บทคัดย่อภาษาไทย

งานทดลองนี้มุ่งเน้นเพื่อศึกษาผลของการนำไฟฟ้าของสารประกอบ ABaNi $_2$ O $_{5\pm}\delta$ (เมื่อ A = La Pr และ Sr) ที่มีโครสร้างเพอรอฟสไกต์ 2 ชั้น ที่สังเคราะห์ด้วยวิธีซิเตรทเจล (Citrate gel)

จากผลการทดลองพบว่า สภาวะที่เหมาะสมสำหรับการแคลไซน์เพื่อให้ได้วัฏภาคเดี่ยวของสารประกอบ LaBaNi $_2$ O $_{5\pm\delta}$ ที่สังเคราะห์ด้วยวิธีซิเตรทเจล คือ 1100 - 1200 องศาเซลเซียส แต่สำหรับสารประกอบ SrBaNi $_2$ O $_{5\pm\delta}$ และ PrBaNi $_2$ O $_{5\pm\delta}$ จะต้องแคลไซน์ที่อุณหภูมิ 1100 องศาเซลเซียส การเผาแคลไซน์ที่อุณหภูมิสูง กว่า 1100 องศาเซลเซียส จะทำให้สารเกิดการเปลี่ยนแปลงวัฏภาคเป็นเฟสที่ไม่ต้องการ แสดงถึงการเปลี่ยนแปลง หรือการสลายตัวของโครงสร้างของสารประกอบ

การทดสอบค่าการนำไฟฟ้าของชิ้นงาน ด้วยวิธีวัด 4 จุด (DC 4-point measurement) พบว่า LaBaNi $_2$ O $_{5\pm\delta}$ หลังผ่านการเผาผนึกที่อุณหภูมิ 1100 องศาเซลเซียส มีค่าการนำไฟฟ้าสูงกว่าชิ้นงาน SrBaNi $_2$ O $_{5\pm\delta}$ และ PrBaNi $_2$ O $_{5\pm\delta}$ โดยมีค่าการนำไฟฟ้าที่สูงที่สุดเท่ากับ 225 S/cm ที่อุณหภูมิห้อง

การวิเคราะห์โครงสร้างจุลภาคด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด พบว่า ชิ้นงาน LaBaNi $_2$ O $_{5\pm\delta}$ มีขนาดเกรนขนาดเล็กและสม่ำเสมอกว่าชิ้นงาน SrBaNi $_2$ O $_{5\pm\delta}$ และ PrBaNi $_2$ O $_{5\pm\delta}$ ซึ่ง ชิ้นงาน LaBaNi $_2$ O $_{5\pm\delta}$ มีขนาดเกรนเฉลี่ยอยู่ในช่วงประมาณ 0.8 - 1 ไมครอน นอกจากนี้ยังมีความพรุนตัวที่สูง และมีลักษณะรูพรุนกระจายตัวแบบสม่ำเสมอในโครงสร้าง ส่งผลดีต่อการนำไปใช้งานเป็นวัสดุแคโทดสำหรับเซลล์ เชื้อเพลองออกไซด์ของแข็ง เนื่องจากเป็นวัสดุที่ต้องมีความพรุนตัวที่เหมาะสมที่พอจะทำให้ออกซิเจนหรืออากาศ ซึ่งเป็นสารออกซิแดนซ์สามารถไหลได้ดี

บทคัดย่อภาษาอังกฤษ

The objective of this work is to study on electrical conductivity of ABaNi₂O_{5±} δ (A = La, Pr and Sr) having double perovskite structure by using citrate gel synthesized technique.

The results of this work showed that the optimum calcination temperature to obtain a single phase of LaBaNi₂O_{5± δ} was 1100 - 1200°C. However, the optimum calcined temperature to obtain a single phase of SrBaNi₂O_{5± δ} and PrBaNi₂O_{5± δ} was 1100°C. Above 1100°C, SrBaNi₂O_{5± δ} and PrBaNi₂O_{5± δ} decompose to unwanted phase.

The electrical conductivity of specimens was measured with DC 4-point measurement. The electrical conductivity of sintered LaBaNi₂O_{5± δ} sample, synthesized by citrate gel method at 1100°C is 225 S/cm at room temperature, which was higher than SrBaNi₂O_{5± δ} and PrBaNi₂O_{5± δ}.

The microstructure of $La_4Ni_3O_{10}$ was analyzed by scanning electron microscope. The grain size of $LaBaNi_2O_{5\pm\delta}$ was shown in the range of 0.8 - 1 micron and smaller than $SrBaNi_2O_{5\pm\delta}$ and $PrBaNi_2O_{5\pm\delta}$. In addition, the samples possessed high porosity and homogeneous of porosity, which are one of the most significant beneficial effect on use as a cathode material for solid-oxide fuel cell. This indicates the proper use of the SOFC cathode is designed to allow rapid transportation of gaseous reactants and to achieve a perfect performance of the electrochemical reactions.

