maize 

40 799,725 1,607,136 Forest land Forest land 
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Table B.1 Detail of sample point for accuracy assessment. (Continued) 

ID Easting (X) Northing (Y) Visual interpretation Ground reference 

41 777,325 1,603,736 Sugarcane Sugarcane 

42 791,725 1,617,936 Maize Maize 

43 790,025 1,599,736 Cassava Cassava 

44 808,425 1,591,736 Forest land Forest land 

45 803,825 1,607,936 Forest land Forest land 

46 788,525 1,605,936 Sugarcane Sugarcane 

47 808,825 1,597,536 Urban and built-up land Urban and built-up land 

48 779,225 1,598,736 Forest land Forest land 

49 789,025 1,606,736 Sugarcane Sugarcane 

50 798,425 1,590,836 Cassava Cassava 

51 794,625 1,619,036 Forest land Forest land 

52 770,625 1,599,336 Forest land Forest land 

53 795,525 1,605,036 Maize Maize 

54 784,525 1,604,936 Sugarcane Sugarcane 

55 774,425 1,601,136 Forest land Forest land 

56 797,925 1,599,436 Miscellaneous land Miscellaneous land 

57 800,125 1,590,936 Miscellaneous land Miscellaneous land 

58 801,625 1,595,136 Maize Maize 

59 794,525 1,587,236 Forest land Forest land 

60 783,225 1,602,636 Perennial tree/orchard Perennial tree/orchard 

61 800,525 1,595,336 Maize Maize 

62 810,725 1,596,736 Forest land Forest land 

63 783,525 1,603,836 Perennial tree/orchard Perennial tree/orchard 

64 792,625 1,587,736 Forest land Forest land 

65 811,425 1,597,136 Forest land Forest land 

66 792,025 1,599,436 Sugarcane Sugarcane 

67 791,425 1,593,236 Perennial tree/orchard Perennial tree/orchard 

68 782,525 1,608,136 Sugarcane Sugarcane 

69 802,125 1,593,136 Maize Maize 

70 794,725 1,615,636 Forest land Forest land 

71 803,525 1,596,436 Forest land Forest land 

72 770,025 1,601,336 Forest land Forest land 

73 785,625 1,603,736 Miscellaneous land Miscellaneous land 

74 806,725 1,594,136 Miscellaneous land Miscellaneous land 

75 785,425 1,604,936 Maize Maize 

76 802,925 1,606,736 Maize Maize 

77 786,525 1,607,036 Maize Maize 

78 794,025 1,604,736 Maize Maize 

79 793,625 1,593,936 Maize Maize 

80 783,825 1,607,136 Sugarcane Sugarcane 
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Table B.1 Detail of sample point for accuracy assessment. (Continued) 

ID Easting (X) Northing (Y) Visual interpretation Ground reference 

81 793,925 1,604,036 Sugarcane Sugarcane 

82 784,225 1,597,036 Forest land Forest land 

83 792,825 1,588,836 Forest land Forest land 

84 803,425 1,591,736 Urban and built-up land Urban and built-up land 

85 785,925 1,598,336 Maize Maize 

86 783,825 1,612,936 Miscellaneous land Miscellaneous land 

87 803,725 1,597,136 Maize Maize 

88 807,625 1,590,836 Miscellaneous land Miscellaneous land 

89 797,625 1,590,536 Maize Maize 

90 791,725 1,597,736 Sugarcane Sugarcane 

91 769,625 1,598,236 Forest land Forest land 

92 774,825 1,597,536 Forest land Forest land 

93 792,125 1,587,436 Forest land Forest land 

94 792,925 1,602,436 Sugarcane Sugarcane 

95 812,225 1,598,936 Forest land Forest land 

96 799,025 1,599,536 Maize Maize 

97 790,125 1,593,836 Perennial tree/orchard Perennial tree/orchard 

98 796,225 1,615,836 Forest land Forest land 

99 807,125 1,603,036 Forest land Forest land 

100 786,925 1,604,736 Sugarcane Sugarcane 

101 787,025 1,607,136 Urban and built-up land Urban and built-up land 

102 788,025 1,596,836 Maize Maize 

103 791,725 1,598,036 Maize Maize 

104 775,125 1,600,836 Forest land Forest land 

105 794,325 1,589,636 Maize Maize 

106 779,725 1,604,636 Maize Maize 

107 796,325 1,607,836 Forest land Forest land 

108 808,825 1,601,636 Forest land Forest land 

109 779,325 1,605,236 Maize Maize 

110 778,425 1,605,336 Maize Maize 

111 772,325 1,596,636 Forest land Forest land 

112 800,025 1,593,136 Perennial tree/orchard Perennial tree/orchard 

113 788,825 1,611,636 Maize Maize 

114 785,025 1,610,636 Perennial tree/orchard Perennial tree/orchard 

115 780,125 1,609,536 Sugarcane Sugarcane 

116 788,625 1,594,336 Maize Maize 

117 772,025 1,598,536 Forest land Forest land 

118 793,725 1,601,636 Maize Maize 

119 782,625 1,610,136 Sugarcane Sugarcane 

120 772,225 1,598,336 Forest land Forest land 
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Table B.1 Detail of sample point for accuracy assessment. (Continued) 

ID Easting (X) Northing (Y) Visual interpretation Ground reference 

121 779,825 1,602,936 Urban and built-up land Urban and built-up land 

122 809,425 1,601,236 Forest land Forest land 

123 803,225 1,607,936 Forest land Forest land 

124 797,025 1,592,436 Maize Maize 

125 788,325 1,611,736 Maize Maize 

126 805,025 1,590,436 Maize Maize 

127 811,625 1,597,236 Forest land Forest land 

128 793,725 1,617,936 Maize Maize 

129 798,025 1,603,636 Forest land Forest land 

130 789,125 1,607,936 Maize Maize 

131 805,825 1,591,036 Maize Maize 

132 804,525 1,599,236 Perennial tree/orchard Perennial tree/orchard 

133 787,925 1,607,536 Sugarcane Sugarcane 

134 776,125 1,597,636 Forest land Forest land 

135 785,925 1,613,336 Maize Maize 

136 801,225 1,597,936 Forest land Forest land 

137 787,025 1,608,736 Sugarcane Sugarcane 

138 795,725 1,605,636 Maize Maize 

139 797,225 1,608,836 Cassava Cassava 

140 774,625 1,600,336 Forest land Forest land 

141 774,025 1,598,336 Forest land Forest land 

142 785,625 1,604,736 Sugarcane Sugarcane 

143 792,525 1,617,236 Urban and built-up land Urban and built-up land 

144 800,725 1,591,236 Forest land Forest land 

145 787,925 1,611,736 Perennial tree/orchard Perennial tree/orchard 

146 780,825 1,609,436 Perennial tree/orchard Perennial tree/orchard 

147 781,925 1,598,736 Forest land Forest land 

148 795,725 1,611,636 Forest land Forest land 

149 796,525 1,609,036 Forest land Forest land 

150 803,225 1,595,436 Maize Maize 

151 789,225 1,615,436 Forest land Forest land 

152 800,225 1,605,536 Forest land Forest land 

153 787,525 1,593,536 Forest land Forest land 

154 793,025 1,603,836 Maize Maize 

155 802,525 1,590,336 Miscellaneous land Miscellaneous land 

156 807,625 1,605,536 Forest land Forest land 

157 801,125 1,605,836 Forest land Forest land 

156 807,625 1,605,536 Forest land Forest land 

157 801,125 1,605,836 Forest land Forest land 

158 781,425 1,603,836 Perennial tree/orchard Perennial tree/orchard 
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Table B.1 Detail of sample point for accuracy assessment. (Continued) 

ID Easting (X) Northing (Y) Visual interpretation Ground reference 

159 790,525 1,618,836 Sugarcane Sugarcane 

160 797,525 1,600,536 Cassava Cassava 

161 801,325 1,601,836 Maize Maize 

162 797,325 1,593,836 Maize Maize 

163 802,725 1,604,936 Forest land Forest land 

164 790,125 1,598,436 Perennial tree/orchard Perennial tree/orchard 

165 788,325 1,597,736 Paddy field Paddy field 

166 794,525 1,616,736 Forest land Forest land 

167 769,625 1,601,736 Forest land Forest land 

168 773,525 1,596,736 Forest land Forest land 

169 794,025 1,607,936 Forest land Forest land 

170 798,225 1,604,736 Forest land Forest land 

171 801,025 1,609,436 Water body Water body 

172 796,225 1,592,736 Sugarcane Sugarcane 

173 810,925 1,594,336 Forest land Forest land 

174 793,725 1,592,636 Perennial tree/orchard Perennial tree/orchard 

175 785,625 1,606,036 Maize Maize 

176 794,925 1,610,136 Forest land Forest land 

177 801,425 1,590,036 Forest land Forest land 

178 787,925 1,602,936 Sugarcane Sugarcane 

179 780,825 1,601,936 Maize Maize 

180 804,425 1,601,536 Maize Maize 

181 802,025 1,602,736 Sugarcane Sugarcane 

182 794,825 1,593,836 Cassava Cassava 

183 771,725 1,598,336 Forest land Forest land 

184 811,725 1,597,936 Forest land Forest land 

185 769,525 1,600,636 Forest land Forest land 

186 808,125 1,600,336 Forest land Forest land 

187 788,325 1,605,536 Miscellaneous land Miscellaneous land 

188 781,425 1,606,636 Sugarcane Sugarcane 

189 781,325 1,605,836 Miscellaneous land Miscellaneous land 

190 806,625 1,602,736 Forest land Forest land 

191 780,825 1,604,836 Perennial tree/orchard Perennial tree/orchard 

192 792,225 1,605,936 Maize Maize 

193 804,325 1,599,536 Perennial tree/orchard Perennial tree/orchard 

194 787,625 1,596,236 Cassava Cassava 

195 788,125 1,604,136 Sugarcane Sugarcane 

196 777,725 1,604,136 Sugarcane Sugarcane 

197 780,625 1,602,736 Perennial tree/orchard Perennial tree/orchard 

198 797,025 1,594,936 Perennial tree/orchard Perennial tree/orchard 
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Table B.1 Detail of sample point for accuracy assessment. (Continued) 

ID Easting (X) Northing (Y) Visual interpretation Ground reference 

199 804,425 1,604,536 Maize Maize 

200 792,825 1,599,736 Sugarcane Sugarcane 

201 790,125 1,616,336 Sugarcane Sugarcane 

202 797,725 1,593,536 Maize Maize 

203 784,825 1,609,236 Sugarcane Sugarcane 
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Table C1 Calibration and validation parameters of SWAT model in M145 and M171. 

 

No. 
Sub 

watershed 

Weather Data Year HUR proportion Parameters Modified Accuracy 

Temp Rain R. Hum Solar R Wind Sp LULC Start LU Soil Slope Surlag Alpha 
Slope 

class 
CN SOL_Z SOL_AWC1 ESCO Nash R^2 

1 Sta. 145 sim sim sim sim sim 2003 2003 20 10 20 default default 1 0 0 0 0 -0.62 0.51 

2 Sta. 145 input sim sim sim sim 2003 2003 20 10 20 default default 1 0 0 0 0 -0.64 0.51 

3 Sta. 145 sim input sim sim sim 2003 2003 20 10 20 default default 1 0 0 0 0 0.45 0.56 

4 Sta. 145 input input sim sim sim 2003 2003 20 10 20 default default 1 0 0 0 0 0.46 0.56 

5 Sta. 145 sim input sim sim sim 2003 2002 20 10 20 default default 1 0 0 0 0 0.42 0.53 

6 Sta. 145 sim sim sim sim sim 2003 2000 20 10 20 default default 1 0 0 0 0 0.16 0.19 

7 Sta. 145 sim input sim sim sim 2003 2003 10 10 10 default default 1 0 0 0 0 0.45 0.57 

8 Sta. 145 sim input sim sim sim 2003 2003 20 20 20 default default 1 0 0 0 0 0.46 0.56 

9 Sta. 145 sim input sim sim sim 2003 2003 0 0 0 default default 3 0 0 0 0 0.50 0.60 

10 Sta. 145 sim input sim sim sim 2003 2003 20 10 20 default default 3 0 0 0 0 0.45 0.56 

11 Sta. 145 sim input sim sim sim 2003 2003 20 10 20 default default 3 5 0 0 0 0.48 0.57 

12 Sta. 145 sim input sim sim sim 2003 2003 0 0 0 default default 3 5 0 0 0 0.52 0.59 

13 Sta. 145 sim input sim sim sim 2003 2003 0 0 0 20 default 3 5 0 0 0 0.51 0.58 

14 Sta. 145 sim input sim sim sim 2003 2003 0 0 0 0.5 default 3 5 0 0 0 0.602 0.680 

15 Sta. 145 sim input sim sim sim 2003 2003 0 0 0 0 default 3 5 0 0 0 0.517 0.586 

16 Sta. 145 sim input sim sim sim 2003 2003 0 0 0 0.1 default 3 5 0 0 0 0.610 0.673 

17 Sta. 145 sim input sim sim sim 2003 2003 0 0 0 0.1 default 3 0 0 0 0 0.55 0.63 

18 Sta. 145 sim input sim sim sim 2003 2003 0 0 0 0.1 0.01 3 5 0 0 0 0.55 0.68 

19 Sta. 145 sim input sim sim sim 2003 2003 0 0 0 0.1 0.1 3 5 0 0 0 0.64 0.70 

20 Sta. 145 sim input sim sim sim 2003 2003 0 0 0 0.1 0.5 3 5 0 0 0 0.68 0.73 
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Table C1 Calibration and validation parameters of SWAT model in M145 and M171. (Continued) 

 

No. 
Sub 

watershed 

Weather Data Year HUR proportion Parameters Modified Accuracy 

Temp Rain R. Hum Solar R Wind Sp LULC Start LU Soil Slope Surlag Alpha 
Slope 

class 
CN SOL_Z SOL_AWC1 ESCO Nash R^2 

21 Sta. 145 sim input sim sim sim 2003 2003 0 0 0 0.1 1 3 5 0 0 0 0.68 0.73 

22 Sta. 145 sim input sim sim sim 2003 2003 0 0 0 0.1 0.9 3 5 0 0 0 0.68 0.73 

23 Sta. 145 sim input sim sim sim 2003 2003 0 0 0 0.1 0.9 3 0 0 0 0 0.66 0.73 

24 Sta. 145 sim input sim sim sim 2003 2003 0 0 0 0.1 0.9 3 0 0 0 0 0.736 0.748 

25 Sta. 145 sim input sim sim sim 2003 2003 0 0 0 0.1 0.9 3 0 0 0 0 0.740 0.756 

26 Sta. 145 sim input sim sim sim 2003 2003 0 0 0 0.1 0.9 3 0 0 0 0.5 0.740 0.756 

27 Sta. 145 sim input sim sim sim 2003 2003 0 0 0 0.1 0.9 3 0 0 0 0.1 0.740 0.756 

28 Sta. 145 sim input sim sim sim 2003 2003 0 0 0 0.1 0.9 3 0 -z1 0 0 0.741 0.757 

29 Sta. 145 sim input sim sim sim 2003 2003 0 0 0 0.1 0.9 3 0 -30_z1 0 0 0.746 0.759 

30 Sta. 145 sim input sim sim sim 2003 2003 0 0 0 0.1 0.9 3 0 
-30_z1, -

100_z2 
0 0 0.744 0.758 

31 Sta. 145 input input input input input 2003 2003 0 0 0 0.1 0.9 3 0 
-30_z1, -

100_z2 
0 0 -0.477 0.502 

32 Sta. 171 sim input sim sim sim 2003 2003 0 0 0 D D 3 0 0 0 0 0.354 0.601 

33 Sta. 171 sim input sim sim sim 2003 2003 0 0 0 0.1 0.9 3 0 0 0 0 0.745 0.792 
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