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NATTAPONG YONGRAM : PARTICLES AND STRINGS
CORRELATIONS IN QUANTUM FIELD THEORY. THESIS ADVISOR :
PROF. EDOUARD B. MANOUKIAN, Ph. D. 391 PP. ISBN 974-533-508-8

QUANTUM FIELD THEORY/ HIGH-ENERGY PHYSICS/ GAUGE THEO-
RIES: QUANTUM ELECTRODYNAMICS, WEINBERG-SALAM UNIFIED ELEC-
TROWEAK THEORY/ STRINGS/ FUNDAMENTAL PROCESSES/ POLARIZA-
TION CORRELATIONS/ BELL-LIKE EXPERIMENTS.

Explicit computations are carried out of polarization correlations of simultane-
ous measurements of spins of two particles produced in fundamental processes directly
from quantum field theory where the latter emerges from extending quantum physics
to the high-energy relativistic regime of elementary particles. The processes consid-
ered are that of et e~ annihilation into two photons, e*e™ production from ~~ collision,
e~e” — e~ e scattering, all in quantum electrodynamics (QED), two photons pro-
duction in scalar electrodynamics, as well as of p 1~ production in e*e™ annihilation
in the Weinberg—Salam electro-weak interaction. The explicit expressions of these po-
larization correlations, follow from these dynamical computations are non-speculative
involving no arbitrary input assumptions, are seen to depend on speed, and for the lat-
ter process on the couplings as well. These are unlike naive considerations of simply
combining the spins of the particles in question which are of kinematical nature. In the
limit of zero speeds, the QED expressions are shown to reduce to the naive ones just
mentioned. As a threshold energy is needed to create the ;™ 1~ pair, the speed zero limit
of the corresponding expression cannot be taken to zero and formal arguments based
on combining spins only, as done for other processes for years, completely fail. It is
remarkable that the remarkable that these expressions for the polarization correlations
show clear violations of Bell’s test. As we have explicit expressions for the correlations,

we hope that they will lead to new experiments in the light of Bell-like tests which mon-
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itor speed and explore the high-energy relativistic regime. Finally due to recent attempts
to generalize point particles to extended ones, such as strings, similar anal are carried as
above, for completeness, for ete™ production from charged and neutral Nambu strings
with graviton exchange occurring for the latter case. In the extreme relativistic case
the corresponding polarizations correlations for both cases coincide, but, in general, are
different and inquiries about polarization correlations alone, indicate whether the string
is charged or uncharged. All of the expressions of the polarization correlations derived

are novel and have been recently published.
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CHAPTER I
INTRODUCTION

The theory which emerges from extending quantum physics to the high-energy
relativistic regime is called “Quantum Field Theory”. When the energies and momenta
of particles to be described are too high for a non-relativistic treatment, as well as for
the creation of an unlimited number of particles, which is not necessarily conserved
as is observed in high-energy collisions, the need of such a theory necessarily arises.
Quantum field theory provides the non-phenomenological consistent approach to high-
energy physics [cf. Bejorken and Drell, 1966; Itzykson and Zuber, 1980; Sokolov,
Ternov, Zhukovski and Borisov, 1988; Field, 1989; Altarelli, 1994; Iofffe, 2001]. All
quantum field theory interactions must necessarily be renormalizable [cf. Manoukian,
1983; ’t Hooft and Veltman, 1973; ’t Hooft, 1999; Veltman, 1999; Weinberg, 1980;
Salam, 1980; Glashow, 1980; Gross et al., 2004] so that computations, such as of ra-
diative corrections, may be consistently and unambiguously carried out and the funda-
mental parameters of the theory, such as coupling constants and masses, may be also
consistently defined which go right to the heart of renormalization theory. All of the
fundamental interactions in physics dealing with elementary particles are gauge theo-
ries which remain invariant under gauge transformations associated with gauge fields
such as the photon. The present thesis is necessarily restricted to renormalizable gauge
theories such as quantum electrodynamics based on the quantized Dirac-Maxwell the-
ory, and the standard Weinberg-Salam electro-weak theory. As Feynman (1985) put it,
quantum electrodynamics is the most precise theory devised by man, and the so-called
unified gauge theories provide promising candidates for more general interactions. Due
to the importance of the generalization of point particles to extended objects, consistent
with relativity, such as strings, particle production from strings as well is also considered

in this work specifically via photon and graviton emissions as the case may be.



The purpose of the present thesis is to carry out a systematic analysis of po-
larization correlations of simultaneous measurements of spins of two particles emerg-
ing from basic processes applicable to any energies available which may be as high
as necessary. The fundamental processes are then necessarily computed from quan-
tum field theory interactions and are dynamical of origin which are non-speculative
non-phenomenological with no room for handwaving arguments and arbitrary assump-
tions. All of the corresponding polarization correlations probabilities based on dynam-
ical analyses following from quantum field theory, as encountered in the present work,
share the interesting property that they depend on the speeds of the colliding particles
due to the mere fact that typically the latter carry speeds in order to collide. Such
analyses are unlike kinematical considerations based on formal arguments of simplify
combining spins [see e.g., Clauser and Shimoney, 1978]. Here it is worth recalling that
the total spin of a two-particle system each with spin, such as two of spin 1/2, is ob-
tained not only from combining the spins of the latter but also from any orbital angular
momentum residing in their center of mass system. For low speeds, one expects that the
argument based simply on combining the spins of the colliding particles should provide
an accurate description of the polarization correlations sought. The idea is very sim-
ple. Suppose one may naively neglect any orbital angular momentum, and hence of any
speed dependence, of a two-particle system. Consider two particles each of spin 1/2,
such as the e"e™ system, emerging from the scattering process e e~ — e~ e~ which

are in the singlet state, i.e., have a total spin 0. Such a singlet state is given by

1 {1} [O 0] 1 (L)
v2 o] |1 1] {o

1 2 1 2

0) =

Suppose we make simultaneous measurements of spin of the emerging electron e~ e~

along unit vectors n;, n, making respectively angles i, x2 with respect to the x-axis.



The corresponding normalized spinors are given by

1 e_1X1/2 1 e_iX2/2

1 , _ L _ 12
|€1> \/5 eix1/2 |§2> \/5 eix2/2 ( )

Due to the spin 1/2 character of e~ e, the possible outcomes of the measurements of

spins for the pair are given by

(111,1‘12), (—n1,1’12), (nl,—n2), (_n1,—n2>7 (1.3)

where (—ny, ny), for example, denotes one of the particle’s spin is in the opposite di-
rection to ny, while for the other, the spin is along the unit vector n,. We have exactly
Sfour possible outcomes for the simultaneous measurements of spins along n;, n, for the

emerging electrons. These are pictorially represented by

A 2 A
n
Xt P X1 P xi, xait o
X2 M2 X2 M2 X2 M2 o 12

Figure 1.1 Possible outcomes of simultaneous measurement of spins along n;, n, of
the two electrons. The thick arrows denote the directions of spins. There
are exactly four possible outcomes.

The joint probability of the emerging electrons (e~ e ™) polarizations correlations

is then given by the simple quantum mechanical rule:

Py, xa] =l (€1l (&10) 1I*

L (xioxe) (1.4)
2 2

The above method for computing polarization correlations has been used for years [cf.



Clauser and Shimoney, 1978] and is purely kinematical of origin. The quantum field
theory computation of P[x1, x2| shows a clear speed dependence of the electrons (see
Eq. (4.82)) and is of dynamical origin. In the limit of low energies (i.e., of small speeds),
we recover the expression Eq. (1.4) (see below Eq. (4.83)) as expected. We will, how-
ever, also consider the case of ;1 p~ production from e*e™ scattering in the Weinberg—
Salam electroweak interaction, where due to the threshold energy needed to create the
pair ptp~ the low energy limit cannot be taken and all arguments based simply on
combining spins, without dynamical considerations, completely fail. In this latter case,
we do not only encounter speed dependence but dependence on coupling constants as
well.

The fundamental processes considered [Chapter II] are e*e™ pair annihilation
into two photons, e*e~ production from ~ collision, e~e~ scattering, the so-called
Mgller scattering, all in quantum electrodynamics, i.e., spin 1/2 electrodynamics, as
well as of two photons production from pair annihilation in scalar, i.e., spin 0 electro-
dynamics. We then consider the fundamental process of p* i~ production, mentioned
above, by e*e” pair annihilation in the Weinberg—Salam electro-weak theory. All of the
polarization correlations probabilities recorded in the thesis are published [ Yongram and
Manoukian, 2003; Manoukian and Yongram, 2004; Manoukian and Yongram, 2005;
Yongram, Manoukian and Siranan, 2006]. As there is ample support of the dependence
of polarizations correlations on speeds, as we have shown by explicit computations in
quantum field theory in the electro-weak interaction as well as in the quantum electro-
dynamics ones, we hope that some new experiments will be carried out in determin-
ing these polarization correlations in the fundamental processes studied in this work
by monitoring speed and exploring, in particular, the high-energy relativistic regime.
Due to the importance of extending the point-like property of a particle, perhaps, to
an extended object, such as a string, we have also investigated e*e™ production from
a Nambu, i.e., closed, strings [Nambu, 1973, 1974, 1977, 1979, 1981; Scherk, 1975;
Vielenkin, 1981; Kibble and Turok, 1982; Thorn, 1986; Brink and Henneaux, 1988;



Albrecht and Turok, 1989; Sakellariadou, 1990; Manoukian, 1991a, 1991b, 1992b,
1997; Manoukian and Caramanlian, 1994b; Hatfield, 1992] and their corresponding po-
larization correlations have been computed [Chapter VI]. Such polarization correlations
are further generalizations of angular correlations of momenta in fundamental processes
carried out in recent years in quantum field theory [Manoukian, 1992a, 1994a, 1998].
All of the above polarization correlations computed are then used to test against
the so-called Local Hidden Variables Theories, which are referred to as Bell’s test. This
provides us the opportunity to bring together quantum field theory and basic quantum
physics under the same umbrella of investigation. The idea of Local Hidden Variables
Theories [Appendix E] is simple. It states that under exactly the same experimental con-
ditions surrounding the experiment itself, represented by a parameter A in Egs. (E.2)—
(E.3), the probability of simultaneous measurements of spins, for example, along the
unit vectors nj, ny, making angles xi, y» with the x-axis as discussed earlier, is given
by the product of the two probabilities of measuring the spin of only one particle at
a time (Eq. (E.4)). That is, under the same experimental situations, the events for the
measurements, respectively, of the spins of the two particles along the unit vectors n;
and n, are independent as, one may argue, invoking locality (relativity of signals) im-
plying that a measurement of spin of one particle cannot instantly influence the outcome
for the spin of the other. Our quantum field theory computations, which are necessarily
dynamical of origin and, re-iterating, combine quantum physics and relativity, violate
the Local Hidden Variables prediction as established in the bulk of this thesis. Several
experiments have been performed over the years on particles’ polarizations correlations
[Irby, 2003; Osuch, Popkiewicz, Szeflinski and Wilhelmi, 1996; Kaday, Ulman and
Wu, 1975; Fry, 1995] in the light of Bell’s test and many more have been proposed [Go,
2004; Bertlman, Bramon, Garbarino and Hiesmayr, 2004; Abel, Dittmar and Dreiner,
1992; Privitera, 1992; Lednicky and Lyuboshitz, 2001; Genovese, Novero and Predazzi,
2001]. As we have explicit expressions of the polarization correlations for the basic pro-

cesses in quantum electrodynamics and the electro-weak theory, we hope that these will



open the way of testing these expressions as they follow directly from quantum field
theory with no speculations and arbitrary assumptions, and monitor, in the processes,
their dependence on speed and coupling constants, in general.

In Chapter II, we carry out a detailed study of all the processes involved in this
work in view of applications to polarization correlations in later chapters. Such polar-
ization correlations are then computed for some basic processes in quantum and scalar
electrodynamics in Chapter III. The concept of entanglement and further quantum elec-
trodynamics analyses of polarization correlations are given in Chapter IV. The polariza-
tion correlation of ;™ ~ production in pair annihilation e*e™ in the Weinberg—Salam
theory is worked out in Chapter V. Finally polarization correlation of e*e™ produc-
tion from charged and neutral Nambu strings are given in Chapter VI. For the neutral
string graviton emission from the string which further decays in e*e™ is encountered.
All of the expressions for the polarization correlations obtained in this work are novel
and have been recently published [Yongram and Manoukian, 2003; Manoukian and
Yongram, 2004; Manoukian and Yongram, 2005; Yongram, Manoukian and Siranan,
2006]. They all lead to a clear violation of the Local Hidden Variables theory prediction
referred to as Bell’s test as established in the bulk of the thesis. Chapter VII deals with
our conclusion summarizing, in the process, our basic findings. Eight appendices, with
various subsections, are given dealing with rather technical details needed in this work

and, together, they constitute an important part of this thesis.



CHAPTER 11
FUNDAMENTAL PROCESSES IN VIEW OF

APPLICATIONS TO POLARIZATION

CORRELATIONS

In this chapter, we consider all the fundamental processes analyzed in this work
in view of applications to polarization correlations. 1 provide the details corresponding
to these processes which will be needed in the subsequent chapters. Computations are
carried to the leading orders since the couplings involved are weak dealing with the
electromagnetic, the electro-weak ones as well as the gravitational ones. The funda-
mental processes considered are e*e™ pair annihilation into two photons (§2.1), ete™
pair production by two photons annihilation (§2.2), e"e~ — e e~ scattering, the so-
called Mgller scattering, all in quantum electrodynamics, i.e., spin 1/2 electrodynam-
ics, as well as two photons production in scalar (§2.4), i.e., spin 0 electrodynamics. We
then consider the fundamental process of p* ™~ pair production (§2.5) by e*e™ anni-
hilation in the Weinberg-Salam electro-weak theory whose cross section is in excellent
agreement with experiments. Finally, we consider pair productions (¢*e™) from some
charged (§2.6) and neutral (§2.7) Nambu strings which are closed circularly oscillat-
ing strings. For the neutral string gravitational interactions are necessarily considered.
Needless to say quantum field theoretical studies associated with strings have become

quite fashionable in recent years.

2.1 e"e Pair Annihilation in Quantum Electrodynamics

The first interesting process in QED that we shall study in this section, deals

with the annihilation of a particle and an anti-particle. Here we study the process by



v(k1) v(ko) v(k1) v(ka)

e~ (py) (a) e*(py) e~ (p1) (b) e (p,)

Figure 2.1 Feynman diagrams of the process of pair annihilation into two photons
(eTe™ — ).

considering the example of the annihilation of an electron-positron pair into photons,
so-called “e~e™ pair annihilation”. The two corresponding Feynman diagram are shown
in figure 2.1 .

The amplitude corresponding to the processes in figure 2.1(a), can be easily
written down by applying the vacuum-to-vacuum transition amplitude, derived in Ap-
pendix B. This is one of a pair annihilation process that we may write from the vacuum-

to-vacuum transition amplitude in coordinate space (see in diagram of figure 2.1(a)) as
i () () (02) (o)A (42 ()2 () Dpz1) D)
x (") S+ (2", Y )" S (', y)v" S (y, 2)n(2), (2.1)

where 7(z), ('), J*(z) and J(2') are the presence of external sources (electron and

photon sources), and denoting the propagator of electron is

, (dp) ") (—yp 4+ m)
S+(x,x):/(27T)4 PN R e — +0 (2.2)

and denoting the propagator of photon is

dq eiQ(x_x/)
ij(l’,l’/) = /((271_))4 mgw/, e — +O, (23)

where g,, = diag(—1,1,1,1). With these conventions in hand, we will rewrite the

vacuum-to-vacuum transition amplitude in Eq. (2.1) in momentum space. We then use



the properties of the Fourier transform

F(p) = / (dz)e " F(z), (2.4)

where F'(p) denoting the arbitrary function in momentum space and F'(x) denoting the

arbitrary function in coordinate space. By using conventional integration, keep in mind,

d3 ipz
Jea)s.ta) =i [ GBSt m) when > 20 (25)

d3
J)s. i) =i [ GRS minte) when® >, (26)

d3k —ikx
/ (dz")J* (2D, (2, ) = i / (27T>362?J;(k) when z”° > 2, (2.7)

to transform Eq. (2.1), and see the diagram in figure 2.1(a). We then write the vacuum-

to-vacuum transition amplitude in momentum space of a process in figure 2.1(a) as:

(p1—Fk1)y (p2—k2)y'; &’k 1 " d’k, 1 .
27
/(dy) /(dy) /( 73 kOJ,,(k:)/< 3 kOJM(/@)

d3p2 1 d4p eip(y/_y)(_fyp + m)
. = v: 1
X 1/(%)3_2198”( p2)(yp2 + m)y 1/(%)4 PR ot

—_

x/&“ (=1 +m)n(p) 2.8)
— (= m . .
(271')3 2p(1) TP1 mp1
The y- and 3/-integrations can be performed immediately yielding
ﬁw)“k”w (2m)*0* (p1 — Ky — p). (2.9)

ﬁw%ﬂrhmf=@m%%a—@+m, (2.10)
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and now the p-integration is easily done:

(2m)"6% (p1 — k1 — p)(2m) "6 (p2 — k2 + p)

/ (dp) (=yp+m)

(2m)* p2+m?

(=v(p1 — k1) +m)
(p1 — k1)? +m?

= (2n)*0% (1 + po — k1 — ko) , @2.11)

and the properties of the summing over all spin of the initial electron and the initial

positron, may be written in the standard form :

2m > " u(p,o_)u(p,o_) = (—p+m), (2.12)
(=2m) > v(p,04)o(p,01) = (yp+m). (2.13)

Hence we can rewrite the vacuum-to-vacuum transition amplitude in momentum
space of the process in figure 2.1(a) by substituting Egs. (2.9)—(2.10), Eq. (2.11) and

Egs. (2.12)—(2.13) in Eq. (2.8), and change integral form to summation form, written

Ak, 1 d’ky 1
. 1 . 2—J*(k:2)

- 2 44 * —_—
@M (Pt p2 — k1 — k) ) i s (k)i s

d’py m_ d’py m_ — y (=1 — k) +m)
X 1(2%)3 p—gl(27T>3 p—(l)v(pm 02)0(p27 02)77(—132) {’Y (p1 — k?1)2 e y
x u(py, 01)u(Py, 01)n(p1)- (2.14)

Next we introduce the convenient notation for the emission source (the electron and the

positron), are represented by

[ dPp m_ _ o

1 (27:))3 EU(P,U—)U(I?) = inp,_; e emission, (2.15)
o d®p m_ _ L
1 (27)3 EU(—p)U(P, o4) = Mpo,; € emission, (2.16)
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where the signature o_ corresponding to a spin of electron (¢™), and o, to a spin of

positron (e¢™). And for the detection source (photon) are represented by

[Pk, 1 . .
l\/(ZT‘_)TFGM(kia )\)Ju(kl) e IJki>\7 (2.17)

where e*(k;, \) are the polarization vector, \,7 = 1, 2.

By substituting Egs. (2.16)—(2.17) in Eq. (2.14). Finally, we obtain the vacuum-
to-vacuum transition amplitude in momentum space of a diagram in figure 2.1(a), re-

placing 01 — o_ and 05 — 0, be written as

Pk 1 [d’ky 1 [dPp,m [dPp, m
. 200 Ndgd 1 2 b1 Py
@m0 e — b _kQ)\/WQ_lﬁ)\/WQ_@\/(Zw)?’p_?\/(%)?’P_g

(=v(p1 — k1) + m)
(p1 — k1)? +m?

X Jl:1)\‘];2)\np2027]p1016(p2’02) |:6Z7V ez’yl{| U(p170'1). (218)

In similarly, we consider one of a pair annihilation process in figure 2.1(b). We

start with the vacuum-to-vacuum transition amplitude in coordinate space, given by
ie” /(dl‘)(dy)(dZ)(dﬂf’)(dy’)(dZ/)J *(2)J7(') Doa(2,y) Dyp(2', y)
x (") S (@', Y )V S (v y)y" Sy, m)n(x). (2.19)

where 7(z), 77(2'), J*(x) and J*(z’) are the presence of external sources, S, (z,z’)
denoting the propagator of electron, defined in Eq. (2.2) and D, (x,z’) denoting the
Feynman propagator of photon, defined in Eq. (2.3).

We then transform Eq. (2.19) by using the properties in Eqgs.(2.5)—(2.7) and see
the diagram in figure 2.1(b). We can write the vacuum-to-vacuum transition amplitude

in momentum space of a process in figure 2.1(b) as:

: . [Pk 1 Ak, 1
o2 i(p1—k2)y Nellp2—k1)y'; L = (ki —2 (K
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[ dPp, 1 _ [ dlp WY (—Ap+m)
X 1/ 2 —71(—p2) (Y2 + m)Mi /(%)4 2+ m? ot

d3 1
X / P — (=1 +m)n(p). (2.20)

Hence we can rewrite the vacuum-to-vacuum transition amplitude in momen-
tum space of the process in figure 2.1(b) by substituting Egs. (2.9)—(2.10), Eq. (2.11)
and Egs. (2.12)—(2.13) in Eq. (2.19), and change integral form to summation form, be

written as

d’k; 1 d’ky 1
-2 454 2 : 1 * . 2 %
— 1e (27T) ) (pl +p2 - k'l - k'Q) 1(27T)32_143?JV<1€1)1W2_/{;8JH(1€2>

dPpy m_d*p; m_ 7
! 2 : —50(P2, 02)v(P2, 02)N(—p2) {7

. y(=7(p1 —k2) +m)
(2m)3 py (27)3 pt

(p1 — k2)? +m? !

X u(py, 01)U(Py, 01)n(p1)- (2.21)

By substituting Egs. (2.16)—(2.17) in Eq. (2.21). Finally, we obtain the vacuum-to-
vacuum transition amplitude in momentum space of a diagram in figure 2.1(a), replacing

01y — o_ and 09 — o, be written as

&Pk 1 [d’ky 1 [dPp,m [dPp, m
. 200 Ndgd 1 2 b1 Pa
@m0 e — h _kQ)\/WQ_k?\/W@\/(%)?’P_?\/(%)?’p_g

(=y(p1 — ko) +m)
(p1 — k2)? +m?

X Jl;kl)\‘]l:z)\nmmnplm@(p% 02) [e;’)/u eiyy] U(p17 0-1)' (222)

From the vacuum-to-vacuum transition amplitude that are derived in Eq. (2.18)
and Eq. (2.22), are the transition vacuum-to-vacuum transition amplitude of a pair an-
nihilation process, to lowest order in the fine-structure constant o, the amplitude for the

process eTe” — 77 is, up to unimportant factors for the problem at hand, in a standard
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notation (e, (k1, A) = e}, and e, (k2, \) = ;)

Bk, 1 [dBky 1 [ dBpym [dBpy,m
_.22 464 _k _k —1_ —2_ 1_ 2_
e =h 2)\/@@3 2]\ P28\ )t (2m)7 8

L (=v(p1 — k1) + m)e
(p1 — k1) +m2 "

X J]:?kl/\J];kQ)\nPQO'anlalﬂ(pQ? 02) {61,<k2, )‘)7 (kla A)’Y“

(=(p1 — k2) +m)

ki, A"
+ 6”( 1, )”Y (pl — k2)2 +m2

sl 1" oy, )

(2.23)
We introduce the new amplitude A as follows:

(—v(p1 — k1) +m)
(p1 — k1)? +m?

A = at(p,y, 02) | €y (ka, A)7" ek, A)y"

(=v(p1 — k2) +m)

k1, M)y*
+ el‘( 1, )fy (pl_k2)2+m2

ey(k27 A)VV} u(pla 0'1),

(2.24)
where we neglected an unimportant multiplicative factor
Pk 1 [dPke 1 [ BPp;,m [ Bp,m
_ 54 — ke — k - - 17 2 e
et 2)\/ (27 %9\/ 2y 28\ @ ot | @ i
X ‘]l;klAJl:g)\npzaznplUN (225)

it is real, and disappear when we normalize the square of the vacuum-to-vacuum transi-
tion amplitude.

The term in the bracket [-] can be discarded since it is orthogonal to the energy
projection operator in Eq. (2.24). Therefore, We can simplify Eq. (2.24), by using the
mass shell condition, p? + m? = 0, (—yp +m)p = 0 and k% = 0. The Dirac matrices
in [-] are still complicated expressions. The following calculations can be siplified con-

siderably, however, if we choose a convenient gauge in which the polarization vectors
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are orthogonal to initial electron momentum p; where ¢ = 1, 2:

6#(1{31, )\) *Pi = O, 61,(/{?27 )\) cPi = O (226)
We obtain
_ Rt e e - G o 4 W0
A = ae,(ki, Ve, (ka, \)T(py, 0 + + + u(pq,01).
b A) (2, A)o(p2: 02) 2p1ky 2p1 ko pik1  pike (P1,1)
(2.27)
In the center of mass motion (c.m.) where p; = (p°, p) = —p, this amounts to

the “radiation gauge” in which the electromagnetic potential has no O-component, i.e.

el

(A) = (0,e1(\)). However, the condition in Eq. (2.26) can be imposed in any given
frame of reference. Starting from an arbitrary set of polarization vectors €' (\), e5(\)

we can perform a gauge transformation

plukiu

d= (- ) o), ma = 2.9
DP1k1
Ky

egxz(csz‘—pl;)e;u'>, Faea(N) — 0. (2.29)
P1R1

So that the new polarization vectors €}, are orthogonal to p;. The normalization and
transversality conditions e’¢,, = —1, k*¢,, = 0 are not affected by the transformation

Egs. (2.28)—(2.29)

€1x " €10 = €y - €9y = —1, (2.30)

€k =en -k =0, (2.31)

which immediately follows from k? = k2 = 0. Thus without restricting the generality
of our calculation we will impose the condition in Eq. (2.26).

Using Eq. (2.26) and Egs. (2.29)—(2.30), we finally have to evaluate the matrix
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element in [-] with

v o o v
r_ {7 vkt | ke } . (232)

2p1ky 2p1 ks

We rewrite Eq. (2.27), here A = )\’ (not need to write down in equation), as

v k, n 7 kj v

A= 0461#621,@(])2, 02) [ 2p1k‘1 2p1k2

Here we will discuss polarization effects of two photons but not discuss po-
larization effects of the electron (positron), and therefore will average over the initial
polarization state of the electron (positron) but not sum over the final polarization state
of two photons in the reaction.

In accord with the results, if the initial state is unpolarized, we must also average
the result over the initial spin states.

To carry out the these operations, let us write the amplitude of the process as
./4 = OéElluEQl,@(pQ, O'Q)FU(pl, 0'1). (234)

The square of the modulus (].A]?) is

|A\2 = a2€1y61u62u€2uﬂ(p17 Ul)rv(p% 02)@(]?2, 02)Fu(p1, 01)7 (2.35)
where ' = 7°I'f10 that can be constructed by means of the easily verifiable formula
PP = (V) = Py,

and, in particular,

we obtain

e o i 13T N ke 7.7
= + ) (2.36)
2p1ky 2p1ko
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If we write out all the bispinor indices in Eq. (2.35), we have
JAI* = o erper€an€an(@as (D) o (0)ou (@) (T)up(t) pa, (2.37)
which is the trace of a matrix product:
|AI? = 04261“61M€2,/€2V Tr[a(py, 01)Tv(pe, 02)0(pa, 02)Tu(py, 01))]. (2.38)

By virtue of a property of a trace, the cofactors in Eq. (2.37) allow for cyclic permuta-

tions:

|«4|2 = a2€1y61,u621/621/ TI"[U(]% Ul)ﬂ(ph Ul)fv<p27 02)@(192, Uz)F]- (2.39)

Let us now recall the identity Egs. (2.12)—(2.13). Thus, if the initial state have one

electron and one positron, then summing over the initial polarization yield
2 2 1 TV
‘A’ = €1p€ip€ovar _4_7%2 Tr[<_ﬁyp1 + m>1—‘<7p2 + m)F]7 (240)

and combining Eq. (2.40) with the conservation law p; + py = ky + k5 yields

1 _
A* = a®ererpeaen, (—m) Tr[(=vp1 + m)I'(Y[kr + k2 — pi] + m)T]. (2.41)

For further calculations it is expedient to recall the following properties of y-matrices

(gwj = dlag[_lv 17 L 1])

YA+ = —2¢",

Tr[yHryk2 . ytett] = 0,
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Tr[y"+"] = —4g".

Using the properties of y-matrices and the fact that v (—yp+m) = (yp+m)y* + 2p~,
we can shift (—yp; + m) on the right-hand side of Eq. (2.40) to the left as far as the

factor y(ky + ko — p1) + m and then return it to its former place via the identity:
Yyky” (=ypr +m) = (ypr + m)y vk = 2(p1 - k)", (2.42a)
Yk (=ypr +m) = (yp1 + m)y vkoy" — 2(p1 - k)Y M. (2.42b)

After this, using the well-known property of trace, Tr[AB... X|...Tr[XAB.. ], we
take —yp; + m to the left-hand side and move it to the right as far as the factor v(k; +
k2 —p1)+m and then return it to its former place via the identity in Egs. (2.42a)—(2.42b).

As a result, we obtain
2 2 1 il
AP = enernen, (~ iz ) Tl + )Tl + B = pi] + ]

1
= O[2€1u€]_NEQV€2V (_4_77?,2) [Tl + TQ] (243)

Here we have introduced the notation
Ty = Te[(=vp1 + m)T(=yp1 +m)T], (2.44)
Ty = Tr[(—vypy +m)Ty (k1 + ko)T. (2.45)
To calculate T}, we shift the right —yp; + m to the left:
Ty = Tr[(—yp1 + m)T(—=yp1 + m)T]

= Tr[(—yp1 + m)[(yp1 + m)T — (49" + ++*)]T]
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= 2" Tr[(—yp1 +m)I]
= —2¢" Tr[yp:I]

= 8g" g, (2.46)

where we have used the relation (—yp + m)(yp +m) = p* + m? =0, Tr[I'] =0

Next we calculate 75 by writing it out explicitly:

Ty = Tr[(—yp1 +m)Ty(kn + k2)T)

YHykyy” v”vkw“} {v”vlm“ V’Wkﬂy}
=Tr< (— + ki+ k +
{( ’Ypl) [ 2p1ky 2p1 ks 7( ! 2) 2p1ky 2p1 ks

_ o d )t ki vk kgt (e ket Ryt Ry
(2p1k1)? (2p1k2)?

2(k1 - ka) gwgyﬂ(/ﬁ - ks)
(p1k1) (p1ks)

= —gtrg?v

oy 1 1
= —2¢"g"" (ky - ky) [(pllﬁ) + (pﬂ@)} ) (2.47)

Here we have allowed for k1 ks = p1 (k1 + k2), we can rewrite Eq. (2.47) as

(k1 - k2)?
Ty = —2¢"g" ————F———. 2.48
T k) 24
The square of the modulus (|.A]?) of this process is
8 1 (ky - ko)?
2=0? - — - €9,)? 2.49
= (1) [ iy ~ o) (249

that we use this in subsequent chapter.
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2.2 ¢"e Pair Production in Quantum Electrodynamics

e~ (py) et (py) e~ (py) e*(py)

v(ky) (a) 7(ks) v(ky) (b) v(ks)

Figure 2.2 Feynman diagrams of e~ e™ pair production (yy — e*e™).

We have studied the e*e™ Pair Annihilation in §2.1. Now we will study e*e™
Pair Production that have the two corresponding Feynman diagram are shown in fig-
ure 2.2 .

The amplitude corresponding to the processes in figure 2.2(a), can be easily
written down by applying the vacuum-to-vacuum transition amplitude, derived in Ap-
pendix B. These is one of a pair production process that we may write from the vaccum-

to-vacuum transition amplitude in coordinate space (see in diagram of figure 2.2(a))
ie” /(d:v)(dy)(dZ)(dx’)(dy’)(dZ’)J “(2)J(2") Dya(y, ) Doy, 2')
X 77(2)S4 (2, 9)7" S (v, Y )V S (v, 2 )n (), (2.50)

where 7(z), 77(2'), J*(x) and J*(z') are the presence of external sources, S, (z,z’)
denoting the propagator of electron, defined in Eq. (2.2) and D, (x,2) denoting the
Feynman propagator of photon, defined in Eq. (2.3).

Asin eTe™ pair annihilation process in §2.1 with using conventional integration,

keep in mind, given by

d3k ik’
/ (dz)J*(z) D, (', z) =i / (27r)382W‘]”(k) when 20 > 2°. (2.51)

To transform Eq. (2.50) by using the properties in Eq. (2.5)—(2.6) and Eq. (2.51),

and then substituting them in Eq. (2.50). To do this, we write the amplitude in momen-
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tum space as

; ; o [dPky 1 d’ky 1
ie2 [(duy)eikr—p1)y /d / l(kz—pz)y'/_l_ (k /_2_ k
1€ /( y>e ye 1 (271’)3 Qk?J ( 1)1 (27T)3 ng ‘]/»L( 2)

dp, 1 d*p ) (—yp +m)
. = _ v K
X 1/ o) (=p+m)y 1/(%)4 2rmz

d3 1
X /ﬁ_Wm +m)n(—pz). (2.52)
™ p

The y- and 3/-integrations can be performed immediately yielding
/(dy>ei(k1—P1+P)y — (277)464(/{31 —m +p>’ (253)
/(dy')ei(kz_”_p)y/ = (27)*6*(ky — po — p). (2.54)

Now the p-integration is easily done :

(2m)*6" (k1 — p1 + p)(27m)*6" (ks — po — p)

/ (dp) (=yp +m)

(2m)% p?2 4+ m?

(—v(k2 — p2) + m).

= (2m)*0* (k1 + ko — p1 —
(2m)*6% (ky + k2 — p1 — p2) (ks — pa)? 4 2

(2.55)

By using the properties in Egs. (2.12)—(2.13), Egs. (2.53)—(2.54) and Eq. (2.55), and
substitute them in Eq. (2.52). We then write the amplitude in momentum space of this

processes in simply form, in summation form, be written as

A3k 1 Pk, 1

2 454 A _ _
ie”(2m) 0% (p1 +p2 — k1 — k2) D i (27T)32k(1)Jy(k1)1 ) 280 I (ks)

d3p, m . d®*p, m_ B }
5 : —OU(p2,O'2)U(p2,O'2)7”](p1) {7 (

X 1 i _7(k2 — p2) + m) "
(2m)3 p§ (2m)3 pt

(ko — p2)? +m?

X v(Py, 02)T(Py, 02)7(—Dp2), (2.56)
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and for the detection source (the electron and the positron) are represented by

Pp m ok .
(2;))3 Ei(p, o )n(=p) =in,,; ¢ detection, (2.57)

d3
i /ﬁ}%ﬁ(mu(p7 o_) =in;, ; e detection, (2.58)

for the emission source (photon) are represented by

Pk 1, ,
1 WZ]{;OQ (kz,/\)(]#(lfz> = L]ki)\, (259)

where e#(k;, \) are the polarization vector, A, i = 1, 2.

We obtain the amplitude of diagram in figure 2.2(a), be written as

Bk, 1 [dPky 1 [dBPp,m [dBPp, m
. 5 454 k. k B B —1_ 2 L 7 2
eSOt ke = e e oo\ o g\ o\ @20t )

(=v(k2 — p2) +m)
(kg — p2)? +m?

X Jkl)\‘]k‘Q)\n;20'277;10'1E(p17 01) |:61/YV qu} U(an 02)- (2.60)

Another one of a e™e™ pair productions process in figure 2.2(b). We again start

with the vacuum-to-vacuum transition amplitude in coordinate space, given by
i [lde)(d9)(02) (')A (0 (2)7°(&") Do 2) Dyl )
X 1(2) S+ (2,4 )7 S+ (v, y)y" Si-(y, 2 )n(2). (2.61)

where 7(z), 7(2'), J%(x) and J?(z) are the presence of external sources, S (x,z’)
denoting the propagator of electron, defined in Eq. (2.2) and D, (x,z’) denoting the
Feynman propagator of photon, defined in Eq. (2.3). We then transform Eq. (2.61) by

using the properties in Egs. (2.5)—(2.6),and substitute them in Eq. (2.61). To do this, we
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then write the amplitude in momentum space of this processes as

: . o [dPky 1 d®ky 1
- 2 d i(k1—p2)y /d N Li(k2—p1)y / 1 ; k / 2 k
‘ /( y)e (dy')e W amr a0t | G aag k)

C[dp, 1 _ . [ (dp) "V (—p+m)
< [GR g (—m +mpi [,

d3 1
X / CPL oy + m)n(—pa). (2.62)
m p

The p-integration is easily done :

(2m)*0* (k1 — p2 — p)(2m)*6* (k2 — p1 + p)

/ (dp) (=vp+m)
2m)% p? + m?

(=v(k1 — p2) +m)
(k1 —p2)? +m?

= (2m)*6* (k1 + ko — p1 — p2) (2.63)

By using the properties in Egs. (2.12)—(2.13), Eqgs. (2.53)—(2.54) and Eq. (2.63), and
substitute them in Eq. (2.63). we can rewrite the amplitude in momentum space of this

processes in simply form, in summation form, be written as

Bk, 1 Pk, 1
i i———2 ] (ks)

2 4¢4 _ _ —_—
1o (2m)'8" (p1 + 2 — by — k) D i S ki S5

dPp, m. dBPp;, m_ _ ,
2 APy My Yu(py, o)) [v (

X 1 i _V(kl - p?) + m) u
(2m)3 py (2m)3 p}

(k1 — p2)? +m?

X v(Py, 02)T(Py, 02)1(—p2)- (2.64)

By substituting Eq. (2.57)—(2.59) in Eq. (2.64). It is easily checked for figure 2.2(b), by
substituting k; < ko and v < p. We finally obtain the vacuum-to-vacuum transition

amplitude in momentum space of diagram in figure 2.2(b), be written as

Pk 1 [dPke 1 [ BPp;,m [ Bpy,m
— 1221V 6% (ky + ko — 1y — - =72 L 2
e @my 0Tk ke ==\ s g\ ey 2k0 || @ gt \| ) 8
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( (Zl(—lp2)];2?|_ mT) eyfyl’ U(p27 0‘2)‘ (265)

* * — m
X JklAJkZAnpgagnplalu(plﬂ01) e,lt’y

From the amplitudes that are derived in Eq. (2.60) and Eq. (2.65), the transition ampli-
tude of a process vy — eTe™, denote as A, to lowest order in the fine-structure constant
«, the amplitude for a process 7y — ete™ is, up to unimportant factors for the problem

at hand, in a standard notation

Bk, 1 [dPky 1 [dBPp,m [dPp, m
— ie2(2m) 6 (ke + ey — py — 3505 e 5o 5o 509
A= e @mioh ke =p = e\ Gosgm @npar || @nf i\ @0 4]

(=7 (k2 — p2) +m)
(kg — p2)? +m?

X Jk;l)\JkQ)\/r/;2o_2n;10_1ﬂ(p17 01) |:€I/(k27 )\),Y eu(klv )\)'VM

(=v(k1 = p2) +m)
(k1 — p2)? +m?

§ ek A el 1 o)

(2.66)

To lowest order in the fine-structure constant «, the amplitude for the process vy —

ete” is, up to unimportant factors for the problem at hand, in a standard notation,

1/(_7(]{;2 - p2> + m)e
(ke —p2)2+m? "

A= Oéﬂ(pl, Ul) 6,,(/62, )\)'Y (kh )‘)’7“

(=v(k1 — p2) +m)

ki, A\
+e#( 1, )7 (kl—p2)2+m2

ez/(k27 A)fyy:| U(p27 UQ)?

(2.67)
where we neglected an unimportant multiplicative factor
Pk 1 [dPke 1 [ BPp,m [ Bp,m
— 6% (k) + ko —py — — — L 2
b p2>\/ 2’ 2k9\/ 2y 2\ @) o1 | @
X Jer kA o 1o (2.68)

The term in the bracket [-] can be discarded since it is orthogonal to the energy
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projection operator in Eq. (2.67). Therefore, We simplify Eq. (2.67), by using the mass
shell condition, p*> + m? = 0, (—yp + m)® = 0 and k* = 0. The Dirac matrices in |-]
are still complicated expressions. The following calculations can be simplified consid-
erably, however, if we choose a convenient gauge in which the polarization vectors are

orthogonal to initial electron momentum p; where + = 1, 2. We finally obtain

Vloq M Hoy koo oV VM
./4 _ Of@u(k’l,)\>€y(k2,)\)ﬂ(p1,01) Yo YRYY + YYRY + a4t + VP

V(Py, 03).
2p1ky 2p1 ko pik1 D1k ( 2 2)

(2.69)

2.3 Moller (¢ ¢~ — e e~ ) Scattering in Quantum Electrodynamics

e~ (p}) e (ph) e (p}) e (py)

e~ (py) (a) e”(po) e (p1) (b) e~ (py)

Figure 2.3 Feynman diagrams of e"e~ — e~ e, so-called Mgller scattering.

In this section, we will consider a electron-electron scattering process in QED,
e"e” — e e, so-called Mgller scattering. There are two Feynman diagrams corre-
sponding to this process, shown in figure 2.3 .

The amplitude corresponding to the processes in figure 2.3(a), can be easily
written down by applying the vacuum-to-vacuum transition amplitude, derived in Ap-
pendix B. These is one of a pair production process that we may write from the vaccum-

to-vacuum transition amplitude in coordinate space (see in diagram of figure 2.3(a))
ie” /(dﬂf)(dy) (dz)(d2")(dy") (A=) (2) S (2, )y S (y, 2)n(@) Dy (', y)
x (2SS (2, v )V S (v, 2" )n(x)), (2.70)

where 7)(z) and 77(2) are the presence of external sources, S, (x, z’) denoting the propa-
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gator of electron, defined in Eq. (2.2) and D, (x, 2") denoting the Feynman propagator
of photon, defined in Eq. (2.3). By using conventional integration, keep in mind, given

by

d3 —ipx
/(dx')ﬁ(m’)5+(x', T) = i/(27rl)) QQPO n(p)(—yp +m) when 2 >2°  (2.71)

d3 ipz
Juaas. @) =i Gy g P IE) whena > a7

We then transform Eq. (2.70) by using the properties in Eqs. (2.71)—(2.72),and substitute
them in Eq. (2.70). To do this, we then write the amplitude in momentum space of this

processes as

i [y fiay e >[/ L ) (s + )

[dPp; 1 d3py 1 ,
Xl/ 1—0(—7p1+m)77(1)1)/ —T1(Ph) (=P + m)y

(2m)? 2p] (27r)3 2
d3p, 1
8 i/ (2:)22_]93(_77’2 + m)”(Pz)] Dy (y',y). (2.73)

In these two terms, the roles of initial and final electron are reversed. Therefore on the
right-hand side in Eq. (2.73) invariant under the interchange electron. This symmetry,
so called crossing symmetry, is automatically incorporated in the source theory, and is
simply a consequence of particle statistics.

Now, the integration region is far away from the sources, and since the interaction
certainly occurs later in times than the emissions and earlier than the detections, we

have, in the interaction region,

d*p
(2m)?

i Tﬁ(p)u(p, o) =in,,; e detection, (2.74)
P
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d>p m
(2m)3 p°

u(p,o)n(p) = inp,; € emission, (2.75)
and from standard notation of sum over all spin of electron, read as

(2m) Y " u(p,o)u(p, o) = (—yp +m). (2.76)

(e

By substituting Eqgs. (2.74)—(2.76) in Eq. (2.73). To do this, we then have

dk 1 . 2 . 12 12
ie2 /ﬁﬁ/(dy)el(m—pl—k)y /(dy/)el(pz—p2+k)y

 d3p) 2m _ B [d3p, 2m B
x> [1(%)13 Qp,on(p’l)U(pl,01)U(p1,01)7“1/ (%)13 Q—wU(p,m)U(phm)n(m)
1 1

01,02

 d’py 2m _ v 4°py 2m _
X 1(27)3@77(192)71@2,ag)u(pg,@)v lwz—ngpg,az)u(pgm)n(m) Guv-
(2.77)
The y- and 3/-integrations can be performed immediately yielding
/(dy)e““‘p’l"“)y = (2m)*6*(p1 — 1, — k), (2.78)
ﬁdy/)ei(PZ_pé+k)y/ _ (271')464(])2 _ p/2 + k,) (279)
Now the k-integration is easily done :
(dk) 1 4c4 / 454 /
(27) ﬁ@”) 6 (p1 —py — K)(2m)"0% (p2 — py + k)
1
= (2m)* 0 (p1 + po — P — Ph) ———. (2.80)
(2m)*6%(p1 + p2 — Py — Pb) AL
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Therefore we obtain the amplitude of diagram in figure (2.4 a), be written as

&’pym [d’pym [ dp d’p
) 4 ¢4 o 1 _ 2
e”(2m)"0%(p1 + p2 — P} pz)\/@w):’,pg\/(zﬂ) \/(27r)3 /0\/(271')3 0

— v g v
X 7717202771710177;7202771/ a’ [ (pllv J;)y“u(pl, Ul)][“(p,% O'é)’)/ u(p2, 02)] (p1 _Mp )27 (2.81)
1

or

d3p; m | d3p, m dp, m [ d3p, m
29 Y454 o 1 1 d°py.
e ( 7T) (p1 +Dp2— P p2)\/(271-) pl (27T) p2 (27T)3 pllo (27T)3 p/O

3 1
X Moo Mpron Mot Ty, ot [T (p’l,UQ)V“U(pl,al)][U(p’g,aé)wﬂ(m,az)]—(p, o
1

(2.82)

Another one of a e"e~ — e~ e~ process in figure 2.3(b). We again start with the

vacuum-to-vacuum transition amplitude in coordinate space, given by
ie” /(dl’)(dy)(dZ)(dx’)(dy’)(dZ’)ﬁ(Z’)5+(Z’, VS (y, 2)n(x) Dy (y, ')
X 7(2)S4 (2, ¥ )7 S (', 2 )n(), (2.83)

where 7(z) and 77(2’) are the presence of external sources, S, (=, x) denoting the propa-
gator of electron, defined in Eq. (2.2) and D, (x, 2") denoting the Feynman propagator
of photon, defined in Eq. (2.3). We then transform Eq. (2.83) by using the properties
in Egs. (2.71)—(2.72),and substitute them in Eq. (2.83). To do this, we then write the

amplitude in momentum space of this processes as

i [y fiay e >[/ R L) + )

_ d3p1 1 d3 1 , )
X 1/(27T)3?(1)(—7p1+M)77(p1) /(2 E 2p,077< p1) (=P} +m)y
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[ dPpy 1 ,
X 1/(%)32—1)8(—71?2 +m)n(p2) | D (v, y") (2.84)

By substituting Egs. (2.74)—(2.76) in Eq. (2.84). To do this, we then have

. dk 1 : o N i(pa—p. — ’
162/(<27T))4ﬁ/(dy)e (p1—ph+k)y /(dy )e(p p1—k)y

3 A (s (s, 02) i o P P i )
—~ (27T> 2 /077 Do )U(Pg, 02 Py, 02)7 (27T>3 ZP?U P1,01 P1,01)N(P1
d?’p1 2m B L. d3py 2m B
Xy 2p,0n<p Du(py, 0)u(py, 01)y IWQ—Z)QU(I)Q, 02)U(P2, 02)1(P2) | Gy
(2.85)
The y- and y/-integrations can be performed immediately yielding
/(dy)e“’”’ﬁ’“)y = (2m)'0*(p1 — P + ), (2.86)
/<dy el 2= = (2m) 16" (pa — ply — k). (2.87)
Now the k-integration is easily done :
dk) 1
[ @ o = g+ @A) 8~ 4~
1
= (2m)'6 (p1 +p2 — Py — Ph) 5 (2.88)
(p2 —p1)

Therefore we obtain the amplitude of diagram in figure 2.3(b), be written as

dep,m [ dPp,m [dPpy m [dPpy m
2 454 / / ! 2 . o
e*(2m)*0% (p1 + p2 — P} _pz)\/@ﬂ) pl\/(gﬂ) pQ\/(QW)3p’10 (277)319’20

— v Guv
X npz@”mm”péaémilal [ (p/2a 0;>7Hu(p17 01)] [u(pllv 0-3)7 u(p27 02)](291_—MPIV7 (2.89)
2
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or

2 454 / / d’p; m [d’py m | d’p d’p
e”(2m)"6%(p1 + p2 — P} _p2)\/(27r) \/(271-) \/(27r)3 /0\/(2%)3 0

- (2.90)

p2 — 1)

X Npaoaproy npzaznplol[ (p/27 Ué)’yﬂu(plv 01)] [ﬂ(pllv g’l)fy'uu(p% 02)] (

From the amplitudes that are derived in Eq. (2.82) and Eq. (2.90), and the property of
the Fermion statistics, the transition amplitude of a process e"e~ — e~ e, denote as
A equal to Eq. (2.82)-Eq. (2.90), to lowest order in the fine-structure constant «, the
amplitude for a process e e~ — e~ e™ is, up to unimportant factors for the problem at

hand, in a standard notation

d*p; m [ dPp,m [dPp) m [ dPpy, m
— 1 2 2 454 IR A 1 J— 2 —_— 2 0
A =ie*(2m)°0"(p1 +p2 — 1} p2)\/(27r)3 PO\ (2m)3 Y\ (2m)3 p/10 (27)3 plY

_ _ 1
X ﬁpzazﬁplompggﬂplgl {[U(Plu o )7 ulpr, o1)] [u(ph, Ué)%u@z,@)]m
1

Ve oo ol Vvt o 1
a0, o)y u(pr, o) [T(0) )yt (e 2>1—(p2_p,1)2}. o1

Note that we introduce the new amplitude for the this process is easily extracted to be

A =ie?(2r)* { [@(py, 1)y ulpy, o) [@(ph, o5)yu(ps, 0’2)]m

- [ﬂ(Plz» Ué)wu(ph 01)] [ﬂ(plp Ui)%“(pz, 02)] m} ) (2.92)

where we neglected an unimportant multiplicative factor

&Bp,m [dBp,m [dBp, m | Bp, m
54 I 1 2 1 P2
1 p2 =11 =) \/(27T)3 Y \/(27r) 7 \/(27r)3 Y (27r)3 p/o

X nPQUznplﬂln;’Qaén;/lg’l' (293)
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2.4 Photons Production in Pair Annihilation in Scalar Electrody-

namics
v(k1) 7v(ks) v(k1) 7(ks) v(k1) v(k)
/ \\ / \\ ’( \\
P (a) |05 b (b) b b1 (©) | 05

Figure 2.4 Feynman diagrams of spin 0 pair annihilation into two photons.

The annihilation of the particle and anti-particle which are spin 1/2 particle, is
a conceptually very interesting process, ¢te™ pair annihilation, studied in §2.1. In this
section, we shall study the process by considering the example of the annihilation of pair
spin O particles into photons. The three corresponding Feynman diagram are shown in
figure 2.4 .

The amplitude corresponding to the processes in figure 2.4(a), can be easily
written down by applying the vacuum-to-vacuum transition amplitude, derived in Ap-
pendix D. These is one of a pair annihilation process that we may write from the
vacuum-to-vacuum transition amplitude in coordinate space (see in diagram of fig-

ure 2.4(a)) as
~ie? [ldn)(dy)(d2) (de') ) (d)T% (2)T7(") Dy (2, 9) D)
x K@)y As ()| A (', )[04 (y, 2) K (), (2.94)

where K (x), KT(2'), J%(z) and J*(2') are the presence of external sources, denoting

the Feynman propagator of spin 0 particle is

(dp) v
A (z,2)) = /(271)4]92 oo e — 40, (2.95)
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and denoting the Feynman propagator of photon is

da) elaz—z")
Duy(x,x') = /%ﬂguy, e — 0. (296)

With these conventions in hand, we will rewrite the vacuum-to-vacuum transition am-
plitude in Eq. (2.1) in momentum space. We then use the properties of the Fourier
transform in Eq. (2.4). By using conventional integration, keep in mind, given by

N 1t (N[ AY / : dgp pyeipx T 0 0
/(dx)K (") [0r AL (2, z)] = 1/(2%)3 50 K'(—p) whenz" >2z°, (2.97)

/ m / / : dgp p'ueipx 0 0
N TR A / : dgk e_ikx * /0 0
(da")J*(2") D (2, ) =1 @m)F 2k Jr(k) when z" > x° (2.99)

where K () denoting the external source in the coordinate space for spin 0 particles,

may be written in the momentum space:

K(p) = / (dz)e P*K (1), (2.100)

and K (z') denoting the external source in the coordinate space for anti-spin 0 particles,

may be written in the momentum space:
Ki(-p) = [ (daje K@) @.101)

To transform Eq. (2.94), we substitute Egs. (2.97)—(2.101) in Eq. (2.94) and see the
diagram in figure 2.4(a). We then write the vacuum-to-vacuum transition amplitude in

momentum space of a process in figure 2.4(a) as:

. . . [d%ky 1 d’k, 1
32 i(p1—k1)y Npi(p2—k2)y' s [ B Bl B
ie /(dy)e /(dy)e 1/(2%)3 2k?bfu(lcl)l/(zﬁ)3 Zkgjy(kQ)
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. d3 v ' d eip(y’—y) ‘ d3 iz
Xl/ P2 p_2KT(p2)l/(< p) 1/ b1 D1 K(pl) (2102)

2 2} 2m)i 2 +m? | (2 208

The y- and y/-integrations can be performed immediately yielding
/(dy)e“pl"“‘”y = (2m)*0"(p1 — k1 — p), (2.103a)
/(dy')ei<P2k2+P)y’ = (2m)*0*(py — ko + D). (2.103b)

Now the p-integration is easily done :

/%m(%)%“(m —ky = p)(2m)'6 (p2 — k2 +p)
1
(p1 — k1)? +m?

= (2m)*6 (p1 + p2 — k1 — k2) (2.104)

Hence we can rewrite the vacuum-to-vacuum transition amplitude in momentum
space of the process in figure 2.4(a) by substituting Egs. (2.103a)—-(2.103b), Eq. (2.104)
and Eqgs. (2.12)—~(2.13) in Eq. (2.102), and change integral form to summation form, be

written as

Pk, 1 Pk, 1
i T (k)i = S (k)

-2 4 ¢4 _—
—ie(2m)'8 4 = b~ ko) )i k)i e

% id3p2 Li d3p1 L
(2m)3 2py (2m)3 2p}

] P5pY .
K'(=ps) K (p1) {ey o ki); 5 (2.105)

and for the emission source (the spin 0 particle and the anti-spin 0 particle) are repre-

sented by
L[4 1 K(p) =iK in O particl issi (2.106a)
W —= =1iK,; spin 0 particle emission .106a
(27_(_)3 2p0 p P> p p 9
d’p 1 . . . . -
—K'(—p) = 1K}; anti-spin 0 particle emission, (2.106b)

(2m)3 2p°
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for the detection source (photon) are represented by

a1, o
Wy 2w ® (i VT lhi) = 1 (2.107)

where e#(k;, \) are the polarization vector, A, i = 1, 2.
From Egs. (2.106a)—(2.106b) and Eq. (2.107) we obtain the amplitude of dia-

gram in figure 2.4(a), be written as

Bk, 1 [dPk, 1 [dPp, 1 [d¥p, 1
_ie2(om) st ke — k -7 - 272 L 2
ie”(2m)" 0% (p1 +p2 — ka 2>\/ (2m)3 2k9\| (2m)3 2k9 \/ (27)3 2p0 \/ (27)3 2pY

. phpl o
(pr— k)2 +m? ]

X J’:1)\J]:<2/\np2<7277p10'1 {6 (2~108)

From figure 2.4(b) that is a one of the three diagram of spin 0 pair annihilation
process. We start with the vacuum-to-vacuum transition amplitude in coordinate space,

given by
—ie? /<dx><dy><dz><dx’><dy'><dz’>J&<z>JP<z'>Dm<z, Y)D,(2',y)
x K@)y A ()] A, )[04 (y, 2) K (), (2.109)

where K (z), K'(z'), J%(z) and J*(2') are the presence of external sources, A (z,x’)
denoting the Feynman propagator of spin 0 particle, defined in Eq. (2.95) and D, (x, z')
denoting the Feynman propagator of anti-spin 0 particle, defined in Eq. (2.96). Form
figure 2.4(b) and by substituting Egs. (2.106a)—(2.106b) and Eq. (2.107) in Eq. (2.109).

We then rewrite the amplitude in momentum space as
- : [Pk 1 d’k, 1
—ie? (duy)elPr—F2)y /d ! l(pz—kl)z-/ 1 T (k / 2 T (k
1€ ﬁ y>e ( y)e 1 (271')3 2]6? p,( 1)1 (271')3 2]{:3 1/( 2)

d?’p2 pg‘ (dp) elP(y'~v) dp, p¥
i ——2 22 KT(—py)i i LI g . 2.110
8 1/(277)3 2p8 (=i /(277)4 p? + mQ1 /(2#)3 2p(1) (p1) ( )
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The y- and z’-integrations can be performed immediately yielding
/(dy) ka2 — (27) 54 (py — ey + ), (2.111a)
/(dy')ei<p2-k1—p>z’ = (2m)"6" (p2 — k1 — p)- (2.111b)

The p-integration is easily done :

/%]ﬂ Jim2 (2m)%0% (2 — k1 — p)(27) 6" (p1 — k2 + p)

1
(p2 — k1)? +m?

= (2m)* 6 (p1 + o — k1 — ko) 2.112)

From Egs. (2.111a)—(2.111b) and Eq. (2.112), we can rewrite the amplitude in momen-

tum space of this processes in simply form, in summation form, be written

ki 1 ky, 1
W L gt L)

—ie2(27r)454(p1+p2_k1 ]{?2)2 ( )32]{:?<]“( )WQI{:O v

d’p, 1 .d%p; 1 Pspy
i i K (—py)K ) 21 ol 2.113
emra enra PR [ T e (2.113)

where e#(k;, \) are the polarization vector, A, i = 1, 2.
From Egs. (2.106a)—(2.106b) and Eq. (2.107) we obtain the amplitude of dia-

gram in figure 2.4(b), be written as

Phy 1 [Pk, 1 [dPp; 1 [dPp, 1
ie2(27)484 — ke — k L & — —
*(2m)'54(pr+ 12— I 2>J @ry 2K\ )P 2Ry | @m)? 208\ (2m)? 23

Phpy
X T AT K Ky { TR T er’;] (2.114)
1

Now we consider figure 2.4(c) that is the last diagram of spin 0 pair annihilation

process. We again start with the vacuum-to-vacuum transition amplitude in coordinate
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space, given by

e /<dx><dy><dz><dx’><dz'>Ja<z>Jp<z’>Dm<z’,y)Dup<z,y>
x KT(2) AL (2, y) Ay (y, 2) K () (2.115)

where K (z), K'(z'), J%(z) and J*(2') are the presence of external sources, A (z, x’)
denoting the Feynman propagator of spin 0 particle, defined in Eq. (2.95) and D,,, (x, z')
denoting the Feynman propagator of anti-spin 0 particle, defined in Eq. (2.96). Form
figure 2.4(c) and by substituting Egs. (2.106a)—(2.106b) and Eq. (2.107) in Eq. (2.115).

We then rewrite the amplitude in momentum space as

l(P1tp2—ki1—k2)y d? k1 1 * d3k2 1 *

dp, 1 d*p; 1
i — K (=py)i [ —L ——K 2.11
. 1/(27032198 ( pQ)l/(%)?’?p? (P1) (=110

The y-integration is easily done :

/(dy) Prtpe—hi=koly — (27)45% (py + po — k1 — ko). (2.117)
From Eq. (2.117), we can rewrite the amplitude in momentum space of this processes

in simply form, in summation form, be written

. By 1, ke 1,
—ie?(2m) 0t (py +p2 — k1 — k) Y i B )13 S0 ()i B )23 Qkojy(k;)
1

X id3p2 ii d’p, 1
(2m)3 2p (2m)3 2p}

KM (=p2)K(p1) [epe;] - (2.118)

From Egs. (2.106a)—(2.106b) and Eq. (2.107) in Eq. (2.118), we then rewrite the ampli-



tude in momentum space as

Bk, 1 |k, 1 [dPp, 1 [d¥p, 1
—ie2(2m)4ot — k1 — ko) | e ot | e mg 550 53,0
T e =k 2)\/(%)3 2K\ @) 208\ (2m) 200 \| (2)? 21}

X T 3 Tp A K py Ko, [e;e;] . (2.119)

From the amplitudes that are derived in Eq. (2.108), Eq. (2.114) and Eq. (2.119), the
transition amplitude of this process, denote as A, to lowest order in the fine-structure
constant «, the amplitude for the spin 0 pair annihilation into two photons process is, up
to unimportant factors for the problem at hand, in a standard notation (e,,(k1, \) = €

i

and e, (ko, \) = €})

Bk 1 [dPky 1 [dp, 1 [dPp, 1
— 3 2 2 4 ¢4 o k’ _ k _1_ _2_ 1 i 2 -
A=—CQm 0P —h 2>\/(27r)32k? 2m)2 2k3 \| 2m)7 200\ (27) 208

I Do
X S AT e a K pa K,y [eu(k%/\) (p1 — ki); T m2

phpY
+ ek, \) o k:i); " m2el,(k2, A) + ek, Ney, (ko A)} .

(2.120)

To lowest order in fine-structure constant, the amplitude for the this process is easily

extracted to be

A=a ek, A Pipy e, A
= [ey(R2, )(p1—k’1)2+m26“( 1y )

Phpy
(p1 — k2)? + m?

+eulkn N (k2,0 + ey Nl )| 2121

where we neglected an unimportant multiplicative factor

Pk, 1 [dPky 1 [dPp; 1 [dp, 1
o o 1 b a1 APy 1 APy b
Ot pe = ’““2)\/ (2m)3 2k7 \/ (27)3 2k9 \/ (2m)3 29 \/ (2m)3 219
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(2.122)

We simplify Eq. (2.122), by using the mass shell condition, p?> + m? = 0 and

k* = 0. The Dirac matrices in [-] are still complicated expressions. The following

calculations can be simplified considerably, we obtain

12N 8 v
A= acy (b, Ve, ) |~ 2L AL g

in simplify, we take out —1/2 that is some constant, and be neglected.

pspy | apy }
A < ae,(ki, Ne, (ko A + — 2g*
N

where ¢} (\) and e}(\) are the polarization vectors

(2.123)

(2.124)

2.5 efe” — pTp~ in The Weinberg-Salam Electro-Weak Theory

et (p') pt(K) et (p')

e~ (p) () p (k) e~ (p) ®)

Figure 2.5 Feynman diagrams of e"e™ — u™ ™ process.

(k)

Earlier we discussed the elastic scattering process for the electron-positron pair.

If the energy of the incoming electron-positron pair is high enough, the scattering need

not be elastic. In the final state, we can obtain a particle-anti-particle pair corresponding

to a higher mass. Among the known elementary charged particles, the electron is the

lightest, and the next lightest is the muon.

The Lagrangian for the process in figure 2.5 is

2Mw

L= — Z V; <178 —m; — gmiH) P —e Z %Eﬂ“@/h‘Au
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S— DA (g — g2 2.125
2 cos Oy ;wﬁ (9v — 947" )iy, (2.125)
where 0w = tan~!(g'/g) is the Weinberg angle; ¢ = gsin fyy is the positron electric
charge; and A = B cos Ow+WW?3 sin Oy is the (massless) photon field. Z = — B sin w+

W3 cos Oy is the neutral weak boson fields. The vector and axial-vector coupling are
g, = tap(i) — 2q; sin® Oy, (2.126)
ga = tar (i), (2.127)

where 37 (i) is the weak isospin of fermion i (+1/2 for u; and v;; —1/2 for d; and e;)
and ¢; is the charge of v; in units of e.

For momenta small compared to Myy, this term gives rise to the effective four-
fermion interaction with fermion constant given (at tree level, i.e., lowest order in per-
turbation theory) by Gr/v/2 = ¢%/8MZ,.

The Feynman amplitude can then be written as

— quqr \ 1 _ y
A= T, o)V (K, ) (gw - o ) (k5" ulp.o)

92

_ g
MU(p/, o)y (1 — 4sin®By) — 75) V(K 8)

ey I v :
X (gw, + ]\Z%) o M%U(k’ s)y ((1 — 4sin® ) — 75) u(p, o)

N g_2 My Me
e? 4ME;

U(p, oV (K, s) (gw = qgg) 7k s ulp.0) @128

We first compare the relative magnitudes of the coupling constants in the three

matrix element

A, ~ e ~ g*sin® Oy (2.129)
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2

g

Ay — 9 2.130
2" 16 cos? Ow ( )

Ay~ L o-s0” 2.131)
o2 4M\%v e2 '

Obviously the contribution from the Higgs particle is totally negligible, whereas the ma-
trix elements A, A are of the same order of magnitude at least at scattering energies
in the range of mass of the intermediate boson. The reason for this is simple: we have
used the Higgs field to generate masses of the intermediate bosons as well as of the
leptons. Since the strength of the coupling between the Higgs particle and intermediate

bosons is given

TT / / ! v 1 —_— v
M =T, o'WV (K,s) (gw - qq—q) 70k, 5))"u(p,0)

a TT /

v \ v
m(](p Lo ) (b =) VK, S) (gw + M—) v(k, )7 (b —75) u(p, o)

_l’_
M7

(2.132)

92

—— = andb=1—4sin? Oy.
16€2 cos? Oy an S W

where a =

2.6 e'e” Production from a Charged Nambu String

We have studied pair productions such as photons and electron-positron that are
produced by interacting parent sources (point-like particles) in §2.1-§2.5. Here we
generalize point-like particle sources to strings.

In this section deal with the particularly interesting situation of e*e™ emission
from a circularly oscillating Nambu string. We consider e*e™ production by a Nambu
string. We analytically calculate the amplitude of e* e~ production from a closed string
arising from the Nambu action as solution of a circularly oscillating closed string as
perhaps the simplest object generalizing emissions from point-like particles within the

framework of quantum electrodynamics. Given that such a process has occurred pro-
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ducing a mono-energetic pair ete™ with a given energy, we first calculate the amplitude
of the eTe™ produced in figure 2.6 , during one period of oscillation of the string, to

lowest order in the fine-structure constant. The amplitude of this process (shown in

e
f
A / //(
[ o7 et
Ps MR (/
/// ’—‘\ -
o N T e
R O;,’Ifj,_\\ - i’
_— (- — - - — = U= +

Figure 2.6 ¢"e™ production from a charged Nambu string.

figure 2.6 ), is given by

i/(dx)(dx’)J;ring(x)Duy(x, a")JE (), (2.133)

where J%

“iring 18 the electromagnetic current associated with the string, and J!, _ is the

electromagnetic current associated with the ete™ pair. These will be determined in
subsequent chapters.
Form figure 2.6 , we consider photon annihilate into electron-positron, by using

vacuum-to-vacuum transition amplitude in QED, we obtain

A= —ie /(dx)(dx’)(dy)(dz)J”(m’)DW(:c,x’)ﬁ(y)5+(y,x)fy“8+(x,z)n(z), (2.134)

and we use the properties of the propagator in Egs. (2.2)—(2.3), so that

d*p, 1

/ (Ay)(y)S: (g, 7) = i / G ) (1 + ), (2.135)
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[ @8t ame) =1 [GE e Gt min(pa), (2.136)
/ (dz")e *" Jv (') = J¥ (). (2.137)

Then we obtain the momentum-space amplitude as

: d*p; 1 _
A= —ie /(dx) ) 1/ S5T1(P1) (=p1 + m)y”

(27?)3 2p5
' d3p2 1 dk J”(k’)g,w
X 1/(2 18 20 55 (Yp2 + m)n(—p2) /(27?)4 k2
= —ie(2m)*6* (k — (p1 + p2))i /g E 2]1)077@1)(_7291 +mpy”
X i / (dzw)z zig(vpﬁ m)i(=ps) / 8@1%' (2139

And we then consider the propagator of photon, we have

(2m)* / ((;172)4 J’;f(f)é‘*(k (p1+ p2)) = %, (2.139)

we use the properties of the propagator in Egs. (2.2)—(2.3), giving

: d&’p; m [ dpy m _ "
A= 1(27T>6\/(27T) p \/(27.{.)3 pO T’plolnpgaz‘] (pl + p2>u(p17 Ol)mv<p27 02)
(2.140)
We obtain the amplitude of this process delete removing the external source part (77, 1),

as
m

A =eJ,(p1 + p2)u(py, 01)( v(py, 02). (2.141)

p1+ p2)?
2.7 e"e” Production from a Neutral Nambu String

In this section we deal with the particularly interesting situation of ete™ emis-

sion from a circularly oscillating Nambu string. We consider e*e~ production by a



42

neutral Nambu string. We analytically calculate the amplitude of e™ e~ production from
a closed string arising from the Nambu action as solution of a circularly oscillating
closed string as perhaps the simplest object generalizing emissions from point-like par-
ticles within the framework of quantum electrodynamics. Given that such a process has
occurred producing a mono-energetic pair e™e~ with a given energy, we first calculate
the amplitude of the e™e~ produced in figure 2.7 , during one period of oscillation of

the string, to lowest order in the fine-structure constant. The amplitude of this process

» €
AN
AN
A A
AN
T
e \’C;,
~c0, -
A P
/) - —
N
L) //7/70.)\ THY €
- string ete—

Figure 2.7 e"e™ production from a neutral Nambu string.

(shown in figure 2.7 ), is given by
i /(dx) (da") T3 g (2) Do (, 2/ ) TH (2, (2.142)

where T"! _ is the energy-momentum tensor associated with electron-positron, written

as

T _ocuy*(p” — ") + 7 (p" — p™)v, (2.143)

ete

p* and p'* are the momenta of electron and positron, Ts‘g‘mg the energy-momentum ten-

sor associated with the string. The latter will be determined in Chapter VI.



CHAPTER III
EXPLICIT EXPRESSIONS FOR POLARIZATION

CORRELATIONS OF SOME PROCESSES IN

QUANTUM AND SCALAR ELECTRODYNAMICS

The purpose of this chapter is to derive and study explicit expressions of si-
multaneous measurements of two photons polarizations, so-called photon polarization
correlations, with the two photons produced in et ¢~ annihilation in quantum electrody-
namics. These polarization correlations are critical in investigations dealing with Bell’s
inequalities. In view of this, we carry out an analysis of our expressions for the correla-
tions in the light of Bell’s inequality. The analysis carried out in this chapter sets up the
stage for the study of such concepts as entanglement in Chapter IV as well as consid-
ering the more complicated processes studied in Chapters V and VI. For completeness,
we also investigate, in this chapter, photons productions in scalar electrodynamics in
the framework of the above study. The Clauser-Horne (C-H) inequality for Bell’s test,

which is also critical in our study, is derived in the Appendix E to this chapter.

3.1 Polarization Correlations in ¢e"e¢~ Annihilation in QED

The purpose of this section is to derive the explicit joint probability distributions
of photon (y7) polarization correlations in e*e™ annihilation, in flight [Manoukian and
Ungkitchanukit, 1994], in QED, as well as to obtain the corresponding probabilities
when only one of the photon’s polarization is measured. This provides clear cut dy-
namical, rather than kinematical, descriptions of photon polarizations correlations as
follow directly from this monumental and experimentally reliable QED theory. Parti-

cle correlations have been systematically studied earlier [e.g., Manoukian, 1992, 1994,
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1998; Manoukian and Ungkitchanukit, 1994] emphasizing, however, different experi-
mental situations and aspects, polarizations phenomenae, but not correlation, were stud-
ied many years ago [McMaster, 1961], but we are, however, interested in correlations as-
pects that have been quite important experimentally in recent years [Clauser and Horne,
1974; Clauser and Shimoney, 1998; Fry, 1995; Selleri, 1988] in the light of the foun-
dations of quantum physics vis-a-vis Bell-like inequalities. Two types of collisions are
considered for et e annihilation in flight in the c.m. (center of mass) motion. The first
one in which a e™ and e~ in c.m., initially prepared to be moving along a specific axis,
annihilate each other and two photons are observed to be moving along a given specific
axis. Given that this process has occurred, we compute the conditional joint probabil-
ities distributions of photon polarizations as well as the probabilities corresponding to
the measurement of only one of the photon’s polarization. The second one is involved
with all repeated experiments corresponding to all orientations of the axis of motion of
ete™ pairs in the c.m. initially prepared with the same speeds, and a pair of photons is
observed moving along a given axis in each case after the annihilation process, given
that these collisions mentioned above have occurred. In this latter case we must average
over the initial orientations of axis along which the e™e™ pair may initially move before
annihilation occurs. With the explicit expressions for the probabilities derived from this
quantum dynamical analysis, we finally show a clear violation of the relevant Bell-like
inequality [Clauser and Horne, 1974; Clauser and Shimoney, 1998; Fry, 1995; Selleri,
1988] as a function of the speed of e (or of ¢~). Our convention for the metric tensor

is [g,] = diag(—1,1,1,1) (see Appendix A).

3.1.1 Computations of The Probability Distributions of Correlations

The transition probability of e (p;)e™ (pa) — v(k1)y(k2) (see in §2.1) to
the leading order in the fine-structure constant « is, up to an important multiplicative

factor for the problem at hand, given by (e.g., Itzykson and Zuber, 1980; Sokolov et al.,
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1988)
1 (kl-kQ)Q 9
Prob ox |[——————— — (€1 - €9x , 3.1
{4(p1k1)(p1k2) (1)\ 2)\) @-1)
where
ok
o= (-2 ) o), ma = 62)
piki
ok
b= (3 - 222 ) 00, ) =0 33
DP1R2

ef »(A) denote the polarization vectors of the photons satisfying the completeness rela-
tion
e 4+ B Ry
DN () =g - = TR (3.4)
kiki
A

(no sum over 7), where k = (k° k), k = (k°, —k). We note that ¢/, are invariant under
the gauge transformations e (\) — e? () + kVby(k;).

In the c.m. of a pair ete™

pO

P, =-P; =p, ko= —ki =k, pl =p =k =k

kY = |k|a pO =V p2+m2

(3.5)

In Fig. 3.1 we show how to introduce the polarization ¢} (\) = (0, e;(\)) in reference

to the vector k*. If k is chosen to lie in the -z plane, then

k := |k|(sin8, 0, cos f), (3.6)

and from the figure, with e;(\) = e;

e := (—cosf cos 1, sin x1, sin 6 cos x1), (3.7)

where, here, p = |p|(0,0,1). For a general orientation of k and e;, we must rotate

the x — y — z coordinate system c.w. (clockwise) about the z-axis by an angle ¢. This



46

el()\z)

Figure 3.1 In this figure k lies in the -z plane and p is along the z-axis. The polariza-
tions vectors e; (A1), e1(\q) are orthogonal to each other and are orthogonal
to k. The line segment AB, of length | cos x4/, lies in the z-z plane. By
rotating the coordinate system clockwise (c.w.) about the z-axis, by an an-
gle ¢, the vectors k, e;(\1), e;(A2) will have general orientations in the
resulting coordinate system.

accomplished by the rotation matrix 1 (see in Appendix F) with matrix elements:

, -
Rl — g _ ¢t P sin ¢ + <5"’ — pj—pQ) (cos¢ — 1), (3.8)
p| p|
and from the property of the rotation of the vector r about the vector n with angle ¢,

(r")! = Ry (see in Appendix F),where R" is the rotation matrix (see in Eq. (3.8)), give

the result as

k’:k—sin¢(£xk>+[k—(k-£) 3} (cos¢p— 1), (3.9)
p| Ipl/ Ip|
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and from figure 3.1, p = |p|(0, 0, 1), we have

p

= =3 (3.10)
p|

where Z denoting the unit vector in z-axis. Hence we can rewrite k, after rotating about

z-axis, as (we set k := (k") k) k®)), compare with Eq. (3.6))

(1)
EY = W —gin ¢ <|11%| X k) + K = (kW(3 - 2)) 2] (cos ¢ — 1)

= kW 4+ kW (cos p — 1). (3.11)
By substituting k(! = |k| sin @ from Eq. (3.6) in Eq. (3.11), gives
W = kW cos ¢ = [k|siné cos b, (3.12)

where % x k := (0, |k|sin 6, 0), # denoting the unit vector in z-axis, For k) compo-
p

nent that is rotated about z-axis with angle ¢, using properties of Eq. (3.9) and k? = 0

from Eq. (3.6), we have

(2)
K = k® —ging (% X k) + [k® — (K@(g - 2)) 2] (cos ¢ — 1)

= —|k| sinfsin ¢, (3.13)

where ¢ denoting the unit vector in y-axis. Finally, £*) component that is rotated about
z-axis with angle ¢, using properties of Eq. (3.9) and k® = |k|cos @ from Eq. (3.6),

gives
(3)
G = kB —ging (% X k) + [F® — (E®(2 - 2)) 2] (cos ¢ — 1)

= kB = k| cos 6. (3.14)
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From Eqgs. (3.12)—(3.14) of above computation, we transform k by rotating about z-axis

with angle ¢, be written as:

k' := |k|(cos ¢ sin 6, — sin ¢ sin 6, cos 0). (3.15)
To convenient, by substituting k' — k, gives

k := |k|(cos ¢sinf, — sin ¢ sin 0, cos 0). (3.16)

As expected, and similarly, for the rotation of e; about z-axis with angle ¢, defined

e = (egl), ef), eg?’)), we have

(1)
¢W = e _ging (£ X 61) i [egl) _ (egl)(;ﬁ . ;3)) z] (cosg —1)

p|
= eV 4 sin ¢ sin (1) —
=e X1+ e (cosp —1) (3.17)
By substituting egl) = — cos  cos x; from Eq. (3.7) in Eq. (3.17), gives
6/1(1) = — cos 6 cos x1 cos ¢ + sin ¢ sin y 1, (3.18)

where 2 x ey := (—sinx1, —cosfcos x1,0). For 652) component that is rotated about

p|
z-axis with angle ¢, using properties of Eq. (3.9) and 652) = sin x; from Eq. (3.7), we

have

©)
6/1(2) _ 652) —sin¢ (£ X el) + [652) + sin ¢ cos # cos x1

p|
~ (P(3-2)) 2] (cos — 1)

= sin y1 cos ¢ + sin ¢ cos # cos x1. (3.19)
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Final component e§3) that is rotated about z-axis with angle ¢, using properties of

Eq. (3.9) and eg?’) = sin @ cos x; from Eq. (3.7), giving

®3)
6/1(3) _ 6(13) _sing (% y el) 4 [egs) _ (653)(73 . g«)) 53] (cosgp —1)
p

= sin # cos x1. (3.20)

From Egs. (3.18)—(3.20) of above computation, we transform e; by rotating about z-axis

with angle ¢, be written as:

e := (— cosf cos x; cos ¢ + sin x1 sin ¢, sin y; cos ¢ + cos 6 cos x1 sin ¢, sin € cos 1),

(3.21)

in the resulting coordinate system. A similar expression for e;(\') = e is obtained by

replacing y; by x2. With e; = e1(\1), e;()\2) is obtained from e; by the substitution
X1 — x1+m/2.

Now we consider the probability of this process (see Eq. (3.1)), have derived in

§2.1, in the convenient form. By using the properties in Egs. (3.2)—(3.3), we have

. ( (61 ‘Pl)kl) ( (62 'pl)kQ)
€16 =€ — ——— eg — ————
piky p1ka

(e1 - p1)(ea - p1)(kiky)

=e- -6y — , (3.22)
P (p1k1)(pik2)
where ]{,’162 = ]{,’261 = 0, and €1 €2 =¢€1-€2,€1 P =€ P = —€3-P1.
In the c.m. of eTe™, Eq. (3.1) may be rewritten in the convenient from
1 (k’lk’g)Z < € -peé-p (kle))Q
Probx |-————F—F——~—(e1-ex+ . (3.23)
[4 (prk1)(p1k2) b (p1k1)(p1k2)

We treat two processes of annihilation associated with the relative probability

given in Eq. (3.23).
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3.1.2 Process 1: e"e~ Moving Along z-axis

We consider the annihilation of e*e™ pairs in flight in the c.m. (located at
the origin of the coordinate system) initially prepared to be moving along the z-axis, as
in the figure 3.1 , each moving with speed v = [3c, prior to their annihilation into pairs
of photons, and place detectors for the latter at opposite ends of the x-axis.

Using the scalar products
e, -p=|p|sinfcosy;, p-ki=|p|lk|lcosf =—p-ks. (3.24)

From Egq. (3.23), we rewrite the first term in bracket [-] in term of the speed (/) of initial

particles (¢, e7) and by using properties in Eq. (3.5). Then we have scalar product
Faky = —[Kk[* — (k°)?
= (k%) — (k°)?
= —2(k")?, (3.25)

and also using the property |p|/p® = (3 which is the speed, (3, of initially particles, e~,

e™, we have

pik1 =p- ki —p°k}

= |p||k| cos 6 — K

= —p°%° (1 — ‘p%‘ cos 9)
= —(k°)*(1 — Bcosb)

pk1 = —(k°)?(1 — Bcosh). (3.26)



Similarly, we have finally scalar product to use in Eq. (3.23) as

piks = p - ko — pkJ
= —|p||k| cos 6 — p°k°

= k(1 + |p£0 cos )
= —(k")?(1 + Bcosh)

pky = —(k°)*(1 + Bcosf).
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(3.27)

So that, we rewrite the first term in Eq. (3.23) in term of the speed (/) of initial particles

(e™, e7), by substituting with Egs. (3.25)—(3.27), be written as

1 (kiky)* 1
4 (p1k1)(pike) 1 —[%cos?6

(3.28)

After we rotate the system with ¢ = 27 about z-axis, from Eq. (3.21), we found

that the system is same as the initial system (¢ = 0). We have

e; = (—cosfcos x1,sin x1,sin 6 cos x1),

ey = (— cos 6 cos xa, sin X2, sin 6 cos x2),

p = |p[(0,0,1),

k = |k|(sin 6,0, cos 9),

and the scalar product of the two polarizations of photon, we write as:

e - ey = cos? 0 cos 1 cos Yz + sin x1 sin yo + sin? 6 cos y1 cos xa

(3.29)

(3.30)

(3.31)

(3.32)
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= (cos? § + sin® #) cos x1 cos Y2 -+ sin y; sin xo

= COS X1 COS X2 + Sin x1 sin xa.

The latter works out, we obtain

e - e = cos(x1 — Xa2)- (3.33)

So that, we can rewrite Eq. (3.23) in the convenient form as

1 2|p|? sin2 6 cos y1 cos x2(k°)2\
Prob x —————~— — - . (3.34
rob ¢ (1 — (2% cos?0) (COS(XI x2) (K941 — (2 cos? 0) (3:34)
We consider the second term in Eq. (3.34) by using
pl _ |p|
W0 B, (3.35)
Fsin?f = —(1 — ) + (1 — 3 cos? ). (3.36)

Next we expand the second term of Eq. (3.34), given by

23? sin2 6 cos x1 cos X2 \
cos(X1 — Xx2) — (1= P cos?0)
= (cos(x1 — xa2) — 2[—(1 — 52) + (1 — B2 cos?0)] cos x1 cos x2 \
= X1 — X2 (1 P oos? 0)
2(1 — %) 2
= | cos(x1 — x2) + m COS X1 COS X2 — 2COS X1 COS X2

= cos?(x1 — X2) — 4cosx1 cos X2 + 4 cos? x1 cos® Xa

N 4(1 — B*)?cos? x1cos? xo  8(1 — %) cos?® x1 cos? Xz
(1 — % cos? 0)? (1 — B2 cos?0)
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4(1 — B%) cos(x1 — X2) COS X1 COS X2

* (1 — B%cos?0)

(3.37)

Therefore, we write the probability of this process in term of speed () of the initial

particle (e, e™) as

1 4(1 — B8?) cos(x1 — X2) COS X1 €OS X2
Prob o —
(1 — (2 cos?0) (1 — 2% cos?0)

N 8(1 — %) cos® xicos? xa  4(1 — %) cos® xi cos® xz
(1 — % cos?0) (1 — 3% cos? 0)?

— (cos(x1 — x2) — 2cos X1 cos x2)>. (3.38)

A direct evaluation but tedious computation of the corresponding probability of

occurrence with initial polarized electron and positron, be written as

[1—4(1 — %) cos x1 cos xa(cos(x1 — Xa2) — 2 cos X1 oS X2)]

Prob
rob o (1 — 2% cos?0)

_4(1 = 4%)? cos® xi cos® xz

- - —2 2 .
(1 — 32 cos? 6)? [cos(x1 — X2) COS X1 COS X2] (3.39)

where 3 = |p|/p° is the speed of e™ (or of ™) divided by the speed of light, and 6 is
the angle between k and p. We note that the angles x;, x2 have given fixed values when
the vector k is made to rotate in the coordinate system.

Since 6 is a continuous variable, we may integrate the expression in Eq. (3.39)
over  from 7 /2 — ¢ to /2 + ¢ and then rigorously take the limit 6 — 0 in evaluating the
normalized probabilities in question. The ¢-integral, here, is not important in evaluating
these normalized probabilities since it leads to overall multiplicative factors that cancel
out in the final expressions.

Upon using the integrals

Eanl sind 1. (14 Bsind
— (o 2Emo 4
/’;—6 (1 — (32cos?0) a0 3 n(l—ﬂsiné)’ (3-40)
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L) sin 6 1 Gsind 1 1+ Bsind
/;5 T-Fwoy "5 {m eam(Es)] aan

and we define
L

Fs(x1, x2) E/ ) Prob sin 6d6. (3.42)

Bl

[

Since the expression in Eq. (3.39) depend on speed ((3) of initial particle, the
angles x1, X2 and 6, but we integrate it over . Therefore another term are the constant,

giving
Fs(x1,x2) = [1 — 4(1 — B%) cos x1 cos XQ(COS(Xl — X2) — 2€0s X1 COS XQ)

T4 ,
></ sin 6 40
x_5 (1 —[2cos?0)

£+5 .
Ny 9 9 2 sin
—4(1 — (%) cos® x1 cos X2[5—5 (1= o2 O dé
, [5t
— (cos (Xl — X2) — 2 €08 X1 COS Xg) / sin 6 dé. (3.43)
L)

2

By using the integral from Eqgs. (3.40)—(3.42), we obtain

F&(X17X2)

[ —4(1 — B?) cos x1 cos x2(cos(x1 — x2) — 2¢0s x1 €OS X2)] ln(l + ﬁsiné)

B 1 — (sind
_ L a2\2 2 9 sin & 1 1+ @sind
AL =) cos”xa 08" X2 (1 — 32sin?§) * 20 1n<1 — (sind
— 2sin d(cos(x1 — x2) — 2cos Y1 cos X2)>. (3.44)

To normalized the expression in Eq. (3.44), we have to sum Fjs(x1, x2) over the polar-
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izations directions specified by the pairs of angles:

T T T T
(X1, X2), (X1+§7X2), (X17X2+§), (X1+§7X2+§)‘ (3.45)

That is, we have to find the normalization factor

T
Ns = Fs(x1, x2) + Fs(x1 + §7X2)

T v T
+F5(X1,X2+§)+F5(X1+§,X2+5)- (3.46)

By considering each term in Eq. (3.46), for (x1 +7/2, x2), substituting x1 — x1 +7/2,

we have

T
Fs(x1 + §>X2)

. . ) 1 14 Bsind
= [1 + 4(1 — %) sin x; cos xa(— sin(x1 — x2) + 2sin x; cos XQ):| — ln<ﬁ—)

16 1—[@sind
i 202 w2 9 sin & 1 1+ [Fsind
L= ) sin"xa cos” x (1 — 32sin?6) * 20 ln(l — (Bsind
— 2sin 6(—sin(x1 — x2) + 2sin x; cos x2)?, (3.47)

for (x1 + /2, x2 + 7/2), substituting x2 — x2 + 7/2, we have

T
Fs(x1,x2+ 3)

2
. . ) 1 1+ Bsind
— [1 + 4(1 — 3%) cos x1 sin 2 (sin(x1 — x2) + 2 cos x; sin Xg)} 3 1n(%)
_  a2\2 2 ) sin d 1 14 Bsind
4(1 — %)% cos” x1 sin” x» —(1 _ﬁQSmQ(s) + % ln(—1 ~ o

— 2sin§(sin(x; — x2) + 2 cos 1 sin x2)* (3.48)
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Finally, for (x1 + 7/2, x2 + 7/2), substituting x; — x1 + 7/2, X2 — X2 + 7/2, we

have

s T
r 2 ~
s+ 2,X2+ 2)

1 1 in
= [1 — 4(1 — B%) sin x1 sin x2(cos(x1 — x2) — 2sin 1 sin XQ)} —1In (ﬂ)

16} 1—[(@sind
B 222 9 sin 0 1 1+ @Bsind
4(1 — %)% sin” x1 sin® xo —(1—ﬁ281n25) + 25111(—1 ~ Gsmo
— 2sind(cos(x1 — X2) — 2sin x; sin x2)>. (3.49)

We can rewrite N by substituting Eq. (3.44) and Egs. (3.47)—(3.49) in Eq. (3.46),

be written as

= {[1 — 4(1 — #) cos x1 cos xa(cos(x1 — X2) — 208 X1 €08 X2)]
+ [1 4+ 4(1 — B%) sin x; cos xa(—sin(x1 — X2) + 2sin ¥ cos x2)]
+ [1+4(1 = %) cos x sin xa(sin(x1 — x2) + 2 cos x1 sin x2)]
+ [1 = 4(1 — %) sin 1 sin xa(cos(x1 — x2) — 2sin x; sin x2)]
1 1+ @sind
1 (Lt fsind
16} 1—3sind
in ¢ 1 1+ (@sind
BTG T POk Il Y (i Ml
(1=679 [1 ~32sin?s 28 "\ 1= Bsino
x {cos® x1 cos® xa + sin? y1 cos? xa + cos® x1 sin” xo + sin® x; sin® x2}

— 2sin 5{(COS(X1 — X2) — 208 X1 €08 X2)* + (—sin(x1 — x2) + 2sin x; cos x2)*
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+ (sin(x1 — x2) + 2 cos x1 sin x2)* + (cos(x1 — x2) — 2sin x; sin XQ)Q}.

(3.50)
To simplify Eq. (3.50), we calculate each term as: the first term be written as
—4—4(1— [32){ cos X1 €os Yz2(cos(x1 — X2) — 2cos X1 €OS X2)]
— 8in x1 cos xo(—sin(x1 — x2) + 2sin x; cos x2)]
— cos x1 sin xa(sin(x1 — x2) + 2 cos x1 sin x2)]
+ sin 1 sin ya(cos(x1 — x2) — 2sin i sin Xz)]}
=4+4(1- 5%, (3.51)
and the second term be written as
cos? 1 cos® xy + sin? y; cos® xa + cos? xq sin? ya + sin” i sin? yo = 1, (3.52)

and the final term be written as

= (cos(x1 — X2) — 2cos x1 cos X2)? + (—sin(x1 — X2) + 2sin x1 cos x2)

+ (sin(x1 — x2) + 2cos x1 sin x2)* 4 (cos(x1 — x2) — 2sin x1 sin x»)%.

To simplify above term on the right-hand side, we distribute square term

= cos?(x1 — X2) — 4cos(x1 — X2) €os Y1 oS X2 + 4 cos® x1 cos® X2

+sin”(x1 — Xx2) — 4sin(x1 — X2) sin x1 cos xz + 4sin” x1 cos” xa

+ sin®(x1 — x2) + 4sin(x1 — x2) cos x1 sin xa + 4 cos? x; sin® xo
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+ cos?(x1 — x2) — 4cos(x1 — X2) sin x1 sin xo + 4sin” x; sin? o,
and we then rearrange them as

= cos®(x1 — x2) +sin®(x1 — x2) +sin®(x1 — x2) + cos®(x1 — x2)

— 4{cos(x1 — X2) cos x1 cos X2 + sin(x; — X2) sin x1 cos x2

—sin(x; — X2) €os x1 sin x2 + cos(x1 — X2) sin x1 sin xo }

+ 4{cos® 1 cos® xa) + sin® x1 cos? x3 + cos? x1 sin” o + sin? x; sin? x2)}

=2 — 4{cos’(x1 — x2) +sin®*(x1 — x2)} +4 = 2. (3.53)

The latter works out to be

1 —|—ﬁsin6)

No= [H 401 - ) =200 - 7] pin (5

in o
41 - B — 00 4sing. 3.54
1=5) (1 — 32sin?9§) o (3-54)
Therefore, given that the process has occurred as described above, with two pho-

tons moving (back-to-back) along the x-axis, the conditional joint probability of the

photon polarizations, specified by the angles x1, X2, is rigorously given by

o B, xe)
P(x1,xz) = lim === (3.55)
For all 0 < # < 1, we use the limit
1 14 Bsind
(2220~ 9s 3.56
B n(l—ﬁsin6>5ﬂo (3.56)

Here we take the limit 6 — 0 that the physical meaning of ¢ is very small. Since
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1 N 1
1— B2sin?d 1 — 3262
we consider only first order of 9, because of the condition of the limit 6 — 0. Therefore

sin 0 =~ ¢, and the expansion of =1- %2+ *%* — ... that

1
we obtain ————— = 1. The following result, we have
1 — (%2sin”d

lim Fy(x1, x2) & [1 = 4(1 = 3%) cos x1 cos xa(cos(x1 — x2) — 208 x1 08 X2)]
—4(1 — %) cos® x1 cos® x2 — (cos(x1 — xa2) — 2cos x1 cos x2)°
=1~ [cos(x1 — x2) — 2% cos X1 cos x|, (3.57)
and
lim N & [4 +4(1 = )] = 4(1 = §%)* = 2
=[(4-2)+4(1 - )1~ (1~ 6%)
= [2+45°(1 - %), (3.58)

where we neglect 20.
To obtain from Eqgs. (3.57)—(3.58), the conditional joint probability of the photon

polarizations is given by

1 — [cos(x1 — Xx2) — 2% cos x1 cos xa]?
2[1+26%(1 — 3%)] ’

P(x1,x2) = (3.59)

forall0 < 3 < 1.

If only one of the polarizations is measured, then we have to evaluate
Fs(x1, x2)+Fs(x1, xe+7/2) and F5(x1, x2)+ Fs(x1+7/2, x2). To this end, Eq. (3.44)
and Eq. (3.47)—(3.48) gives

T a4 2 1 1+ (Bsind
Fs(x1,x2) + F5(x1, x2 + 2)— [2+2(1 = 57) cos Xdﬁln(l—ﬁsirﬁ
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sin

2
—4(1 = %)? cos le

— 2sind, (3.60)

E B o 2 41 1+ Bsind
Fs(x1,x2) + Fs(xa + 2,)(2) =[2+2(1— %) cos Xg}ﬁ In <—1 ~ Gsns
99 o sin 0 ,
—4(1 — %)° cos® xo———5— — 2sind. (3.61)

(1 — 32sin?9)

This is, the conditional probabilities associated with the measurement of only of

the polarizations are given by

F5(x1, x2) + Fs(x1, x2 +7/2)

P(x1,—) = (lsi—I?(l) N, , (3.62)
F, F, 2
P(—, XQ) — lim 5(X17 XQ) + (5(X1 + 7T/ 7X2) . (363)

6—0 N§

Similarly in Eq. (3.57), by taking the limit 6 — 0, we have

. T
(1512% Fs(x1, x2) + Fs(x1, x2 + 5) =[2+2(1 — p*) cos® x1] — 4(1 — B%)?cos® x1 — 1

=1+48%*1 — 3*) cos® x1, (3.64)

. T
gli% Fs5(x1, x2) + Fs(x1 + 3 Xz2) = [2+2(1 — B*) cos® xa] — 4(1 — %)% cos® x2 — 1

=1+43*(1 — 3%) cos® 2. (3.65)

From Egs. (3.62)—(3.65), these work out to be simply given by

144521 — %) cos® xy
e

(3.66)

_ 14+452(1 = ) cos® x
P(=x2) = 2P )] (3.67)

for all 0 < # < 1, and are, respectively, dependent on x1, X2.
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We note the important statistical property that

P(XLXQ) 7é P(X17_)P(_7X2) (3.68)

in general.
In the notation of Local Hidden Variables (LHV) theory [Clauser and Horne,
1974; Clauser and Shimoney, 1978; Fry, 1995; Selleri, 1988], we have the identifica-

tions

P :
P(x1,x2) = Pz((il) Zz)) (3.69)
- Pyy(ay,00)
P(x1,—) Pra(00,00)’ (3.70)
o P12(OO,CL2)
P(_7X2) Plg(O0,00)’ (371)

where a;, as specify directions for measurements of polarizations. Defining (see Ap-

pendix E)

S = P(x1,x2) — P(x1,x5) + P(x1, x2)

for four angles x1, x2, x> X5 LHV theory gives the Bell-like bound (Clauser and
Horne, 1974; Clauser and Shimoney, 1978):

-1<S5<0. (3.73)

It is sufficient to realize one experimental situation that violates the bounds in
Eq. (3.73).

For example, for y; = 0°, xo» = 67°, x; = 135° x, = 23° Eq. (3.59),
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Egs. (3.66)—(3.67), as obtained from QED, gives S = 0.207 for § = 0 that violates
Eq. (3.73) from above. For x; = 0°, xo = 23° x) = 45° x, = 67°, we obtain
S = —1.207 for 8 = 0 violating Eq. (3.73) from below. Both bounds are violated for

all § < 0.2 for these same angles, respectively.

3.1.3 Process 2: Two Photons Moving Along z-axis

Here we put the two detectors on opposite sides of the z-axis. We consider
all repeated experiments with pairs e*e™ produced in flight in the c.m. (located at
the origin), each particle moving with speed v = [c¢, corresponding to all possible
orientations of the axis along which a given pair moves. Here we must average over all
angles 6, ¢ of the vector p, with k along the z-axis.

In the present case

k = [k/(0,0,1), (3.74)
p = |p|(cos ¢sin b, sin ¢ sin 0, cos ), (3.75)
e; = (— cos x1,sin x1,0), (3.76)
ey = (— cos a2, sin xa2, 0). (3.77)

We then obtain the scalar product:

e;-p = —|p|sinfcos(¢ + x1), (3.78)

ey p = —|p|sinfcos(¢ + xa), (3.79)

thus obtaining for Eq. (3.29)

Prob

1 N 8(1— 32

(1—[%cos?8) = (1 - (3?cos?0) cos”(x1 +9) cos’(xz +9)
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s - +¢ +¢
— cos2(x1 — a) — ( )COS(X1(1 i@ﬁ);gz?;) ) cos(xa + o)

— 4cos®(x1 + ¢) cos®(x2 + ¢) + 4cos(x1 — xa) cos(x1 + ¢) cos(x2 + ¢)

40— 3%)? cos?(x1 + @) cos®(x2 + )

(1 — (32 cos?0)? ’ (3.80)

where 3 = |p|/p® is the speed of e* (or of e~) divided by the speed of light, 6 is
the angle between k and p, and ¢ is the angle between p and z-axis. We note that
the angles x1, x2 have given fixed values when the vector k is made to rotate in the
coordinate system.

Since 6 is a continuous variable, we may integrate the expression in Eq. (3.80)
over 6 from 0 to 7, with the latter two deduced from Egs. (3.40)—(3.41) by replacing
by /2. The ¢-integral, here, is important in evaluating, not same as Process 1, we also
integrate the expression in Eq. (3.80) over ¢ from 0 to 27.

Upon using the integrals

/027r dg cos(x1 + @) cos(x2 + @) = 7 cos(x1 — Xa), (3.81)
/027r de cos*(x1 + ¢) cos®(xa + ¢) = 2[1 +2cos?(x1 — x2)); (3.82)
and
/0” (1 —Si;fjogs? ) %m (%) ) (3.83)
/0“ (1 —Siﬂigcii )2~ % [1 _ﬁﬁz + %m (%)} : (3.84)

Since the integration of Eq. (3.80), [/ Probsin §dfd¢, be written as

// Prob sin 6dfd¢
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sin 6 ) 2 ™
oc/ dcb/ o) df — cos*(xa —Xg)/o dgb/o sin d6

iné 2m
+8(1 — 62)/ = ;;1(3032 7 d9/0 cos?(x1 + @) cos®(xa + ¢)de

sin 6

—4(1 — %) cos(x1 — XQ)/O 1= Fco2d) d&/ cos(x1 + @) cos(xa + ¢)do

s 27
— 4/ sin QdQ/ cos®(x1 + @) cos®(xa + ¢)de
0 0

—|—4/ sm@dG/ cos(x1 — x2) cos(x1 + @) cos(x2 + ¢)de
0

: 0 2w
— 4(1 — B2 / q ;12110082 57 /0 cos?(x1 + &) cos?(xa + #)de. (3.85)

By using properties of the integral in Eqs. (3.81)—(3.84) and we set Fj(x1,x2) =
[[Probsin 6dfde, gives

FB(X1,X2)

_ %ﬂ ln<ﬂ> —4(1 = %) cos®(x1 — x2)(

1
- )ln( +5) — 47 cos*(x1 — Xx2)

1-p

(1—ﬁ2)( ) [1 4 2cos?(x _XQ)]%lnGirg)
— 4 = B[+ 2008’ (1 — xa) {1__152 n %m(%)}

+ 4 cos2(x1 — y2)(2) — 4(%)[1 +2c052(x1 — x2)](2). (3.86)

We neglect 27 because it is the constant that cancel out after normalization, the above

equation be rewritten as:

FB(Xsz)
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2 2 2 2 1 1+0
o< [1—2(1 = %) cos®(x1 — x2) + (1 — B%)[1 + 2 cos”(x1 — x2)]] Bln(l—ﬁ)

1 1 1 1
— (L= [L+ 208’ (1 — x2)] |:1_—62 + %m(ligﬂ

+2 COSQ(Xl —x2)—[1+ 20052(X1 - x2)], (3.87)

and to simplify the above term, we rewrite as

41— ) lln(%

3 ) - %(1 —B%) [142cos’(x1 — x2)] — 1

- %(1 — B [1+2cos*(x1 — x2)] {ﬁ + %ln(%)}
- {1+(1—52)—i(1—ﬁ2)2} %hl ?_rg) N ;< -7 -1

- {(1 S (1 ﬁ?)zim(l - 6)} cos?(x1 — x2)

- }l [4+4(1 - 5% — (1= 5%)?] %m(iﬂ:g) _ngﬁ;
(- ) {1 e ;ﬁm m(ij?)] o5t — ).

Finally, we have the convenient probability, be written as:

Fﬁ(xl,xQ)oc[4+4(1_5>—(1—ﬁ)]1n(1+ﬁ) 3 5

48 1-53 BEREE)

- {1+ a ;ﬂﬂ)ln(ig)] o1 — x2).  (3.88)

We introduce the new probability, given by

Fs(x1, x2) < [A(B) + B(8) cos*(x1 — x2)], (3.89)
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where

A(ﬁ):[4+4(1—B4)ﬁ_(1—6)]ln<ijg>_;+%’ (390)
B(B) = —(1 — &) [1+(1;;2) 1n(ig)} (3.91)

To normalized the expression in Eq. (3.89), we have to sum Fjs(x1, x2) over the polar-

izations directions specified by the pairs of angles (see as Eq. (3.45)):

T T T T
(X1, X2), (X1+§7X2), (X17X2+§), (X1+§7X2+§)~ (3.92)

That is, we have to find the normalization factor

T
Ng = Fs(x1,x2) + Fa(x1 + §,X2)

T T T
+FB(X1,X2+§)+Fﬁ(X1+§,X2+§)- (3.93)

The explicit expression of above term, by replacing x; by x1 + 7/2, x2 by x2 + 7/2,

gives

Fyl + 5, x2) = A(B) + B(8)sin®(v1 - x2), (3.94)
Fylxixa + 5) = A(B) + B(3)sin®(v1 — xa). (3.95)
Fyx + 5,xa + 5) = A(B) + B(8) cos(xa = xa). (3.96)

The following computation for the normalization factor we have upon summing

over the set in Eq. (3.92), by substituting Eq. (3.89), Egs. (3.94)—(3.96) in Eq. (3.93).
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Giving

N 5 =3

= 224(3) + B(B)]. (3.97)

40— ) =201 - 8] (1) s

According, for the joint conditional probabilities, using the properties in

Eq. (3.69), we have

A(B) + B(B) cos*(x1 — x2)
22AB) +BE)]

Ps(x1, x2) = (3.98)

given that the two photons have emerged (back-to-back) along the z-axis.
For the measurement of only one of the polarizations, Eqgs. (3.70)—(3.71) leads

to

for all 0 < B < 1, and the latter are, respectively, independent of x1, x2.

Again we have the important statistical property

Pﬂ(XhXQ) %Pﬁ(Xla_)Pﬁ(_7X2)7 (3100)

in general. It is interesting to note that an equality in Eq. (3.101) holds in the extreme
relativistic case 5 — 1, where each side is equal to 1/4.

Only in the limiting case 3 — 0, the joint probability in Eq. (3.98) for this
process coincides with that in Eq. (3.59) for the first process.

As in Eq. (3.72), we define

Sg = Ps(x1, x2) — Ps(x1, X5) + Ps(X1, x2)

+ Ps(x1: X2) — Ps(x1, —) — Ps(—, x2), (3.101)
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for four angles x1, X2, X}, X5, LHV theory gives [Clauser and Horne, 1974; Clauser and
Shimoney, 1978]
-1< 55 <0. (3.102)

For § — 1, an equality holds in Eq. (3.101), S3 — —1/2, and this pro-
cess, to be useful for testing the violation of Eq. (3.102), should not be conducted
at very high speeds. For x; = 0° x2 = 67° x] = 135° x5 = 23° we have
Sz = 0.120,0.184,0.201,0.207 for 5 = 0.2,0.1,0.05,0.01, respectively, violating
Eq. (3.102) from above. For y; = 0°, x2 = 23° x| = 45° x, = 67°, we have
S = —1.120, —1.184, —1.201, —1.207 for 5 = 0.2,0.1,0.05, 0.01, respectively, vio-
lating Eq. (3.102) from below. For (3 larger than (0.2 but close to it, S already turns out

to be too close to the critical interval given in Eq. (3.102) to be relevant experimentally.

3.2 Polarization Correlations in Pair Photons Production in Scalar

Electrodynamics

We now compute the explicit joint probability distributions of photon () po-
larization correlations in pair photons production in scalar electrodynamics, electrody-
namics of charged spin-zero particles. Similar to QED, we compute the conditional
joint probabilities distributions of photons as well as the probabilities corresponding to
the measurement of only one of the photon’s polarization. The second application is
involved with all repeated experiments corresponding to all orientations of the axis of
motion of pair of spin-zero particles in the c.m. initially prepared with the same speeds,
and a pair of photons is observed moving along a given axis in each case after the an-
nihilation process, given that these collisions mentioned above have occurred. In this
later case we must average over the initial orientations of axis along a pair of spin-zero
particles may initially move before annihilation occurs. With the explicit expressions
for the probabilities derived from this quantum dynamical analysis, we finally show a

clear violation of the relevant Bell-like inequality as a function of the speed of pair of
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spin-zero particle.

3.2.1 Computations of The Probability Distributions of Correlation

We start from the transition amplitude of pair photons production in scalar

electrodynamics, derived in §2.2, given (see Eq. 2.87):

oy VM
L ]

where e, () is the polarization vectors of photons.

So that, we obtain the transition probability of this process (\A|2 = A" A7), to

the leading order in the fine-structure constant, up to an important multiplicative factor

for the problem at hand, written as

Prob [p‘fpg + pivy _ uu] [ptlrpg P’?Pg

o
—4g €>\16V)\260')\16)\27
pikr  pike piki  pike ] wnesa)eo(Aa)es(da)
(3.104)
where [-][-], we rewrite as
i = {p‘fpé L P g“"] Pips N s s
pik1 pike piky prko
VL V3V STl Uy s SN 10U
(p1k1)>  (prk)(prke) (pik1) — (pik1)(pik2)
vt B0 VoM o8 B, o
DP1PaP1 P2 o P1P2 w P1P2 v P1P2 p 0B
g2 s P12 —g L g"™g™. (3.105)
(p1k2)? (p1k2) (p1k1) (p1k2)
After the directly computation of above term, we obtain
Prob o 4 PAPSPEPS | PADEPIDS LT piokpspl | piphpipg
(p1k1)? (p1k1) (p1k2) (p1k1)

(p1k1>(p1k2) * (p1/€2)2

|7 2 0. B B, o
0B P1D2 pv P1D2 uv P1D2 o o (1) (2) (1) (2)
— — — — — + e, e es’ey’,  (3.106)
g (p1k2) (plk’l) g (p1k2) g9 : g
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where e, i = 1,2, is the polarization vectors of photons.

After we multiply the polarization vectors of photons in Eq. (3.106). Note that
our problem want to study the correlations polarization of emerging photons in this
process. Therefore we not some over all polarization of emerging photons, then we

obtain the transition probability of this process, written as

(pl : 61)2(192 : 62)2 (p1 : 61)(1)2 : 62)(191 : 62)(]92 : 61)

prob o< (p1k1)? " (p1k1)(piks2)

_ (e1-e2)(p1-e1)(p2 - ea) _ (e1-e2)(p1-e2)(p2-e1)

(p1k1) (p1k1)
(p1-2)*(p2-e1)® | (p1-en)(pa-ea)(pr-e2)(ps - 1)

" (p1k2)? i (p1k1)(pik2)

_ (e1-e2)(p1-e1)(p2 - e2) _ (e1-e2)(p1-e2)(p2-e1)
(p1k1) (p1k2)

+ (€1 - e2)*. (3.107)

The simply transition probability of this process, given by

(pl : 61)2(292 : 62)2 (p1 : 61)(292 : 62)(191 : 62)(292 : 61)
Prob o« (p1k1)? 2 (p1k1)(prk2)
_oler-e)(pr-en)(pr-ez) (e1-ea)(pr-ea)(p2-e1)
(p1k1) (p1ks)

(p1 - 62)2(192 : 61)2

T + (e1 - e2)% (3.108)

In the c.m. of a pair spin-zero particles

Po=-DP=p, ke=-ki=k, p{ =p) =k = k) =p°

K = k|, p° = \/p2 +m?

(3.109)
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“A

i Gy,

Figure 3.2 The figure depicts pair photons production in scalar electrodynamics, with
initially spin-zero particles moving along the z-axis, while the emerging
photons moving along the z-axis.

In figure 3.2 we show how to introduce the polarization e/ (\) = (0,e;(\)) in

reference to the vector k*. If k chosen to lie in x-z plane, then

k := |k|(sin 0,0, cos 0), (3.110)

and the polarization vector that specify same as in §3.1.1, given by

e, := (—cosf cos x1, sin x1, sin 0 cos x1), (3.111)

where, here, p = |p|(0, 0, 1). For a general orientation of k and e;, we must rotate the

x — y — z coordinate system c.w. (clockwise) about the z-axis by an angle ¢.
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After we rotate the system with ¢ about z-axis, by using the rotation matrix in

Eq. (3.8), we have
k := |k|(sinf, — sin ¢ sin 0, cos ), (3.112)
and

e := (— cosf cos x1 cos ¢ + sin x1 sin ¢, sin y; cos ¢ + cos 6 cos x1 sin ¢, sin € cos 1),

(3.113)

in the resulting coordinate system. A similar expression for e(\’) = e is obtained by

replacing x; by x2. With e; = e;()\;), e;()q) is obtained from e; by the substitution
X1 —x1+7/2

Now we consider the probability of this process (see in Eq. (3.108)) in the con-

venient form. By using the properties of dot product of ¢; = (0,e;), @ = 1,2 and

p1 = (0,p). In the c.m. of spin-zero particles, may be written in the convenient form

(e1-p)’(e2-p)* | ,(e1-p)(e2-p)? N ,(e1-e)(er-p)(e; - p)

Prob o k)2 (bh2) (k) (vhy)

(e1-ex)(e;-p)(ea-p) | (er- P)2(92 ’ P)2

2 o) (pha)?

+ (e1 - e2)”. (3.114)

We treat two processes of annihilation associated with the relative probability

given in Eq. (3.114)

3.2.2 Process 1: Pair Spin-Zero Particles Moving Along the z-axis

We consider the annihilation of spin 0 particle pairs in flight in the c.m.
(Located at the origin of the coordinate system) initially prepared to be moving along
the z-axis, as in the figure 3.2 , each moving with speed v = (¢, prior to annihilation

into pairs of photons, and place detectors for the latter at opposite ends of the x-axis.
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With using the properties in Eq. (3.109) we note that
kiky = —|k|* — (k°)?
= — (k)" = (k°)*
= —2(k")?, (3.115)

and also using the property |p|/p® = [ which is the speed, 3, of initially particles,

spin 0 particle, anti-spin 0 particle, we have

piki =p-ky — pk}

= |p||k| cos 8 — p°k°
pl|

= —p%° (1 — % cos 9)
p

= —(k")?%(1 — Bcosb)
pk1 = —(k")?(1 — Bcos?), (3.116)

Similarly, we have finally scalar product to use in Eq. (3.114) as

pika = p - ko —pOkS
= —[pl|k| cos 6 — p"k°

= k(1 + ’%)’ cos )
p
= —(k")?*(1 + Bcosh)

pky = —(k°)*(1 + Bcosf). (3.117)
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After we rotate the system with ¢ = 27 about z-axis, from Eq. 3.10, we found that the

system is same as the initial system (¢ = 0). We have

e; = (—cosfcos x1,sin x1,sin 6 cos x1), (3.118)
ey = (— cos 6 cos xa, sin X2, sin 6 cos x2), (3.119)
p = |p[(0,0,1), (3.120)
k = |k|(sin 6,0, cos 9), (3.121)

and the scalar product of the two polarizations of photon, we write as:

e - €5 = cos® 6 cos X1 COS X2 + sin x1 sin xs + sin? 6 cos X1 COS X2

= (cos? § + sin® #) cos x1 cos Y2 + sin i sin xo

= COS X1 COS X2 + Sin x1 sin Yo

The latter works out, gives

e - ey = cos(x1 — Xx2)- (3.122)

So that, we can rewrite the probability in Eq. (3.108) in term of 4, speed (3) of the initial

particles, x; and 2, given by

|p|? sin? § cos? x1|p|?sin? O cos® x2  |p|*sin? O cos? x1 |p|? sin? 6 cos? x;
(K941 — B cosh)? (k9)4(1 — B2 cos?0)

Prob

N 2 cos(x1 — x2)|p| sin @ cos x1|p| sin € cos x2
—(k9)%2(1 — B cosb)

N 2 cos(x1 — Xx2)|p|sin @ cos x1|p| sin € cos x2
—(k%)2(1 + B cos )
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Ip|%sin? 0 cos? x1|p|? sin? 6 cos? xo

(0)3(1 + Bcos 0)? + cos’(x1 — xa). (3.123)

Using the properties in Eq. (3.19), then we simplify Eq. (3.123) as

Prob B*sin? @ cos? xq cos? xa  2cos(x1 — Xa)B3%sin? 6 cos 1 cos X2
m —

(1 — B cosh)? (1 — B cosh)

23%sin® 0 cos? x1 cos? xa  2cos(x1 — x2)B? sin? 6 cos x; cos? xa

(1 — B2 cos?0) (1+ Bcost)

B*sin? 6 cos y1 cos? xa2

1+ Feosd)? + cos?(x1 — Xa)- (3.124)

We consider the right hand side of Eq. (3.124) that can arrange each term as:

1 1 2 }

— . 49 2 2
(3% sin” 6 cos” x1 cos” X2 [(1 — Bcosh)? + (1+ Bcosh)? + (1 — 3% cos? )

1 1
-9 — 2sin% 6
cos(x1 — x2)5°sin” 0 cos x1 cos x2 Ll —Geos0) + 1 +ﬁcos@)}

+ COS2(X1 - X2),

and the directly computation of above term, we have

1+28cosf + %cos? 6 + 1 —QBCOSQ-}—ﬁQCOSZQ}

4 - 4 2 2
= (3% sin” 6 cos” x; cos Xgl (1— B cos20)?

2
4 - 4 2 2
+ 3% sin” 6 cos” x1 cos” x2 [(1_ﬁ2008249)]

. 1+ Bcost+1— Bcost
—2cos(x1 — X2)ﬁ2 sin? 0 cos X1 COS X2 { ﬁ(l — 32 COS296) }

+ COS2(X1 — XQ)
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where the fist term is so complicate, but it become simple term after some term cancel

out. We then obtain

2 +23%cos? f 2 }

A4
= (3*sin? 0 cos® x1 cos? xo {(1 — BZcos20)? + (1 — 32 cos?0)

' 2
— 23% cos(x1 — X2) sin® 0 cos X1 cos x» {(1 — (32 cos? 9)1

+ COSQ(Xl - X2)

(14 (% cos?8) + (1 — 3* cos? 0)]

= 23" sin" 6 cos” x, cos® xo { (1— 32 cos?0)?

2
— 2% cos(x1 — X2) sin® f cos x1 cos X3 {(1 — 32 cos? 9)}
+ cos?(x1 — Xa)-

Therefore we write down the probability of this process as:

Prob = 43" sin" 0 cos® x1 cos® xa 4% cos(x1 — x2) sin”  cos x1 cos x2
(1 — (2% cos?6)? (1— A cos20)

+ cos?(x1 — X2)- (3.125)
By using the properties of the trigonometry to specify
B?sin?0 = —(1 — %) + (1 — 3 cos?), (3.126)
prsin®0 = (1 — 32)% —2(1 — 5?)(1 — B*cos?) + (1 — 3% cos?)?, (3.127)
to simply Eq. (3.125), by replacing with Egs. (3.126)—(3.127), we obtain
4(1 — %)% cos? xy cos? xa  8(1 — 3%) cos? 1 cos? xa

_ 2 2
Prob = (1= P o2 0)2 — (1— 3 cos20) + 4 cos” y1 cos” xo
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4(1 — %) cos(x1 — X2) COS X1 COS X2

* (1 — (2 cos?0)

— 4 cos(x1 — X2) COS X1 COS X2

+ cos?(x1 — X2)- (3.128)

After the tedious computation, we obtain the probability of this process that use

to study the polarized photon, given by

4(1 — 3?) cos x1 cos Xa[cos(x1 — x2) — 208 X1 coS x2]
(1 — (2% cos?0)

Prob =

4(1 — B%)? cos? x1 cos? xa

+ (1 — 3% cos?0)?

+ (cos(x1 — x2) — 2cos x1cos x2)%.  (3.129)

where 3 = |p|/p" is the speed of e™ (or of e~) divided by the speed of light, 6 is
the angle between k and p, and ¢ is the angle between p and x-axis. We note that
the angles 1, x2 have given fixed values when the vector k is made to rotate in the
coordinate system.

Similarity in the process in §3.1.2, we use the integration in Egs. (3.40)-(3.41),

and define

2m 5+
Fs(a, x2) = / / Prob sin 6dfd¢. (3.130)
0o Jz-s

Since @ is a continuous variable, we may integrate the expression in Eq. (3.130)
over 6 from 7 /2 — 9 to w/2+ 9§ and then rigorously take the limit § — 0 in evaluating the
normalized probabilities in question. The ¢-integral, here, is not important in evaluating
these normalized probabilities since it leads to overall multiplicative factors that cancel

out in the final expressions. We have

45
sin 8d6

(1 — B%cos?0)

Fs(x1, x2) = 4(1 — ﬁQ) oS Y1 €OS X2[cos(x1 — X2) —2 €08 Y1 COS X2

(=2

oy —
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T4+5 .
o9 9 9 2 sin 0d6
+4(1 — %) cos® x1 cos” X2 /756 1= F o 0)?

L

+ (cos(x1 — x2) — 2 cos 1 COS X2)2/ sin 6d6. (3.131)
-5

El

N

The latter works out, we obtain

Fs(x1,x2) = 4(1 — 8%)cos x1 cos x2[cos(Y1 — X2) —2 cos X1 COS Xz]; <i i_ gii?)
- ot [ 2 (22
+ 2sin d(cos(x1 — X2) — 2€os Y1 oS X2)°. (3.132)
Then we have to find the normalization factor
Ns = Fs(x1, x2) + F5s(xa + g,Xz)
+ Fo(xixe + 5) + Fola + 500+ 3). (3.133)

By considering each term in Eq. (3.133), for (x1+7/2, x2), substituting x1 — x1+7/2,

we have

v
Fg(Xl + =

27X2)

1. (14 8sind
= —4(1 — #%) sin x1 cos x2 [~ sin(x1 — x2) — 2cos X1 cos x2] < In (ﬂ)

B 1—fsind
2\2 .. 9 5 1 (siné 1+ Gsind
+4(1 — 5%)"sin” x1 cos XZB —( 32 5in?0) 1 (—1—ﬁsin5)]

+ 2sin d(— sin(x; — x2) + 2sin x; cos x2)?, (3.134)
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for (x1 + 7/2, x2 + 7/2), substituting xo — Y2 + 7/2, we have

T
F5<X17X2 + 5)

. . ) 1 14 Bsind
= —4(1 — 3%) cos x1 sin X3 [sin(x1 — X2) + 2 cos X1 sin x2] 3 In (%)

' 1 B sin § L. (1+(sino
A(1 — 622 cos? Ty | ———— 4 = T_ Acin s
+ 4( (37) cos® x1 sin XZﬁ (1—52811125) +an(1—ﬁsin6)}

+ 2sin d(sin(x1 — Xa) + 2 cos 1 sin x2)?, (3.135)

Finally, for (x1 + 7/2, x2 + 7/2), substituting x; — x1 + 7/2, X2 — X2 + 7/2, we

have

T s
F ~ ~
s(x1 + 2,X2+ 2)

1+ Bsind
1—(@sind

1
= 4(1 — %) sin x sin x2 [cos(x1 — X2) — 2sin x1 sin xo] 3 ln(

. . 1 [sind 1 1+ @Bsind
4(1 — 2\2 2 2 I D e _1 e
TAL =AY s asin e g | ey T n(1—ﬁsin5)]
+ 2sin §(cos(x1 — Xa2) — 2sin 1 sin x2)2. (3.136)

We can rewrite Ny by substituting Eq. (3.132) and Egs. (3.134)—(3.136) in
Eq. (3.133), given by

= {[4(1 — ﬁQ) cos X1 €os Y2(cos(x1 — X2) — 2¢0s X1 €OS X2)]
+ [4(1 — 62) sin x1 cos ya(—sin(x1 — x2) + 2sin y1 cos x2)]

+ [4(1 = B) cos xu sin x2(sin(x1 — xa) + 2 cos x1 sin xo)]
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. ) . . 1 14 Bsind
+ [4(1 - ﬁQ) sin 1 sin xa(cos(x1 — x2) — 2sin ;1 sin XQ)]}E ln(%)

+4(1 — B*)*{cos? x1 cos® xa + sin? x1 cos? xy + cos? 1 sin” xo

+ sin? yy sin? xo) sin & N 1 n 1+ Bsind
sin® y1 sin —————+ —In[ ————
X X2 1—32sin?s 28 1—(@sind

+ 2sin (5{(608()(1 — X2 — 2cos x1 cos x2)? + (—sin(x1 — X2 + 2sin x; cos x2)?

+ (sin(x1 — X2 + 2 cos x1 sin Xg)2 + (cos(x1 — x2 — 2sin x; sin X2)2}-
(3.137)

To simplify Eq. (3.137), we calculate each term as: the first term be written as
= 4(1 — B%) {cos(x1 — X2) cos X1 cos Xz + sin(x1 — Xz2) sin x1 cos x2
—sin(x1 — x2) cos x1 8in x2 + cos(x1 — X2) sin x; sin ya}
4+ 4(1 — B*){—2cos® x1 cos® x2 — 2sin? x; cos? x2 — 2 cos? x1 sin? xa
— 2sin? y; sin? x2}
=4(1 — ﬁQ){cos2 X1 cos? X2 + Sin Y1 sin Y2 COS Y1 COS X2 + sin? X1 cos? X2
— €OS X1 SIn Y2 Sin Y1 COS X2 — SIN Y1 COS X2 COS X1 SIN X2
+ cos? y1 sin? ya 4 €os x1 €OS Y2 Sin 1 sin y2 + sin? y; sin? X2}
— 8(1 — 8%){cos? x1 cos? xa + sin® x1 cos® xa + cos? x1 sin? x2 + sin? x; sin? x }
= 4(1 — %){cos® x1 cos® x2 + sin? x1 cos? xo + cos® x1 sin? xo + sin® x; sin® y2}

—8(1 — %) = —4(1 — 3%, (3.138)
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and the second term be written as

cos? x1 €os® Xy + sin® x; cos? xa + cos® xy sin? o + sin® xysin®xo =1,  (3.139)

and the final term be written as

= (cos(x1 — X2) — 2cos x1 cos x2)* + (—sin(x1 — x2) + 2sin x; cos x2)?
+ (sin(x1 — x2) + 2 cos x1 sin )(2)2 + (cos(x1 — x2) — 2sin x; sin X2>2.

To simplify above term on the right-hand side, we distribute square term

= cos”(x1 — X2) — 4cos(x1 — Xz2) cos X1 cos xz + 4 cos” x1 cos” x2
+sin®(x1 — Xx2) — 4sin(x1 — X2) sin x1 cos x2 + 4sin” x1 cos® xa
+sin?(x1 — x2) + 4sin(x1 — x2) cos 1 sin xa + 4 cos? 1 sin? yo
+ cos?(x1 — x2) — 4cos(x1 — X2) sin x1 sin xo + 4 sin? x; sin? o,

and we then rearrange them as

= cos*(x1 — X2) +sin’(x1 — x2) +sin®(x1 — x2) + cos*(x1 — x2)
— 4{cos(x1 — x2) cos x1 cos X2 + sin(x; — X2) sin y1 cos X2
—sin(x7 — X2) €os 1 sin ya2 + cos(x1 — X2) sin x1 sin xa }
+4 [cos2 X1 cos? X2 + sin? X1 cos? Xo + cos? X1 sin? Xo + sin? X1 sin® Xg)]

=2 — 4 [cos®(x1 — x2) +sin’(x1 — x2)] +4=2. (3.140)
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The latter work out to be

N = 0= =i = () a0 | ]

+ 4sind. (3.141)

Therefore, given that the process has occurred as described above, with two pho-
tons moving (back-to-back) along x-axis, the conditional joint probability of the pho-

tons, specified by the angles x1, X2, is rigorously given by

. F ,
P(x1, x2) = lim ‘S(XN;(SXZ’) (3.142)

We use similarly method and the condition in the process in §3.1.2, gives
(l$i_r>r(1] Fs(x1, x2) = [—4(1 — %) cos x1 cos xa(cos(x1 — X2) — 2€os X1 oS X2)]
+ 4(1 — 3%)? cos® x1 cos® xa
+ (cos(x1 — Xa2) — 2cos X1 cos x2)*
= (cos(x1 — X2) — 2/8% cos x1 €os x2)?, (3.143)

and

lim Ny = [—4(1 = 62)] + 4(26)(1 — 2)? +2(29)

= [-4(1 =)A= (1= 5%)) +2]

= [2 —45%(1 — %), (3.144)

where we neglect 20.
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To obtain from Egs. (3.143)—(3.144), the conditional joint probability of the pho-

ton polarizations is given by

[cos(x1 — X2) — 237 cos x1 cos Y|

P = 3.145
forall 0 < g < 1.
If we take limit 5 — 0. We obtain
I
P(x1,x2) o 508 (x1 — x2). (3.146)

If only one of the polarizations is measured, then we have to evaluate
Fs(x1, x2)+ Fs(x1, xoa+7/2) and F5(x1, x2)+ Fs(x1, x2+7/2). To do this, Eq. (3.142)
and Eqgs. (3.134)—(3.135) gives

T
Fs(x1,x2) + Fs(x1, x2 + 5)

= {4(1 — ﬁ2) [cos x1 cos xa(cos(x1 — X2) — 2 oS X1 COS X2)

) ) . 1 1+ 8siné
— cos x1 sin xa(sin(x1 — x2) + 2 cos ;1 sin Xz)]}g ln(%)

sin

(1 — 32sin?9)
1 1+ Bsind
" %ln(l —ﬁsiné)]

+ 2sin 6{(cos(x1 — x2) — 2cos x1 cos x2)* + (sin(x1 — x2) + 2 cos 1 sin x2)?}.

+ 4(1 — 3*)?[cos® x1 cos® x2 + cos? Y1 sin? xo] [

(3.147)

The below expressions are defined to compute Eq. (3.147) :

cosy1c08Y2(cos(x1—Xx2) — 2 cosx1€os Y2) —cosysinya(sin(x; —x2)+2 cosxisinys)



84

= €0s X1 €0S X2(— €OS X1 €OS Y2 + sin x1 sin x2) — €os X1 sin X
X (sin x1 €os xa + €os 1 Sin x2)
= — cos® x1 cos® xa + sin y; sin y2 cos Y1 €os Y2 — cos® x1 sin? ya
— sin 1 Sin Y2 €COS X1 COS X2 = — cos? X1, (3.148)
and
(cos(x1 — X2) — 2cos X1 cos x2)* + (sin(x1 — x2) + 2cos X1 sin x2)”
= cos?(x1 — X2) + sin®(x1 — x2) — 4cos(x1 — X2) €S x1 €08 X2

+ 4 sin(x; — x2) cos x1 sin x2 + 4(cos® x; cos® Y2 + cos? x; sin? x»)

=1—4cos’y; +4cos’y; = 1. (3.149)
From above computation, Eqgs. (3.148)—(3.149), we can rewrite Eq. (3.147) as

T 1 1+ Fsind
Fs(x1, x2)+Fs(x1,x2 + 5) = —4 (1 — 62) cos? X15 ln(ﬁ—>

2 ﬂ 1—68111(5
 P)Peos?y, | S8 L (14 Psin
+4(1 6 ) COS™ X1 (1 _52 Sin? 5) + 26 ln<]_ — 68111(5
+ 2sin é. (3.150)

This is, the conditional probabilities associated with the measurement of only of

the polarizations are given by

T
. Fs(X17X2>+F6(X17X2+§)
P(x1, -) = lim N,
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—4(1 = 3?*) cos? x1 + 4(1 — %)% cos® x1 + 1
2[1-232(1 - p)]

_ 140 — o a1 = (1= )
2+ 4501 — /)

1+ 46%(1 — 3%) cos® x1

= ) 3.151
2+ 4P(1— ) G50
where 0 < § < 1.
If 5 — 0, we can rewrite Eq. (3.151) as
P(x1,—) L (3.152)
X1, 509 .

Similarly,

v
Fs(x1,x2) + Fs(xa + 5 X2)

= 4(1 — 3%)[cos x1 cos xa(cos(x1 — X2) — 2c0s X1 COS X2)

. . . 1 1+ Bsind
— sin x1 cos xa2(—sin(x1 — x2) + 2sin x; cos x2)] 3 IH(%)

sin

(1 — (2sin?§)
1 14 Bsind
+%ln<1—6sin5>]

+ 2sin 6 {(cos(x1 — x2) — 2 cos x; cos x2)? (= sin(x1 — x2) + 2sin x; cos X2)2}
(3.153)

+4(1 — 5%)? [cos2 X1 cos? xa + sin? 1 cos? X2:| [

The below expressions are defined to compute Eq. (3.153) :

cosy1cosx2(cos(x1—Xz2) — 2€osX1€08 x2) —sinxicosxa(— sin(x1 —x2)+2 cosxisinyz)
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= €08 X1 COS X2(— €COS Y1 COS X2 + Sin x1 sin x2) — sin X1 cos 2
X (sin x1 €os ya + €os 1 Sin x2)
= — cos? x1 cos? x5 + sin y1 sin y2 cos Y1 cos 2 — sin” x; cos® Y2
— Sin y7 Sin Y2 COS Y1 COS X2 = — cos? X2, (3.154)

and

(cos(x1 — X2) — 2cos X1 €os X2)? + (—sin(x1 — x2) + 2sin x; cos x2)?
= cos”(x1 — x2) + sin*(x1 — x2) — 4cos(x1 — xz2) cos X1 €os X2
+ 4 sin(x; — x2)sin x1 cos X2 + 4(cos? x1 cos? xy + sin” x; cos? x2)
=1 —4cos® xy +4cos® yo = 1. (3.155)

From above computation, Eqgs. (3.154)—(3.155), we can rewrite Eq. (3.153) as

T 1 1+ @Bsind
Fs(x1, x2)+Fs(x1 + =, x2) = —4(1 — %) cos® xa— ln(6—>

2 1G] 1 —fFsind
220 sin 0 1 14 Bsind
TAL =B cosxe [(1—ﬁ2sin25) +251n<1—ﬁsin5
+ 2sind. (3.156)

This is, the conditional probabilities associated with the measurement of only of

the polarizations are given by

T
Fs(x1,x2) + Fs(x1 + §7X2)

P(_7X2) = %E% Ng
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—4(1 = B%) cos? xo + 4(1 — %)% cos® xo — 1
2[1-232(1 - p)]

1—4(1 = 3?) cos? x2(1 — (1 — %))
21 —242(1 - 3%)]

_ 14— Feos o

157
21— 25°(1 - 77 G
where 0 < § < 1.
If 5 — 0, we can rewrite Eq. (3.157) as
1
P(—,x2) = B} (3.158)

In the notation of Local Hidden Variables (LHV) theory [Clauser and Horne,
1974; Clauser and Shimoney, 1978; Fry, 1995; Selleri, 1988], we have the identifica-

tions

P
P(x1, x2) = %, (3.159)
P(x1,—) _ Pula,00) (3.160)
15 P12(OO, 00)7 .
P(—,x2) = Diplco, az) (3.161)
» X2 P12(O0,00)’ .

where a;, as specify directions for measurements of polarizations. Defining (see Ap-

pendix E)

S = P(x1,x2) — P(x1,x5) + P(X1, x2)

for four angles x1, x2, X}, X5 LHV theory gives the Bell-like bound [Clauser and
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Horne, 1974; Clauser and Shimoney, 1978]:

-1<S5<0. (3.163)

It is sufficient to realize one experimental situation that violates the bounds in
Eq. (3.163).

For example, for y; = 0°, xo = 23°, x] = 45° x, = 67°, Eq. (3.145),
Eq. (3.151), Eq. (3.157), as obtained from scalar electrodynamics, gives S = 0.207
for 5 = 0 that violates Eq. (3.163) from above. For x; = 0°, xo = 67°, x|} = 135°,
X5 = 23°, we obtain S = —1.207 for § = 0 violating Eq. (3.163) from below. Both

bounds are violated for all 5 < 0.2 for these same angles, respectively.

3.2.3 Process 2: Two Photons Moving Along z-axis

Here we put the two detects on opposite sides of the z-axis. We consider
all repeated experiments with pair spin 0 particle produced in fight in the C.M.(located
at the origin),each particle moving with speed v = fc,corresponding to all possible
orientations of the axis along which a given pair moves. Here we must average over all
angles 6, ¢ of the vector p, with k along the z-axis.

In the present case

k = [k|(0,0,1), (3.164)
p = |p|(cos ¢sin b, sin ¢ sin 0, cos ), (3.165)
e; = (—cosx1,sinx1,0), (3.166)

ey = (— cos a2, sin x2, 0). (3.167)
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Since we have computed the scar product, same as Process 2 in QED, given by

pky = —(k°)*(1 — Bcosb), (3.168)
pk1 = —(k°)*(1 + Bcosb), (3.169)
e;-p = —|p|sinfcos(¢ + x1), (3.170)
e - p = —|p|sinfcos(¢ + x2), (3.171)
€] - €3 = COS X1 COS X2 + sin y1 sin xo = cos(x1 — X2)- (3.172)

So that, we can rewrite the probability in Eq. (3.108) in term of 0, speed (3) of the initial

particles, x; and 2, given by

Ip|?sin? 0 cos?(¢ + x1)|p|? sin? O cos?(¢ + x2)

Prob o (K%)(1 — Bcosf)?

N Ip|?sin? 0 cos?(¢ + x1)|p|? sin? 6 cos?(¢ + x2)
(k9)4(1 — 2 cos? 0)

N 2 cos(x1 — x2)|p|sinf cos(¢p + x1)|p| sin b cos(¢p + x2)
—(k9)%2(1 — B cosb)

. 2 cos(x1 — X2)|p|sinf cos(¢ + x1)|p|sinf cos(¢ + x2)
—(k9)2(1 + [ cosb)

Ip|?sin? 0 cos?(¢ + x1)|p|? sin? 6 cos?(¢ + x2)
(k9)4(1 4 Bcosh)?

+ cos?(x1 — x2) (3.173)

Using the properties in Eq. (3.19), then we simplify Eq. (3.173) as

B*sin 0 cos?(¢ + x1) cos?(¢ + x2) N 23*sin* 0 cos?(¢ + x1) cos(é + x2)

P
rob ox (1 — B cosh)? (1 — B%cos?0)

~ 2cos(x1 — X2)3%sin? 0 cos(¢ + x1) cos(¢ + x2)
(1 — Bcosh)

+cos”(x1 — x2)
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~ 2cos(x1 — x2)B”sin” 6 cos(¢ + x1) cos* (¢ + xa)
(1+ Bcosh)

B*sin* 0 cos(¢ + x1) cos?(¢ + x2)
(1 + P cosh)?

(3.174)

We consider the right hand side of Eq. (3.174) that can arrange each term as:

1 1
(1 — Bcosh)? i (14 G cosh)?

= 54 sin* @ COSQ(¢ +x1) COSQ(¢ + X2) [

2

+ (1 — 32 cos? 9)] — 2cos(x1 — x2)3%sin® 0 cos(¢ + x1) cos(¢ + x2)

1 1 ,
" {(1 — B cos ) i (1+50050)1 + cos” (X1 — X2)

and the directly computation of above term, we have

142 0+ 3*cos?0+1—2 0+ 32cos20
:ﬁ4sin4«900$2(q5+xl)0032(¢+XQ)[ +2f3 cos 0+ 3“cos=0+ Bcos 0+ 3*cos }

(1 — 3% cos? 0)?

+ 3*sin’ 0 cos*(¢ + x1) cos* (¢ + xa2) [(1 — 5220082 9)]

' 1+ Bcos+1— Bcosh
—2cos(x1 — x2)3*sin? 0 cos(¢ + x1) cos(¢ + x2) [ ﬁ(l _ 3 Coszgﬁ) ]
+ cos2(X1 - X2)7

where the fist term is so complicate, but it become simple term after some term cancel

out. We then obtain

2 2
= B*sin® 0 cos(é + x1) cos*(¢ + x2) { ) : }

(1 — 3% cos? 0)? * (1 — 3% cos?0)

+ COS2(X1 - X2)
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= 24*sin* 0 cos?(¢ + x1) cos?(¢ + x2) [(1 + 3% cos? 0) + (1 — (3% cos? 9)}

(1 — 3% cos? 0)?

— 2% cos(x1 — x2) sin? @ cos(¢ + x1) cos(d + X2) {(1 _ 522(:052 9)]

+ COSQ(Xl — X2)-

Therefore we write down the probability of this process as:

43*sin? @ cos? (¢ + x1) cos® (¢ + x2)

Prob =
o (1 — 3% cos?0)?

+ COSQ(Xl - X2)

4% cos(xa — xa) sin® f cos(4 + x1) cos(¢ + xa)

(1= 7 cos2 ) : (3.175)

By using the properties of the trigonometry to specify
BZsin?f = —(1 — %) + (1 — 3% cos?), (3.176)
prsin® 0 = (1 — 4%)? —2(1 — 5%)(1 — B*cos?) + (1 — 3% cos?)?, (3.177)

to simply Eq. (3.175), by replacing with Egs. (3.176)—(3.177), we obtain

4(1 — )% cos®(¢ + x1) cos?(¢ + xa2)

Prob =
o (1 — B2 cos?0)?

_ 8(1 = %) cos* (¢ + x1) cos*(¢ + xa)
(1 —(32cos?0)

4(1 — 3?) cos(x1 — x2) cos(é + x1) cos(¢ + x2)
(1 — 32 cos?0)

—4cos(x1 — x2) cos(¢ + x1) cos(¢ + x2)

+ cos?(x1 — Xa) + 4cos®(é + x1) cos* (¢ + x2). (3.178)
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Using the integrals in Egs. (3.81)—(3.84). Therefore, we can find

2 s
Fs(x1,x2) = / / Prob sin 6d6de, (3.179)
o Jo

given by

2 T
Falxi, xa) = 4 / cos(x1 + &) cos*(x + ¢)do / sin 60
0 0

2m & in 0d6
+4(1 — B*)cos(x1 — X2)/o d¢ cos(x1 + @) cos(x2 + (75)/0(1—&;2729)

2m i 1 gde
_8(1— 52)/0 cos?(x1 + @) cos?(xa + ¢)d¢/0 (1 _81;2 cos? 0)

2 g in 0d6é
a2 [ ot o) ot +00o | Rt

2w s
—4cos(x1 — x2) /0 cos(x1 + ¢) cos(xz2 + ¢)d¢/0 sin 6d6

+ 27 cos? (x1 — XQ)/ sin 6d6.
0

To simplify above equation, we note that

= —-8(1— 52)(2)[1 +2cos?(x1 — X2)](%) ln(i i— g)

— dmcos (1 — x2)(2) +4(D)[1 + 2eos’ (1 = x2)](2)

= (1~ )~ xa) — 2001~ )L+ 200 o)l ()

+ (1 — BH2[1 4+ 2cos?(x1 — x2)] [1——1@ + % ln(%)]



93

— 4 cos?(x1 — x2) + 27[1 + 2cos*(x1 — X2)]

= [4r(1—%)cos®(x1 — x2) —2m(1 — %) —4n(1—3*)cos?(x1 — XQ)]% ln<1+ﬁ)

1-p
+ (1= 5% + 2cos*(x1 — x2)] [ﬁ " %m(%)]

— 4mcos®(x1 — x2) + 271 + 2cos*(x1 — x2)]

= —27(1— 62)% ln(%) + 2m

+ (1= 621+ 2co8*(x1 — x2)] {;Jr L (1+ﬁ>}

-7 ta"\1-5
— [-2r(l- )+ 30 - g (55 ) 1 - ) 2
+ 2= )+ 200 - 7 S (125 o -
- 2 )+ (- PP (125) +am -
Lon(l— &) {1 UsLa 1(1 i g)] cos (1 — x2),

finally, we obtain

[—4(1 - )+ (1—-p5%)] 1 1+p 3 B
Bm( )‘é*?

Fs(X1,x2) = 43 1-3

A2
- [1 + 422 mG i g)} (v —x2), (3.180)

where we neglect 27 because it is canceled after normalized. We next introduce the

convenient Fj3(x1, X2), given by

Fs(x1, x2) = A(B) + B(f) cos®(x1 — x2), (3.181)
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where

A(g):[—4(1—612(1—@]1n<ig>+g_%, (3.182)
B(B) = (1 - ) [1 + & ;ﬁﬁz) ln<ii—g>} . (3.183)

To normalized the expression in Eq. (3.181), we have to sum Fj3(x1, x2) over the polar-

izations directions specified by the pairs of angles (see as Eq. (3.45)):

T T T T
(X1, X2), (X1+§,X2), (X1,X2+§)> (X1+§,X2+§)- (3.184)

That is, we have to find the normalization factor

T
Ng = Fs(x1,x2) + Fa(x1 + §,X2)

v v T
+FB(X1aX2+§)+Fﬁ(X1+§,X2+§). (3.185)

The explicit expression of above term, by replacing x; by x1 + 7/2, x2 by x2 + 7/2,

gives

Fyl + 5, x2) = A(B) + B(8)sin®(v1 - x2), (3.186)
Fylxixa + 5) = A(B) + B(3)sin®(v1 — xa). (3.187)
Fs(x1 + g, X2 + g) = A(B) + B(B) cos*(x1 — x2)- (3.188)

The following computation for the normalization factor we have upon sum-
ming over the set in Eq. (3.184), by substituting Eq. (3.181), Egs. (3.186)—(3.188) in
Eq. (3.185). Giving

N = 4A(B) + B(B)[cos®(x1 — x2) + sin®(x1 — x2) + sin*(x1 — x2) + cos’(x1 — x2)]
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= 2[24(3) + B(3)]. (3.189)

Accordingly, for the joint conditional probabilities, using the properties in

Eq. (3.69), we have

A(B) + B(B) cos®(xa — x2)
22AV) + BB

Ps(x1, x2) = (3.190)

For the measurement of only one of the polarizations (1), using the properties in

Eq. (3.70), and we compute

Fs(x1,x2) + Fa(x1, X2 + g) = 2A(B) + B(B)[cos®(x1 — x2) + sin®(x1 — x2)]

= [2A(B) + B(B)]. (3.191)

Therefore, we obtain the measurement of only one of the polarizations () as:

24(9) + B@) _1
b = 5paG) + B~ 2 .

for all 0 < 3 < 1 and independent .
For the measurement of only one of the polarizations (), using the properties

in Eq. (3.71), and we compute

Fixi,x2) + Fala + 5x2) = 24(8) + B(B)leos” (xa = xa) + sin” (1 — xa)]

= [2A(B) + B(B)]. (3.193)

Therefore, we obtain the measurement of only one of the polarizations () as:

2A(9) + BB) _1
o) = 5paG) + B~ 2 .
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for all 0 < B < 1 and independent 5.

Again we have the important statistical property

Ps(x1,x2) # Ps(x1, =) Ps(—, x2), (3.195)

in general. It is interesting to note that an equality in Eq. (3.190) holds in the extreme
relativistic case 5 — 1, where each side is equal to 1/4.

Only in the limiting case § — 0, the joint probability in Eq. (3.190) for this
process coincides with that in Eq. (3.145) for the first process.

As in Eq. (3.72), we define

Sz = Ps(x1, x2) — Ps(x1, X2) + Ps(X1, X2)

+ Ps(x1, x5) — Ps(x1, —) — Pa(—, x2), (3.196)

for four angles 1, X2, X}, X5, LHV theory gives [Clauser and Horne, 1974; Clauser and
Shimoney, 1978]
-1 <853 <0. (3.197)

For § — 1, an equality holds in Eq. (3.190), S3 — —1/2, and this pro-
cess, to be useful for testing the violation of Eq. (3.197), should not be conducted
at very high speeds. For x; = 0° x2 = 67° x] = 135° x5 = 23°, we have
Sz = 0.120,0.184,0.201,0.207 for 8 = 0.2,0.1,0.05,0.01, respectively, violating
Eq. (3.197) from above. For x; = 0°, xo = 23° x} = 45° x4 = 67°, we have
Sz = —1.120, —1.184, —1.201, —1.207 for 5 = 0.2,0.1,0.05, 0.01, respectively, vio-
lating Eq. (3.197) from below. For 3 larger than 0.2 but close to it, Sy already turns
out to be too close to the critical interval given in Eq. (3.197) to be relevant experimen-

tally.



CHAPTER IV
SPEED DEPENDENT POLARIZATION

CORRELATIONS IN QED AND ENTANGLEMENT

In this chapter, we carry out a detailed investigation of all the electrodynamic
processes outlined in Chapter II. We put much emphasis on the concept of entangle-
ment. Explicit polarization correlations for the particles produced in all of these pro-
cesses are derived. We show clear violations with Bell’s inequality of Local Hidden
Variables (LHV) theories. The concept of entanglement is outlined in the Appendix to

this chapter.

4.1 Introduction

We carry out exact computations of joint probabilities of particle polarizations
correlations in QED, to the leading order, for initially polarized and unpolarized parti-
cles. The interesting lesson we have learnt from such studies is that the mere fact that
particles emerging from a process have non-zero speeds to reach detectors implies, in
general, that their polarizations correlations probabilities depend on speed [Yongram
and Manoukian, 2003]. The present extended, and needless to say, dynamical analysis
shows that this is true, in general. This is unlike formal arguments based simply on com-
bining spins only. As a byproduct of this work, we obtain clear violations with Bell’s
inequality [Clauser and Horne, 1974; Clauser and Shimoney, 1978; Selleri, 1988; As-
pect, Dalibard and Roger, 1982] of LHV theories. We will also see how QED generates
speed dependent entangled states.

Several experiments have been performed in recent years [Aspect, Dalibard and

Roger, 1982; Fry, 1995; Kaday, Ulman and Wu, 1975; Osuch, Popkiewicz, Szeflinski
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and Wilhelmi, 1996; Irby, 2003] on particles’ polarizations correlations. And, it is ex-
pected that the novel properties recorded here by explicit calculations following directly
from field theory, which is based on the principle of relativity and quantum theory, will
lead to new experiments on polarization correlations monitoring speed in the light of
Bell’s theorem. We hope that theses computations will be also useful in such areas of
physics as quantum teleportation and quantum information in general.

The relevant quantity of interest here in testing Bell’s inequality of LHV [Clauser

and Horne, 1974] theories is, in a standard notation,

g — pi2(a1, az) _ pia(a1, ay) i pi2(al, az) 4 pi2(ay, ay)
p12(00,00)  pr2(00,00)  piz(00,00)  pi2(00, 00)

_ pi2(af, o) _ Pp12(00, az)
p12(00,00)  pi2(00,00)

4.1)

as is computed from QED. Here a4, ay (a}, a}) specify directions along which the polar-
izations of two particles are measured, with pi2(a;, as)/pi2(00, 00) denoting the joint
probability, and pi2(aq, 00)/p12(00, 00), p12(00, as)/p12(00, 00) denoting the probabil-
ities when the polarization of only one of the particles is measured. [pi2(0c0,00) is
normalization factor.] The corresponding probabilities as computed from QED will be
denoted by P [x1, x2], P [x1, —], P [—, x2] with x1, x2 denoting angles the polarization
vectors make with certain axes spelled out in the bulk of the paper. To show that QED is
in violation with Bell’s inequality of LHYV, it is sufficient to find one set of angles x1, X2,
X1, X5 and speed (3, such that S, as computed in QED, leads to a value of S with S > 0
or S < —1. In this work, it is implicitly assumed that the polarization parameters in the
particle states are directly observable and may be used for Bell-type measurements as
discussed.

The need of a relativistic treatment based on explicit quantum field dynamical
calculations in testing Bell-like inequalities is critically important. An intriguing and
very recent reference [Peres and Terno, 2004], which appeared after our relevant 2003

paper publication [ Yongram and Manoukian, 2003], however, discusses the role of rel-



99

ativity in quantum information, in general, and traces the historical development of its
role, and most importantly, in the light of our present investigations, emphasizes the
need of quantum field theory as necessary for a consistent description of interactions.
Most earlier analyses dealing with relativistic aspects, relevant to information theory
and Bell-like tests are kinematical of nature or deal with basic general properties of
local operators associated with bounded regions of spacetime setting limits on measure-
ments and localizability of quantum systems. These probabilities are well documented
in some of the recent monographs [Haag, 1996; Araki, 1999; Bratelli and Robinson,
1987] on the subject. Notable important other recent references on such general aspects
which are, however, non-dynamical of nature are [Summers and Werner, 1987; Landau,
1987; Alsing and Milburn, 2002; Gingrich and Adami, 2002; Bartlett and Terno, 2004;
Bergou, Gingrich and Adami, 2003; Terno, 2003], and a paper by Czachor [Czachor,
1997] indicating how a possible decrease in violation of Bell’s inequalities may occur.
In the present work, we are interested in dynamical aspects and related uniquely de-
termined probabilities (intensities) of correlations based on QED, as a fully relativistic
quantum field theory (i.e., encompassing quantum theory and relativity) that meet the
verdict of experiments. QED is a non-speculative theory and as Feynman [Feynman,
1985] puts it, it is the most precise theory we have in fundamental physics. The closest
investigation to our own is that of reference [Pachos and Solono, 2002], a reference we
encountered after the submission of our relevant paper for publication, which considers
spin-spin interactions, in a QED setting, for non-relativistic electrons and, unfortunately,
does not compute their polarizations correlations which are much relevant experimen-
tally. In the present paper, exact fully relativistic QED, computations, to the leading
order, of polarizations correlations are explicitly carried out for initially polarized and
unpolarized particles. The importance of also considering unpolarized spin stems from
the fact that we discover the existence of non-trivial correlations, in the outcome of the
processes, even for such mixed states (since one averages over spin) and not only for

pure states arising from polarized spins, leading, in particular, in both cases to speed de-
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pendent probabilities. The main results of this chapter are given in Eq. (4.82), Eq. (4.89),
Eq. (4.92), Eq. (4.142), Egs. (4.148)-(4.149), Eq. (4.159), Eq. (4.162), Eq. (4.168),
Eq. (4.181), Egs. (4.185)—(4.190). All of these probabilities lead to a violation of Bell’s
inequality of LHV theories. As the computations are based on the fully relativistic QED,

it is of some urgency that relevant experiments are carried out by monitoring speed.

4.2 Polarizations Correlations: Initially Polarized Particles

We now study explicit expressions of simultaneous measurements of two parti-
cles polarizations. One of expressions of simultaneous measurements of two particles
polarizations is two electron polarizations, so-called spin polarization correlations, in
process e e~ — e~ e, in §4.2.1. An another one is two photon polarizations, so-called
photon polarization correlations, in process ete™ — ~, in §4.2.2. In this case, we

consider the initially polarized particles, not summing over all polarization.

4.2.1 The Initially Polarized Electronsin e e~ — e e~

In this section, we consider the process e e~ — e e, in the center of
mass (c.m.), with initially polarized electrons with one spin up, along the z-axis, and
one spin down with p; = —p, denoting the momenta of the initial electrons. We
consider momenta of the emerging electrons with p; = —p/, (Shown as in figure 4.1 ).

The expression for the amplitude of this process (e e~ — e~ e™) is well known (see in

§2.4):

Ao u(py) v u(p)u(py)yuu(p2) ﬂ(p’g)’y“u(pl)ﬂ(p/l)’yuu(pg)' 4.2)

(Py — p1)? (Ph — p1)?

We simplify the amplitude of this process to convenient calculation, by using the
properties of the gamma matrices v; = 7% and g = —7° (see as in Appendix A), we

obtain

A ~a(@)y ulp)u(s)y u(ps) N a(p))y ulpr)u(ph)y?u(ps)
(P — p1)? (p1 — p1)?
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_+ﬂ@9¢%@ﬂﬂ@D¢W@ﬁ__EWQWﬂ@DH@DWﬂ@ﬁ. 4.3)
(py — p1)? (py — p1)?

For the four-spinors of the initial electrons, we have

0 1/2

+m 7

p2 ) , (4.4)
m io

u(p1) = ( |

0 1/2
+m !
u(ps) = (p o ) , (4.5)
ip 1
1 0
where = denoting the spin up and |= denoting the spin down,
0 1

po P o 0
PPrm v+l 14 /1-p5%

the emerging electrons

= m~y, p = m~y(3 and for the four-spinors of

0 1/2 g
pt+m !
u(pi)—( 5 ) o-p. | (4.6)
w+m&
0 1/2 &
p-+m 2
ww) = (") | e, |- @)
_p0+m£2

where the two-spinors &, & will be specified later. From the amplitude in Egs. (4.2)—
(4.3), we need the adjoint four-spinors of the emerging electrons, u(p}) and @(p}),

by using the property of the adjoint four-spinors 7 = uf7° (see as in Appendix A),

v = denoting 2 X 2 unit matrix, we have

0 1/2 .
ﬂ(p’l):(p +m> (51 —¢l pl), 4.8)

2m P’ +m
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0 1/2 L
ﬂ(p’2>=(p +m> (55 gl pl)' 4.9)

0 +m

Figure 4.1 The figure depicts direction of momenta of initial electrons with along y-

axis and direction of momenta of emerging electrons with the arbitrary di-
rection.

From figure 4.1 , we write momenta of the initial and emerging electrons in x-,

Y-, z-axis as:
P = p(07 17 O) = P2 (410)
p} = p(cos psin b, sin psin 6, cos §) = —py,. 4.11)

From the momentum conservation, p; + p» = p} + p5. Note that each electron
has the same energy p° = p? = pJ = p’ = p and the same momentum p = |p,| =

IPo| = |PY| = |Ph|, we express (p} — p1)? and (ph, — p1)? in Egs. (4.2 )~(4.3 ) in term of
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speed (6), vy =1/ m the following expressions:
(P —p1)* = Py —p1)* = (7 — 1Y)
= [pi[* + [P = 2P} - Py
=p* +p? — 2p*sin pcos b
(P — p1)* = 2p*(1 — sin ¢ cos ) = 2v*m?B3*(1 — sin ¢ cos 6), (4.12)
and
(= p1)* = (Py — p1)* — (py — 1Y)
= |p3* + |ps|* — 25 - py
=p? +p® + 2p°sin ¢ cosd
(ph —p1)? = 2p*(1 + sin ¢ cos ) = 2v*m?B*(1 + sin ¢ cos 0). (4.13)

We will now calculate the matrix elements in Eq. (4.3 ). We start with the com-

putation of part of the matrix elements: the expression of u(p) )7 u(p;)

0 o \[1 0 1
a(p))7 u(p) = (p ;;m)(f{ g 2P )
0 —1/\ip|

I
VR
=
[\DO
S|+
3
N——
VR
|
Lo,
g
_|_
o)
3 |=
N——
N

0 T
w(p,)y u(pr) (p +m>[fﬁ+ip51 2 P i}, (4.14)

2m P’ +m



the explicit expression of above matrix elements is written as

p—l—m
2m

a(p )y u(pr) = (

and the expression of w(ph)y u(ps)

a(ps)y u(ps) = <p 2+ m)[ﬁz | —ipg)

|
2

1 T
) 51 +1ip&;
0

o - pj
0 +m

)

P1

P’ +m

0 - Py
0 +m

!/

l

—ip 1

I

the explicit expression of above matrix elements is written as

P’ +m

0
) ute) = (5 ) 6| | et

and the expression of u(p))y u(py)

a(py)y u(pr) = (p ; m)(§2

a(ph)y u(pr) = <p +m){§2 —ipél7

T
2

i
2

/
0-pP;

P’ +m

o Py
P’ +m

¥
)

p1

P’ +m

Pl

O+ m

)

—ip |

]

ip |
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(4.15)

(4.16)

4.17)

(4.18)
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the explicit expression of above matrix elements is written as

0 1 . 0
o P +m) i .+ 0P
u(py)y u(pr) = 3 —ip€ : (4.19)
(p2)7 u(p) < 2m 2 0 2p0 4+ m 1

and the expression of u(p} )y u(ps)

0 . 1 0 l
o) = (P 6 )|

2m

- 1 —S1
2m PEmA gt
B} ) = (p”"”)[s*m ShaL @20)
1)7 uP2 om 1 P 10 +m | .

the explicit expression of above matrix elements is written as

0 0 .
_ 0 - b +m T . ’(G | 251
u(p)y U(pz)—( 5 )51 1 +1p€1po+m 1 (4.21)
and the expression of u(p} )y u(p;)
. 0 . 0 o’ T
_ p+m o-p
L e e I
p —oal 0 J\ip ]
_<p0+m)(T T0'~p’1) ipo’ |
= 1 &
0 /
u(py)y'u(pr) = ( 5 )[l/ﬂa] | +€Im03 T] : (4.22)



the explicit expression of above matrix elements is written as

) 'ulon) =

2m

and the expression of % (p} )y u(ps)

a(ph)y ulps) = (

a(ph)y u(ps) = (

P’ +m
2m

po—l—m
2m

p0+m
2m

0 0
P+ m\|. :
) ip€io? 3

()-'pllo_j
P’ +m
1 0
><§T TU'P'1> 0 o
2 52,0 .
p+m/\ _5i
)(g* TG-pi>iP‘7jT
2 2p0+m _le
) ) o-p)
ip¢lo? 1 —fgmaj l} ;

)

the explicit expression of above matrix elements is written as

a(ph)y u(ps) = (

po—i-m

2m

and the expression of % (p} )y u(p;)

a(ph)y u(pr) = (

P’ +m
2m

ipio? | —fip

(o)

"P1
o
O+ m f

E

(1 oo [0
Yot || -5 P
0 prme g
0 .
prtmjl _5i
S e m™
2 52,0 .
p’+m o 1
/

|
ip 1

T
ip |
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(4.23)

(4.24)

(4.25)

(4.26)
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the explicit expression of above matrix elements is written as

0 0 o [1
o P m\|. o pl
u(ph) u(pr) :( o ) ip¢lo’! N $p0 el Nk (4.27)

finally, the expression of w(p} )y’ u(ps2)

_ : O +m o-p 0 o || |
a(ph) Y u(ps) = (p 5 )(ﬂ —£] 0+p1 ) .
m P/ o0 J\ip 7

- 1 TSl .
2m P’ +m —oi |

p0+m
2m

a(ph)y ulpe) = ( )[ipfiaj T i} , (4.28)

the explicit expression of above matrix elements is written as

/
0 P o
O+ m 1

) 0 1
ﬂ(p&)vﬂu(zaz):(p +m) ipclo? | | +¢f (4.29)

2m 0 P

We will now consider the process ee~ — e~ e~ in vary case that depend on
direction of the emerging electrons.

In this case, we consider direction of the emerging electrons in flight with the

arbitrary direction in x — 2 plane. So that, we set direction of the flight of the emerging

electron from the x-axis with the angle (¢) is equal to zero (¢ = 0), shown as in fig-
o-p| .

262 = 5 in
P’ +m

ure 4.2 . So that, we have (p} — p1)? = 2m?y23% = (p), — p1)*.and consider

term of the pauli matrices (see Appendix A) and 6. It is written as:

o p 1
0 i p LR R )
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1 01 ‘ 1 0
= psin € + pcosf
prrmoly oo 0 —1
\
p cos@ sinf
— 0
p +m sinff —cosf
o-D cosf sinf
p m sinff —cos@
01 0 —i 1 0 cosf sinf
where 0! = ,02 = , 00 = and M =
10 1 0 0 —1 sinf@ —cosf
P -

Figure 4.2 The figure depicts direction of momenta of initial electrons with along y-
axis and direction of momenta of emerging electrons with the arbitrary di-
rection in x — z plane.

Here we can calculate the matrix element in Eq. (4.3), °, by using properties in

Eq. (4.15), Eq. (4.17), Eq. (4.19) and Eq. (4.21), neglected (p" + m)/2m that cancel out
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in the normalization, to find the expression of u(p} )y u(py)u(ph)y u(ps2), given by

o ulpn ) *uten) ~ (6] 1 +ipel B 1 4 —ipgl 5B ¢

= [£I T +ip*¢IM i][f% | —ip*elM T} . 431)

To carry out exact expression of above term, we multiply matrix elements, fol-

lowing:
cosf@ sinf 1 cos 1 0
M7T= = or cos + sinf , (4.32)
sinff —cosfJ\O0 sin @ 0 1
cosf sinf 0 sin 8 1 0
M| = = or sin 6 — cosf , (4.33)
sinf —cosf[J\1 —cos 6 0 1

the latter works out to

— (! 0 — (] 0 ettt 1 c 2 . 9 1 o 2 9 0
u(py)y wpr)u(ps)y ulpz) = &6 +1p” sin ip” cos

L 2 2 24

= 515; (1 +1ip*sino) —ip®cosé

x | (1 —ip?sin®) —ip*cosf )

L 2 24

(4.34)

where subscript 1 and 2 denoting the representation spin matrix multiply 51, fg, respec-
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tively.
The another matrix element in Eq. (4.3), 77, j = 1,2, 3, by using properties in
Eq. (4.23), Eq. (4.25), Eq. (4.27) and Eq. (4.29), neglected (p" + m)/2m that cancel out
in the normalization, find the expression of u(p} )y u(p1 )u(py) ¥ u(ps), given by
p/

a(ph )y u(pr )a(ph)y u(ps) ~ {ipéfaj l +£Ip—(g;;baj 1 Mlp@a” 1 —¢f ‘j +p1 o’ l}

= [ipglo’ | +pelnio’ 1][ipclo? 1 —pelMo? 1] . (439)

To simply above term, we collect Mo’ as:

. cosf sinf 01 sinf  cosf
when j =1; Mo = = , (4.36)
sinf —cosf [J\1 O —cosf sinf
cosf sinf 0 —i sinf  —cosf
when j = 2; Mo? = =1 . (4.37)
sinf —cosf J\i O —cosf) —sinf
cosf sinf 1 0 cosf) —sind
when j = 3; Mo® = = , (4.38)
sinf —cosf J\0 —1 sinf  cos6
and o7 |
0 110 1
when j =1; o' | = = =T, (4.39)
1 0/J\1 0
0 —il[0 1
when j =2; 0% | = = —i =i, (4.40)
i 0 /J\1 0
1 0 0 0
when j = 3; ¢° | = =— =—|, (4.41)



and 07 |

whenj=1; ¢! T =

when j =2; 0° | =

when j =3; 0% 1 =

111

The expression the matrix elements in Eq. (4.3) are calculated as:

TP,y upa (k) u(pa) = [ip€] 1 +pglA 1][ipgd L —pef 1]

sin 6

where A =

—cos 6

cos

sin 6

0 11/1 0
— =], (4.42)
1 0/J\O 1
—il{1 0
=i =1], (4.43)
i 0 0 1
0 1 1
= |=n. (4.44)
0 —-1J\0 0
+ o€l 1 +ing[B 1] -p8] | —inglB 1]
+ |—ogl Lol tfliogd T—pde 1] @as)
sinf  —cosf cosf@ —sinf
= ,C =
—cosf —sind sinf  cosf

To carry out exact expression of above term, we multiply matrix elements, fol-

lowing:
sin @
AT =
—cosf
sin 6
A | =
—cosf

cos

sin 6

cos

sin 6

sin 6 1
or sinf — cosf ,  (4.46)
—cosf 0 1
cos f 1 0
or cosf + sin 6 , 4.47)

sin 0 0 1
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1 sin 6

1 0
= or sinf —cosf , (4.48)

o) () ==l [
g

|
|

sinfd —cos6
—cosf —sind

sinf —cos6
B|=
—cosf —sinf

—cos f 1 0
or —cosf —sin 6 , (4.49)
—sind 0 1

cosf@ —sinf\[1 cos 1 0

CT= = or cosf + sin @ , (4.50)
sinf@ cosd 0 sin @ 0 1
cosf@ —sinf\[0 —sin 6 1 0

Cl|l= = or —sinf + cos 6 , (4.51)
sinf cosd 1 cos 0 1

the latter works out to

| 1 1
u(py)y u(p) )u(ph)y u(p:) = 1€l < | + sin — cos 0

0

X +1icosf +1isinf

+ +1isinf ) —1icosf
L 1
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1 0
X | + sin @ — cos
0 0 1
2 2 2
After we simplify above term, gives
T Vs (1 Vi (1 Vi 2etet )| I 0
u(py)y u(pr)u(py)y u(pz) = p°€1&; § | (i + sind) — cosf
0 1
1 1
1 1
X | (i—sin®) —cosd
0 0
L 2 2]
0
+ [ (1 +isin6) —icosd
0 1
L 1 1
1
X |(—=1+1isind) +icosé
1 0
L 2 2
1
+ | (=14 sin8) + cos 6
1 0
L 1 1
0
X | (i+sind) — cosf
0 1

2

(4.52)

Similarly, by using properties in Eq. (4.15), Eq. (4.17), Eq. (4.19) and Eq. (4.21), ne-
glected (p° 4+ m)/2m that cancel out in the normalization, to find the expression of
u(py)7 u(p1)u(pi)y u(ps), given by

o -p}
0 +m

o-pj
Y +m

a(ph)y u(pr)a(p)7 ulps) ~ |€5 1 —ipgl l}[ﬂ | +ipg] 1
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= |1l L HteMT). @Sy

By using properties in Eq. (4.30), Egs. (4.32)—(4.33) gives

—_

— ! 0 — 0 _ t 2 T o 9 1 s 2T 0
w(ph)y u(pr)u(p))y u(pe) = & ip=&;y sin +1p*&; cos

(@)
(@)
—_

2 2 2

o
—
(@)

X fI + ip251 cos + ip2§1r sin 6

,_.
(@)
—

1 1 0
= ¢ied —ip*sinf +ip® cos B
0 0

2 2 2

—_

0 ) 1 ) 0
X +ip” cos 6 +ip“sinf
1 0 1
1 1 1

1 0
=&l | (1 —ip’sin0) +ip® cos B
0 1
2 2
0 1
x | (1 +ip?)sind +1ip* cos 6 . (454)
1 0
1 1

Similarly, by using properties in Eq. (4.23), Eq. (4.25), Eq. (4.27) and Eq. (4.29), ne-
glected (p® + m)/2m that cancel out in the normalization, to find the expression of

ﬂ(pIQ)VjU(pl)ﬂ(pll)Vju(pz), given by

!/

o-P1
P +m’ ll

/

a(py)y w(pr)u(py)y u(ps) ~ {ipéaj | —552%0j THipé“IUj T4l

= [ingho? | —ptinto? 1linelo? 1 +pelMo? 1] @55)
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By using properties in Egs. (4.39)—(4.44) gives

A A 0
a(ph) v u(p )a(py)Y ulps) = p*ERES < | — sinf + cos
0 0 1
2 2 2
1 1 0
X |1 + cos 0 +sind
0 0 1
L 1 1 1
1 1 0
+ —1isinf +1icosf
0 0 1
L 2 2 2]
0 1 0
X | — —1icosf —1isinf
1 0 1
L 1 1 1
0 1 0
+ | —i —cos 0 —sind
1 0 1
L 2 2 2]
.
1 1 0
x |1 —sinf + cos 6
0 0 1
1 1 14
After we simplify above term, gives
T\~ Vi (o, V7 2etet ) | (5 o 1 0
u(py) Y u(pr)u(p))y u(p2) = p &6, (i—sind) + cost
0 1
2 2
1
X | (i+sind) + cos 6
0 0
L 1 1
1 0
+ | (1 —1isinf) +1icosf
0 1
L 2 2
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0 1
X | —(1+isinf) —icosf
1 0
L 1 1
0 1
+ [—(1+sinb) — cos @
1 0
L 2 2
1 0
X [(1—sin®) + cos 6 . (4.56)
0 1
1 14/

After the tedious calculation of the matrix elements, we rewrite the amplitude of

this process as:

+ 1 0
A~ =l {1 (14ip?sind) —ip?cos 6
0 1

1

0 1
x | (1 —ip®sinf) —ip? cos
1 0
2

Tet 0 1
+ & (1 +ip®sin6) +1ip* cos @

1 0
x | (1 —ip*sinf) ( +ip COSG(
0 1

—l—pQGQ{ (i+sin®) ) — cosf

X |(i—sin®) — cos
0 0

2 24

1




pE1Ey] | (1 +1isinf) icosd
0 1
1 14

+ preled

+ /)2fI§2

+ peled

0 1
(=1 +isin®) +icosf

1 0
L 2

|: +1isin ) () —|—1c089(
(1 —isin®) (O) +icosf (0)

1 ) 1
( 1 0
|:(isin9) ( ) + cos 0 ( )
( 0 1 ! 1

0 1
(i+sind) ( ) + cos 6 ( ) ]
! 2 0 2

(—i+sind) + cos 6
! 1 ’ 1

14
]\
24

\

J
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(4.57)
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Figure 4.3 The figure depicts e~ e~ scattering, with the electrons initially moving along
the y-axis, while the emerging electrons moving along the x-axis. The angle
X1, measured relative to the z-axis, denotes the orientation of spin of one of
the emerging electrons may make.

CASEIL: 0 =n/2and ¢ =0

In this case, we set § = 7/2 and ¢ = 0, see in figure 4.3 , given by

1 0
A~ =gl S [ (1+1p) (1-ip%)
0 1
1 2
0 1
+eled S (1 +ip?) (1—ip?)
1 0
L 14 L 24
( 1 r )
2¢f ¢t ; 1 ; 1
+ 07664 [+1) (i—-1)
0 0
\ 14 L 24 7
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¢ . 0 T )
e <>()”<>()
\ L 0 1 L 24 )
(| 0
+ pele] (1+1)(H {(Hl)(
1

0 1
1 0

\ 14 24 J
0 0
1 1

\ L 14 L 24 7

( 1 9 r 0 )

+ el |- 1) ( ) (i+1) ( ) : (4.58)

0 1

\ L 14 24 7

After simplify above term, we have

aanna () )-).0)
el )00 )
o BO-00-00) -

i) A 1 0 Y 1 0
A~ &1 (1+p%) 6p
0 1 ! 2 0 1 ! 2



120

. 1 , [0 1
+(1+p%) +6p
1 0 1 0
1 2 1 2
1 0 0 1
= &el S —(1+6p"+p) +(1+6p” + p)
0 1 1 0
1 2 1 2
The latter work out to gives
£t s 4 0 1 1 0
A o £1E(146p” + p*) — . (4.60)
1 0 0 1
1 2 1 2

Introducing a entangled state of the emerging electrons that operate with two-

spinors, corresponding to X1, X2, we then have to form the state

A= €el |y, (4.61)
where
0 1 1 0
) =C - , (4.62)
1 0 0 1
1 2 1 2

C denoting some constant that specify latter and neglected (1 + 6p? + p*) that is just

constant.

HQi

Here the entangled state is normalized, using || [¢) || = 1, that is given by

llo .6 0-00.600) ) -() ()]

1 2 1 2

to obtaining

(4.63)
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generating the (normalized) entangled state of the emerging electrons

V) = —= — : (4.64)

1 2 1 2

The joint probability of the electrons polarizations correlations is then given by

Plx1,x2] = || €& [¥)I1*. (4.65)

With the measurements of spin relative to the z-axis. We then specify two-spinors as
1 e_ixj/2
§=—= ,J = 1,2, see appendix A. Therefore, we have

\/§ ein /2

1

2v/2

_ Y Sm(Xl — X?) : (4.66)

el )

|:e—1X1/2€1X2/2 . elx1/26—1x2/2:|

Eq. (4.65) leads to the joint probability of the electrons polarizations correlations

1 . —
Plx1, x2] = 551112 (%) , (4.67)

forall 0 < 3 < 1, leading to rather familiar expression P[x1, x2] = sin®[(x1—x2)/2]/2.
If only one of the spins is measured, say, corresponding to ;, the probability

P[x1, —] may be equivalently obtained by summing P[x1, x2| over the two angles

X2, X2 + 7, (4.68)

for any arbitrarily chosen fixed x5, i.e.,

Plx1,—] = P[x1, x2] + Plx1, x2 + 7. (4.69)
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Eqgs. (4.67)—(4.68) leads to the corresponding probability

1 - 1 _
Plxi, =] = 5811{12 (Xl 5 XQ) - §sin2 (W)
1 - 1 _
— Csin? [ MLX2) D o2 (ML A2
1
T2 470
2’ (4.70)

and similarly for P[—, x2], Egs. (4.67)—(4.68), replacing x; — x1 + 7, leads to the

corresponding probability

= 4.71)

CASEIl: /=0and ¢ =0

In this case, we set § = 0 and ¢ = 0, see in figure 4.4 , given by

A~ —€lel

+ &5l

+ preled

o =

[\

+1p

S =
)

[

= O

24

24
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Figure 4.4 The figure depicts e~ e~ scattering, with the electrons initially moving along
the y-axis, while the emerging electrons moving along the z-axis. The angle
X1, measured relative to the z-axis, denotes the orientation of spin of one of
the emerging electrons may make.

( [ 1T T )
1 0 0 1
+ pelel < —i - +i
0 1 1 0
\ L 1 14 L 2 24 )
( [ 1T T )
1 0 0 1
+ pele] —i - +i
0 1 1 0
\ L 1 14 L 2 24 )
. o
1 0 1 0
- g i + i +
0 1 0 1
\ L 1 14 L 2 2
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+p2elel { -

1 0 1

~ —gfg - +1p?
1 0 0 1 0

1 2 1 2
_2 1 1 0 0 1[0
+1p + +p
0 0 1 1 1
1 2 1 2 : 1
261 et 0 1 1 :
+preleld — 6 +2i + 2i
0 1 0 0
1 2 1 2
0 1
+ 6
1 0
1 2
The latter works out to gives

0 1
A= gl& 4 (14 60"+ ') -

1 0

1 2
. 0 0
+ 4ip +
1 1
1 2

1

o

2.
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(4.74)

(4.75)

Similarly for this case, we introduce a entangled state of the emerging electrons

that operate with two-spinors, corresponding to Y1, Y2, we then have to form the entan-

gled state
A=¢le o),

(4.76)
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where

el 000
0000 -

Here the entangled state is normalized, using || |#) || = 1, that is given by

oo 00 96 0,6 ()C)-C) ()]
o 6o C)C) () -

to obtaining

N = ! (4.78)

V2 /(14602 + p%)2 + 16p*

generating the speed dependent (normalized) entangled state of the emerging electrons

we obtain

o=tz 5 (). ) () C))
10,00 G

(4.79)
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The joint probability of the electrons polarizations correlations is then given by

Plx1,x2) = || €&} |9)] . (4.80)

With the measurements of spin relative to the x-axis. We then specify two-spinors as

1 e_ixj/2
& = E i Jj = 1,2, see appendix A. Therefore, we have
e
el 16y — 3! (L4640 [[O) (L) (2] (Y
152 19) =
\/(1 + 6p% + p*)? + 16p* V2 1 0 0 1
1 2 1 2
T )
4ip? 0 0 1 1
+—= +
vz (1) |1 o] \o
1 2 1 2 )
2, 4
_ 1 (1+6p" +p°) [emb01/26i2/2 _ b /2g-ix2/2]
V(1 +6p%+ p*)2 + 16p* 22
. 2
N 41\5)_ [em01/207a/2 4 gh/2ixe/?] }
2v2
—1 (X1 X2
= 1—1—62—1—45111(—)
\/5\/(1+6p2+p4)2+16p4{( ) 2

— 44 cos (%) } , 4.81)

Eq. (4.80) leads to the joint probability of the electrons polarizations correlations

1 . _ N )
P[x1,x2] = = | (1 +6p* + p*)sin <¥> — 442 cos <X1 ! m)} |

(4.82)

where

N(p) = [(1+6p” + p*)* +16p"], (4.83)



128

p is defined in Eq. (4.5). [For § — 0, one obtains a rather familiar expression
Plx1, x2] = sin*[(x1 — x2)/2]/2.]
If only one of the spins is measured, say, corresponding to X1, we then have to

form the state

o) =
V(14 6p2 + p*)?2 + 16p* V2 1] \o 0] \1
1 2 1 2
v2 1] 1 o/ \o
1 2 1 2
1 e—iX1/2 eiX1/2
= 1+ 6p° + p? +4ip?

2\/(1 + 6p2 + p*)? + 16p* ( ) —elix1/2 e ix1/2

2 2
(4.84)

Eq. (4.84) leads to

1
€110 = gy {1+ 09° + )bz —eonn) —igh{e-vere o) |
' 4N (p) 2 2

e_iX1/2 61X1/2
x (1 +6p% + p*) + 4ip?
eiX1/2 _e—iX1/2
2 2

1 | |
= = § (1+6p" + p")? + 16p" + 4ip*(1 + 6p° + p*)[e™* — 7™
AN(p) { | |

—4ip*(1 + 6p* + p4)[e_iX1 — ein]}

1 4p2(1+6p% + p*) .
-~ _ 4.85
9 (1 ¥ 6p2 + p4>2 I 16p4 S X1, ( )
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from which we obtain the corresponding probability

1 4p*(1+6p* + p*) .
P == _ . 4.86
b =] =3 (1 +6p2 + pr)2 +16p0 M (4:36)

The probability P[y;, —| may be equivalently obtained by summing P[x1, 2| over the

two angles

X2, X2+, (4.87)

for any arbitrarily chosen fixed x-, i.e.,

P[Xb _] = P[XhXQ] + P[X17X2 + ﬂ-}' (488)

Eqgs. (4.86)—(4.88) leads to the corresponding probability

_ 1 2, Ayain (X7 X2\ o9 X1+ X2 ?
Plx1, -] SN () [(14—6,0 +p )sm( 5 ) 4p” cos 5
1 . (xi—(x2 + ) X1+ (x2 + ) 2
1 2, 4 4,2
+ IN() {( +6p°+ p )Sln(—2 p*eos| ——5——
1 4p%(1 2 4
_1_ A+ 47) sin X1, (4.89)

2 (14+6p>+ p*)2+ 16p*

as is easily checked, and similarly, for only one of the spins is measured, say, corre-

sponding to 2, we then have to form the state

€l16) = & (1+60°+p) [0} [* o
T16) = _
V(14 6p2 + p1)% + 16p* V2 11 o ol 1
1 2 1 2
4io2 | [0 [0 1 1
4 4o +
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. (14602 + o) et 4 4ip? ehee/?
= pe+p ip
2¢/(1+ 6p* + p*)? + 16p* oix2/2 o-ixa/2
1 1

(4.90)

Eq. (4.90) leads to

1
11001 = g7 0+ 02+ o ez eoter) —aigh(emvere nere) |
’ AN(p) : '

_ele2/2 61X2/2
x Q(1+6p° + p?) +4ip?
eiXQ/Z e_iXQ/Q
1 1

1 ) .
- = 1 4 6/)2 + p4 2 4 16,04 + 41p2 1 4 6/)2 T p4 _elxz T efl)@
- {( ) ( ] |

—4ip*(1 4 6p> + p*)[e™® — eiX2]}

1 4p* (1 +6p + p*) .
= 491
2 + (1 + 6/)2 + p4)2 + ].6p4 s X2, ( )

from which we obtain the corresponding probability

1 4p*(1 + 6p% + p*
Ploys] = £+ p°(1+6p° + p*)
2 (146p2+ p*)2+ 16p*

sin yo. (4.92)

The probability P[—, x»] may be equivalently obtained by summing P[x1, 2| over the

two angles

X1, X1+ 7, (4.93)

for any arbitrarily chosen fixed y», i.e.,

P[_7X2] = P[Xh XQ] + P[Xl + X2} (494)
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Eqgs. (4.92)—(4.94) leads to the corresponding probability

+ %(p){(l +6p°+ p*) Sin(m) e Cos(wﬂ |

1 4p2(1 4 6p% + p) .
_1 , 4.95
2 T A6 p )+ 161 0N (393

For all 0 < 3 < 1, angles x1, x2, X}, X5 are readily found leading to a violation
of Bell’s inequality of LHV theories. For example, for 5 = 0.3, xy1 = 0°, xo = 137°,

X1 = 12°, x5, = 45°, § = —1.79 violating the inequality from below.

4.2.2 The Initially Polarized Electron and Positron in e*e™ — 77

Figure 4.5 The figure depicts e*e™ annihilation into 2+, with e™, e~ moving along
the y-axis, and the emerging photons moving along the z-axis. y; denotes
the angle the polarization vector of one of the photons may make with the
Z-axis.

Now we consider the process ete~ — 2, in the c.m. of e~, e™ with spins

up, along the z-axis, and down, respectively. With p, = p(e”) = ym3(0,1,0) =
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—p(e™) = —p,, we have the amplitude of this process (see Eq. (2.21) in §2.2):

el Ve 0 N s e 41
2p1ky 2p1ks 1k pika

A x ie*T(py, 09) ] u(py,o1)erel,  (4.96)
where e}’ = (0,e1), e = (0, e3) are the polarizations of the photons with (j = 1, 2)

e; = (—cosfcos x;,sin x;,sinf cos ;) = (egl), e(.z), 65-3)) , (4.97)

and for e™, e* the four-spinors given by

0 1/2 0
u= (p + m) : (4.98)
2m .
ip |
0 12 [ip |
. (P +m> s (4.99)
2m
1
with p = il = g , and we consider momenta of the photons
YL 14132
k; = ym(sinf, 0, cosf) = —k, (4.100)

where we have used the facts that

k| = [ko| = k) = k3 = p°(e*) = p° = ym. (4.101)

We need the adjoint four-spinors of the emerging prositron, v(p,, 02), by us-

ing the property of the adjoint four-spinors 7 = v'+" (see as in Appendix A),
1 0

70 = denoting 2 X 2 unit matrix, we have
0 —1

0 1/2
) ()
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where neglected minus sign.

We have computed the joint probability polarization of photons in Chapter III
that is the initially particles (e~, e™) unpolarized, summing over all spin of initial par-
ticles. In this case we will compute joint probability polarization of photons that is the
initially particles (¢, e™) polarized. We then start with the computation of the ampli-
tude (A) of the process ete” — 2, in the c.m. of e*, e~ with spins up, along the

z-axis, and down, respectively. With

p; =p(e”) =1mB3(0,1,0) = —p(e") = —p,. (4.103)

To start the computation of the amplitude of this process, let us introduce the

new amplitude that is convenient, given by

("™ "y (4) (@)
~ — ]{j

in0nd J~0nL N s
s (7 Y ™y ) k0D el
2p1ka 2p1ks

(20 AN Gy @)
_ 4.104
+v (p1/€1 ik upey’e;”, ( )

where egi), egj ) are defined in Eq. (4.97), ky,, m = 1,2, 3 is the momentum of photon, £°
is the energy, and v, u are denoted the four-spinors of positron, electron, respectively.

To extract the singular terms in Eq. (4.104) we first compute each term in (-) in

right-hand side of Eq. (4.104), start with

. , 0 o; 0 Om, 0 o
V" =
—o; O —o, 0 —o; 0
0 o || —omo; 0

= . (4.105)
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Therefore

o 0 —0i0m0;
VAt = : (4.106)
0i0m0j 0

This result that express in generally form by using the sigma properties, given by

Om0j = Omj + 1€mjk0k, (4.107)

from this gives

0:i0m0; = 0;(0mj + 1€mik0%)

= 0i0mj + 1€, 00}

= 0:0mj + 1€mk(dir, + 1€im07)

= 0i0mj + 1€m;10ik — Emjk€ikiOl

= 00mj + 1€mji + Emjk€itk0

= 0:0mj + 1€m;i0ik + (Omidji — 0pudji)oy

0;0m0j; = (O-ifsmj + O-j(;mi - am5jz-) + iiji' (4108)

To do this, replace Eq. (4.104) by Eq. (4.108). Therefore we obtain the new form of
Eq. (4.104), be written as

. 0 1
YY"y = —0i0m0;
~1 0

= —[(O'i(smj —|— Jj5m,- — crm5ji) + iemji]
-1 0
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0 1
= O"(smj — chsmi + O-mfsji
-1 0 -1 0 -1 0
0 1
— i€mji 7 (4.109)
-1 0
the latter works out to give
P ) 0 1
VA"V = =iV — OmiV + 0ijYm — i€myi . (4.110)
-1 0

Similarly, to calculate one of Eq. (4.104), by setting m = 0, we then have 7%y,

Therefore we write

Yy =

|
N
o
o
|
=
|
S
o

—0; 0 0 0

0,05 0

= (513 + iEijkO'k) ) (4111)
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to obtain

0 1 0 . O 0
Yy Y = by + i€k . (4.112)
O -1 0 — 0

After we calculate each term in (-) in Eq. (4.104) that is written as the matrix

element. Since we use above computation to find 7(7+%97)u, be written as

oo (Yol ) 6 o) ()7
e (Foo ) () )

+
&
=

VRS

’BO
+
3

S o) 2

Jo )6 )
oo
= (D IS (0 At

or the explicit above term can rewrite as

0 1 0
— g ; +m
(v )u = —€irp (p 5 ) (0 1) o — (1 0) o . (4.114)
m 0 1

/\
'BO
_|_
3
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In Eq. (4.114) that we can express it in the exact term. With calculation of the matrix

1
element in the right-hand side of Eq. (4.114), (0 1) Ok , eXpress as

0

)

™

Il

—_
VRS

(@)

—_
N~
— (@)
(@) —
(@) —

Il
VRS

(@)

—_
~~
[E—

Il

—_

o

=

>

B

=

° °
ol oyl
I I
w )
N /N
o o
— —
~__ ~__
o - o
| o (@) |
—_ (=
[ o =
I Il
o PN
O o
— —
~_ N———
ﬁ /_\
o - =
I Il
o =
o =t
- —
= %
= (¢
= -
ol
\.OO

0
and for (1 0) oy, express as

[ ]
=Nl
I
[
[S—
o
N
— (@]
(@) —
— (@]
|
RN
[S—
o
N~
—_
Il
—_
o
=
>,
B
=

) ®
N N
I I
g [N}
N
— —
o (@]
S~ ~~__
o — — (@]
Le = !
=) = o
I I
PN VR
— —_
O o
\/ \/
/_\ m
L o o L
o L
g 2
—~
o |
SN— 5.)
>,
& =

From above result we obtain

po—i—m
2m

(v )u = _Eijkp( ) [(1—1)d% + (i — (=1))6" + (0 — 0)6"] . (4.115)

The latter work out to give

(4.116)

p’+m
2m )’

(Y'Y ) u = —(2i) pesjo (



138

where we note that consider only k = 2, because another component k = 1 and & = 3

make the matrix element equal to zero. Consider 7y'u

y P’ +m\/, 0 ol 1
e (o) 69
—o; 0 J\ip |

Ty = — <p0 +m)[p2 (o 1) oi |+ (1 0) o; T} , 4.117)
2m

: 0 0 1
Y = — (p —l—m) p2 (0 1) o; + (1 0) o; . (4.118)
2m
1 0
In Eq. (4.118) that we can express it in the exact term. With calculation of the matrix
0
element in the right-hand side of Eq. (4.118), (0 1) o;
1
0 11(0 1 A
o =1 <() 1) = <() 1) = 0or (0)§",
1 0/\1 0

° =2 (0 1) =
i 0 /\1
1 0}\fo0 0 ,
o i=3 (0 1) =(0 1) = —1lor —0%,
0 —1/\1 ~1

— (@)
|
o
(@n)
VR
(@)

—_
~__
~

o |

.
I
o
@]
=
e
(@]
N——
>,
<)
[\]
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and for express as

0 .
= <1 0) = 0or (0)6",
1

O
N
o =

o
|
_

(-
()
=)

-0
ima (i) ( o

By substituting the above matrix element in Eq. (4.118) we obtain

—
e}

—
o

e}

-1

Ty = — (po i m)[(p2(o) +0)8" + (p*(0) +0)6” + (p* — 1)6®] . (4.119)

2m

The latter work out to give

0
Tyl = — (p il m)(p2 —1)6% (4.120)

2m

where we note that consider only ¢ = 3, because another component ¢ = 1 and ¢ = 2
make the matrix element equal to zero. For the final matrix element, v(y'y™+)u that is

needed in the calculation of the expression of the amplitude in Eq. (4.104), write as

(v Ju

0
= (p 2—;17”)(10 (0 1) (1 0))[—5mj%' — Omi7j + 5ij7m] !
ip |
. P’ +m\/. 0 1Yy 1T
I |
-1 0

ip |
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0
= (p ;— m)<i,0 (O 1) (1 O))[—5mj7i — Omi?Yj + 5z‘ﬂm] !
mn ip |
. P’ +m/. 0 1T\ 1T
ey CACRNCD) I ||
—1 0/\ip|

0 ‘I’m
= (p )[5mj(P2 — 1)0i3 4 Omi(p° — 1)8j3 — 835(p* — 1)6 3]

2m

0
i (p 2;m>[p2 +1]. @.121)

The latter work out to give

po—l—m
2m

0
)(p2_1)[5mj5i3+5mi5j3 — 0ij0m3] + 1€mji (p i m>[ﬂ2 +1].

—( b Mm ] —
v(v' "y u ( o

(4.122)
We recall all matrix element, calculated in Eq. (4.116), Eq. (4.118), Eq. (4.120)

and Eq. (4.122), to apply in the computation of the amplitude, .4, in Eq. (4.104). For

the first term in the right-hand side of Eq. (4.104) rewrite as

G M A J~MAL . .
- (7 e e e e ) ke Pel)
2p1ka 2p1ky

1 1 o o
= - TV A~ kel el
_2p1k1 2p1k,2_ VY Y URm€E1€9
1 1 P +m )
N 2p1ky a 2p1 ko ( 2m ) (p2 — 1)[0m;0is + Omidjz — 0:ii0mslkmer €
0
: p +m 9 o 1 1
mii 1 km J 1 o
+ 1€, ( om )[P + 1]kmere; {2p1k1 o

0
P +m 9 1 1
P —_— 1 k . J—
( 2m ) (p ) 3(61 82) {2171]% 2p1ks

0
(P +m 9 1 1
k- — 4.123
+1( 5 >(p + 1)k (e; x ey) [2}911{:1 AL ( )
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0
with negligence (p i

) that is some constant, and cancel out after the normalization

of the amplitude. We then rewrite above term as

I o e e A o i (W) (2 1 1
Fm, — 1Dks(ey - —
U( 2p1ky 2p1ks >u 61 62 (,0 ) 3(81 e2) 2p1ky 2p1ksy
i 4 1)k (eg x &) |[—— — —| .
2p1ky 2p1 ko
(4.124)

For the second term in the right-hand side of Eq. (4.104) rewrite as

i 0 g PN
(7Y YAy 0,() @)
- + uk’e;’’e

(2p1k1 2p1k2> b2

1 1 o )
= — + Y A~y ukVel et
(2p1k1 2p1k:2) T 1

1 1 po +m .
= 2i) pe; 5 }0ed ot
(2p1k1 + 2]91/{?2) ( l)pE J2 ( ™M ) €162

1 1 0
= — ( —+ ) (21)/) <p anm) k:o(el X 82)2, (4125)

2p1ky 2p1 ko

0

with negligence (p ) that is some constant, and cancel out after the normalization

of the amplitude. We then rewrite above term as

im0~ G0
(VY Dt 0.() () _ ( 1 1 ) ' o
—v + uk e e + 21)pk”(e; X e

< 2p1ky 2p1 ko > ¢ Wik | 2pik (2i)pk”(e1 x ey)s

(4.126)

For the final term in the right-hand side of Eq. (4.104) rewrite as

B 532 J§i2 53572 57357 N
° (;ml N llk; > upeyes) ~ (p* 1) ( PR )pe{e;. (4.127)

By replacing Eq. (4.124), Egs. (4.126)—(4.127) in Eq. (4.104) we obtain the am-

plitude of the process e*e™ — 77, in the c.m. of e*, e~ with spin up, along the z-axis
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and down, respectively, and two emerging photons moving along n with the angle ¢

respect x-axis and the angle 6 z-axis. We then have

1 1
~—(p* =1k . _— —
A (p ) 3(e1 62) {2171]?1 2291/‘??21

1 1
i(p? + 1)k - L
+i(p®+ Dk - (e1 X e2) {2171]{1 2p1/€2]

1 1
— 2i) pk°
<2p1k1 * 2p1k2> (20)pk™(e1 x e2)2

52’353’2 5]'351'2 o
+(p*—1 — elel. 4.128
(p ) (plkl ple )p 1%2 ( )
Using
k,
— =n, 4.129
] (3129

the amplitude A is then given by

1 1
~ (1 = p? _
A~ (1= p-)mynz(e; X ey) [2}91/{;1 2p1k2]

+i(1 4+ p*)myn - (e; x ey) Lo
FE 2piks  2pike

L L) @i)pter x o)
" 21011451 2101k2 PReL % €2)2

N mvﬁ(p2 B 1) (5i35j2 5]’351’2)

T elel. (4.130)

By dividing Eq. (4.130) by m+~ we obtain the amplitude .4 as

1 1
A ~ (1 — p2)n3(e1 . eg) |:2p1]{:1 — 2p1k‘2:|

1 1
i(1 Nn - —
Til+pn - (e x &) Lplkl 2p1k2}
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1
_l_
2p1ky 2p1 ks

— (2i)p ( ) (e X e3)s

i3 552 G352\
L

o o Teb. (4.131)

Here the scalar product that use in the computation of the exact amplitude, by using

property in Eq. (4.100) and p; = mf3~(0, 1,0), given by
piky = m?*y*Bsin ¢sin 6 — p'k® = m*4?*(Bsingsinh — 1)
= —m?y*(1 — Bsin¢sin ), (4.132)
piks = m*y*(—Bsin¢sin @ — p°k®) = —m?4?(Bsin gsinh + 1)
= —m*y*(1 + Bsin ¢ sin). (4.133)

Hence we can rewrite the amplitude, with multiply by m?~2, as

(- i i
A~ 2 nsler - ez) {(1—ﬂsin¢sin9) a (l—l—ﬁsingbsinH)]
(14 p?%) 1 1
Fig (e xe) {(1—ﬁsin¢sin9) _(1+ﬂsin¢sin9)}
. 1 1
~ipler xez)s {(1 — [sin ¢sin ) N (1 —i—ﬁsiruﬁsin@)]
, 513592 573512 i
+6(" 1) {(1 — Bsingsind) (1 —{—ﬂsinqﬁsin@)} ‘1 (4.134)

Here we study two emerging photons moving in x-z plane. We then set ¢ = 0.

To do this Eq. (4.134) is reduced as

A~ —i(1+p)n-(ep x ) + B(1 — p?) |ePel?) + el (4.135)
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With the above amplitude .A we can study the photon polarization in two cases:

CASE I: when we set 6 = 0.

In this case one of two photon move along z-axis and one move in opposite

direction. Using the property in Eq. (4.97), we have

e; = (—cos x1,sin x1,0), (4.136)
ey = (— cos x2, sin x2,0), (4.137)
n-(e; Xey) = eg)e§2) - egl)egz). (4.138)

Hence

.AN—i(l—|—pz)(—cosxl,sinxl,O)l(—cosxg,sinxg,())g 1 ol—10 1

(4.139)

Introducing a entangled state of the emerging photons that operate with the po-

larizations of photons, corresponding to 1, X2, we then have to form the state

A = —i(— cos 1, sin x1, 0)1(— cos a2, sin x2,0)2 ¥} , (4.140)

wy=Cl11llo|-fo]|]|1]], (4.141)

1 2 1 2

C denoting some constant that specify latter and neglected —i(1 + p?) that is just con-
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stant.

Here the entangled state is normalized, using || [¢) ||> = 1, that is given by

0)/(0 0[O0

oo 9o oo oo Hel 1]

0 1 1 0
1 2 1 2

to obtaining
C=— (4.142)

generating the (normalized) entangled state of the emerging photons

0\ /[0 0\ (o
1

_ = _ . 4.143

V) 7 1{lo ol]1 ( )

0 1 1 0
1 2 1 2

The joint probability of the electrons polarizations correlations is then given by

Plx1, x2] = ||(— cos x1, sin x1, 0)1(— cos x2, sin x2, 0)2 |1)) HQ, (4.144)

to obtaining

1

Plxixa] = 5 sin?(x1 — Xa2) (4.145)

p is defined in Eq. (4.5). [For § — 0, one obtains a rather familiar expression

P[x1, x2] = sin®[(x1 — x2)/2]/2.]

If only one of the spins is measured, say, corresponding to Y1, the probability

P[x1,—| may be equivalently obtained by summing P[x1, x2| over the two angles

T
X2, X2+ 5 (4.146)
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for any arbitrarily chosen fixed s, 1.e.,

T
Plx1,—] = Plx1, x2] + Plx1, x2 + 5}. (4.147)

Eqgs. (4.146)—(4.147) leads to the corresponding probability

1 . 1 . T
Plx1,—] = 5 sin® (Y1 — xa) + 3 sin? <X1 — (xg + 5))
1, 1,
= 5 sin (1 —x2) + 5 c08 (x1 — x2)
1
== 4.148
5 ( )

and similarly for P[—, x|, Egs. (4.146)—(4.147), replacing x; — x1 + (7/2), leads to

the corresponding probability

Pl—, x2] = 151112 (X1 — Xx2) + 151112 ((Xl + - X2>)

2 2 2
1 .92 1 2
= 5 sin (x1 — Xx2) + 5 o8 (X1 — x2)
1
1 4.149
: ( )

CASE II: when we set § = 7/2.

In this case one of two photon move along z-axis and one move in opposite

direction. Using the property in Eq. (4.97), we have
e; = (0,sin y1, cos x1), (4.150)
ey = (0, sin 2, cos x2), (4.151)

n-(e; x &) =elVel? — el (4.152)
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Hence
A~ —i(1 4 %) [652>eg3> - e§2)e§2)] 4 81— p?) [ePed) + e§2)e§2)] . (4.153)

Similarly, Introducing a entangled state of the emerging photons that operate

with the polarizations of photons, corresponding to X1, X2, we then have to form the

state
A o< —(0, sin x1, cos x1)1(0, sin 2, cos x2)2 |@) , (4.154)
where
0 0 0 0
¢y =Ni(t+p) [|1] o] —=]o]| |1
0 1 1 0
1 2 1 2
0 0 0 0
—Ba-=p) 1] o| + o] |1 , (4.155)
0 1 1 0
1 2 1 2

N denoting some constant that specify latter. Here the entangled state is normalized,

using || |¢) ||* = 1, that is given by

01/(0 0[O0

setasofos oo oo 3] 2| o o]

0 1 1 0
1 2 1 2

0)(0 01/(0

—6(1—/)2){(0 1 0)1(0 0 1>2+(0 0 1)1(0 1 0)2] 1]]o|+|of]1 =1,

0/ \1 1/\0

1 2 1 2



148

to obtaining

1
N = , (4.156)

V2y/(1+ )2 + 21— p?)?

generating the speed dependent (normalized) entangled state of the emerging electrons

we obtain

B 1 i(1+ p?) B
|6) = T ) 1{lof-]o|]1

1 2 1 2

1 2 1 2

(4.157)

The joint probability of the electrons polarizations correlations is then given by

Plx1, x2] = || (0,sin X1, cos x1)1(0, sin 2, cos x2)2 [)] %, (4.158)

to obtain

(1+ p?)?sin®(x1 — xa) + B2(1 — p*)? cos®(x1 + Xx2)

(14 p2)2 + B2(1 — p2)?] (4.159)

P[XbXﬂ =

p is defined in Eq. (4.5). [For § — 0, one obtains a rather familiar expression

Plx1, xo] = sin®[(x1 — x2)/2]/2.]
If only one of the spins is measured, say, corresponding to x1, we then have to

form the state

(07 sin X1, COS Xl)l ’¢>
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0 0 0 0
_ s Jioed) L
VAT PL-77 | V2
1 1

(1—p7)

% 0

1 i(1+4 p?)
VAP PA-P| V2 o
sin x1

2
(4.160)

Eq. (4.160) leads to

12 = !
2[(1 4 p*)* + 57

| (0, sin X1, cos x1)1 |p) 1— 27 {(1 + p*)[sin® x1 + cos® x1]

+ ﬁ4(1 — p2)2[sin2 X1 + cos? Xl]},
4.161)

from which we obtain the corresponding probability

1

The probability P[y;, —| may be equivalently obtained by summing P[x1, 2| over the
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two angles

us
X2 X2+ 5 (4.163)

for any arbitrarily chosen fixed s, 1.e.,

T
Plx1,—] = P[x1, x2] + Plx1, x2 + 5]. (4.164)

Egs. (4.86)—(4.88) leads to the corresponding probability

[(1+p%)sin® (xa — x2) + B2(1 = p*)? cos® (xa + )]
2((1+p*)? + 32(1 = p?)?]

P[Xh—] =

N [(1+p?)?sin® (x1 — x2 — 3) + B2(1 — p*)?cos? (x1 + x2 + 3)]
2[(14p2)2 + B2(1 — p?)?]

S (4.165)

DN —

as is easily checked, and similarly, for only one of the spins is measured, say, corre-

sponding to 2, we then have to form the state

(0, sin x2, cos x1)2 |¢)

B (0, sin x2, cos X2)2 i(1+ p?) ol=loly
VA+p22+ 20022 | V2
0 1 1 0
1\ /2 1\ /2
0 0 0 0
1 — 2
—ﬁ< ﬁp) 1flo]+[of]1
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0 0
_ 1 i(1+ p?) 1
VAT pa-p2p) vz ||
0 sin x2
0 0
1 — 2
- 5< \/§p ) cosya || O
0 sin xo
(4.166)
Eq. (4.166) leads to
1

10, sin X2, cos x2)2 |} ||* = 0

1+ p2)2 + B2(1 — p2)2] {(1 + p)[sin® x2 + cos® xo]

+ 841 — p*)?[sin® x3 + cos? XQ]},

(4.167)
from which we obtain the corresponding probability
1
Pl= ] = 5. (4.168)

The probability P[—, x2] may be equivalently obtained by summing P[x1, x2| over the

two angles

m
X1, X1+ 9 (4.169)

for any arbitrarily chosen fixed x5, i.e.,

T
P[—, x2] = P[x1, x2] + Plx1 + oL Xal. (4.170)
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Eqgs. (4.169)—(4.170) leads to the corresponding probability

[(1 + p?)?sin® (x1 — x2) + B*(1 — p?)? cos® (x1 + XQ)}

Pl—,x2] = 2[(1+ p2)? + B2(1 — p)?

(14 p*)?sin® (a1 — xo +§) +5°(1 = p*) cos” (1 + X2 + §)]
2[(1+p?)? + 32(1 = p?)?]

(4.171)

N | —

For all 0 < 3 < 1, angles x1, x2, X}, X5 are readily found leading to a violation
of Bell’s inequality of LHV theories. For example, for 3 = 0.2, x; = 0°, xo = 23°,

X1 = 45°, x4, = 67°, S = —1.187 violating the inequality from below.

4.3 Polarizations Correlations: Initially Unpolarized Particles

For the process e"e~ — e~ e, in the c.m., with initially unpolarized spins, with

momenta p; = ym/[3(0,1,0) = —p,, we take for the final electrons

p’, =vympB(1,0,0) = —p, (4.172)

and for the four-spinors

0 1/2 —i 9
' +m &1 icos 1/
u(p)) = ( Gy > o , &= , (4.173)
pofrlné.l sin X1/2
0 1/2 —j 2
p-+m &2 i cos xa/
u(ph) = ( o ) BV PR L @74

— & sin xo/2
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A straightforward but tedious computation of the corresponding probability of occur-

rence with initially unpolarized electrons, (2.7) leads to

Prob oc [u(py)7" (=yp1 + m)yu(p)] [@(ph) v (=yp2 + m)vou(p))]
— [a(P\)y*(=p1 +m)y ulpy)] [a(ph) . (=p2 + m)vsu(p))]
— [a(po)y* (=1 + m)y u(py)] [E(ph) 7. (=p2 + m)veu(ps)]
+ [@(py) " (=ypr + m)yulpy)] @) (=2 + m)veu(@h)],  (4175)

which after simplification and of collecting terms reduces to

Prob oc (1 — 3%)(1 4 353°) sin’ <X1 2 X2> + B* cos? (Xl ; Xz) +4°

= Fx1, X2), (4.176)

where we have used the expressions for the spinors in Eq. (4.2), Eq. (4.3).
Given that the process has occurred, the conditional probability that the spins of
the emerging electrons make angles 1, x2 with the z-axis, is directly obtained from

Eq. (3.5) to be

F
Plx1,x2] = —[Xg X2] 4.177)

The normalization constant C' is obtained by summing over the polarizations of the

emerging electrons. This is equivalent to summing of F'[y1, x2| over the pairs of angles

(X17 X?)? (Xl + T, XQ)a (le X2 + ﬂ—) (Xl + ™, X2 + 7T)7 (4178)
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for any arbitrarily chosen fixed y1, X2, corresponding to the orthonormal spinors

—icos x;/2 —icos(xj +m)/2) _ [isiny;/2 (4.179)

sin x; /2 sin(x; + m)/2 cos x;/2

providing a complete set, for each j = 1, 2, in reference to Eq. (4.2), Eq. (4.3). This is,

C = Fx1,x2] + Flx1 + 7, x2] + Fx1,x2 + 7] + Flx1 + 7, x2 + 7]

= 2(1 + 23 + 64, (4.180)

which as expected is independent of X1, X2, giving

(1—- %1+ 33 sin? (%) + 3% cos? (%) + 4ﬁ4'

P = 4.181
[Xl)X?] 2(1+2ﬁ2+664> ( )
By summing over
X2, X2+, (4.182)
for any arbitrarily fixed x», we obtain
1
Plx1,—| = 5 (4.183)
and similarly,
Pl=x] = 3, (4.184)

for the probabilities when only one of the photons polarizations is measured.
A clear violation of Bell’s inequality of LHV theories was obtained for all 0 <
B < 0.45. For example, for § = 0.3, with x; = 0°, x2 = 45°, x| = 90°, x}, = 135° give

S = —1.165 violating the inequality from below. For larger 3 values, alone, one cannot
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discriminate between LHV theories and quantum theory for this process. A violation
of Bell’s inequality for at least some (3 values, as seen, however, automatically violates
LHYV theories.

The probability of photon polarizations correlations in e*e~ — 2~ with initially
unpolarized e, e, has been given in work of N. Yongram and E. B. Manoikian (2003)

to be

1 — [cos(x1 — X2) — 26° cos x1 o8 Xa]”

Plx1, xo] = 2T 27— ) (4.185)
_ 1445701 = B cos® xa

Plx1, -] = 31 971 — )] (4.186)

Pl ) = LA T cos o (4.187)

2[1+252(1 - p?)]

and a clear violation of Bell’s inequality of LHV theories was obtained for all 0 < 3 <
0.2. Again, for larger values of (3, alone, one cannot discriminate between LHV theories
and quantum theory for this process. A violation of Bell’s inequality for at least some /3
values, as seen, however, automatically occurs violating LHV theories.

For completeness, we mention that for the annihilation of the spin 0 pair into 2y

the following probabilities are similarly worked out:

(cos(x1 — X2) — 20? cos x; cos X2)2

Plx1,x2] = M 2P~ ) (4.188)
_ 14521 = f%)cos® xa

Plxi, =] = o = 2521 — ) (4.189)

Pl = LA B eos o (4.190)

2[1-2p3%(1 - p)]

and violates Bell’s inequality of LHV theories forall 0 < 3 < 1.

We have seen by explicit dynamical computations based on QED, that the polar-
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izations correlations probabilities of particles emerging in processes depend on speed,
for initially polarized as well as unpolarized particles, in general. We have also seen
how QED leads directly to speed dependent entangled states. For processes with ini-
tially polarized particles (as well as for spin 0 pairs annihilation into 2v), a clear vi-
olation of Bell’s inequality of LHV theories was obtained for all speeds. This clear
violation was also true for several speeds for processes with initially unpolarized parti-
cles, but the tests are more sensitive on the speed for such processes. The main results
of this chapter are given in Eq. (4.82), Eq. (4.89), Eq. (4.92), Eq. (4.142), Egs. (4.148)—
(4.149), Eq. (4.159), Eq. (4.162), Eq. (4.168), Eq. (4.181), Eqgs. (4.185)—(4.190). We
feel that it is a matter of some urgency that the relevant experiments are carried out by

monitoring speed.



CHAPTER V
MUON PAIR PRODUCTION IN THE

WEINBERG-SALAM ELECTROWEAK THEORY

In the present chapter, we study the process e et — p~u™ for muon pair pro-
duction in the Weinberg-Salam standard electro-weak theory and we encounter com-
pletely novel properties not encountered in our QED calculations in Chapters III and
IV. The reasons for considering this process are many. For one thing the differential
cross section is in excellent agreement with experiments unlike its QED counterpart.
The main reason, within the framework, however, of our study is that due to the thresh-
old energy needed to create the p~u™ pair, the limit of the speed () of the colliding
particles cannot be taken to go to zero. Therefore all arguments based on simply com-
bining the spins of e~, e™, without dynamical considerations fail. Accordingly, a quan-
tum field theoretical calculation of the polarization correlations of = p* is necessary
as a dynamical treatment. We show that the polarizations correlations depend not only
speed but also have explicit dependence on the underlying couplings. The latter is a
completely novel property not encountered in our QED computations in Chapter I1I,

I'V. Finally we show a clear violation with Bell’s inequality.

5.1 General Survey

Several experiments have been performed over the years on particles’ polariza-
tions correlations [Irby, 2003; Osuch, Popkiewicz, Szeflinski and Wilhelmi, 1996; Ka-
day, Ulman and Wu, 1975; Fry, 1995; Aspect, Dalibard and Roger, 1982] in the light of
Bell’s inequality and many Bell-like experiments have been proposed recently in high

energy physics [Go, 2004; Bertlman, Bramon, Garbarino and Hiesmayr, 2004; Abel,
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Dittmar and Dreiner, 1992; Privitera, 1992; Lednicky and Lyuboshitz, 2001; Genovese,
Novero and Predazzi, 2001]. We have been particularly interested in actual quantum
field theory computations of polarizations correlations probabilities of particles pro-
duced in basic processes because of novelties encountered in dynamical calculations
as opposed to kinematical considerations to be discussed. Here it is worth recalling
that quantum field theory originates from the combination of quantum physics and rel-
ativity and involve non-trivial dynamics. Many such computations have been done in
QED [Yongram and Manoukian, 2003; Manoukian and Yongram, 2004] in our earlier
chapters as well as in e"e™ pair production from some charged and neutral strings in
Chapter VI. All of these polarizations correlations probabilities based on dynamical
analyses following from field theory share the interesting property that they depend on
the energy (speeds) of the colliding particles due to the mere fact that typically the lat-
ter carry speeds in order to collide. Such analyses are unlike considerations based on
formal arguments of simply combining spins, as is usually done, and are of kinematical
nature, void of dynamical considerations. Here it is worth recalling that the total spin
of a two-particle system each with spin [Clauser and Shimoney, 1978], such as of two
spin 1/2’s, is obtained not only from combining the spins of the latter but also from
any orbital angular momentum residing in their center of mass system. For low speeds,
one expects that the argument based simply on combining the spins of the colliding
particles should provide an accurate description of the polarization correlations sought
and all of our QED computations [Yongram and Manoukian, 2003; Manoukian and
Yongram, 2004] show the correctness of such an argument in the limit of low speeds.
Needless to say, we are interested in the relativistic regime as well, and the formal ar-
guments just mentioned fail to provide the correct expressions for the correlations. As a
byproduct of the work, our computations of the joint polarizations correlations carried
out in a full quantum field theory setting show a clear violation of Bell’s inequality. For
the Lagrangian density of the underlying theory see §2.5.

In the present communication we encounter additional completely novel proper-
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ties not encountered in our earlier QED [Yongram and Manoukian, 2003; Manoukian
and Yongram, 2004] calculations. We consider the process e"et — i~ ™ as described
in the standard electroweak (EW) model. It is well known that this process [Althoff et
al., 1984] as computed in the EW model is in much better agreement with experiments
than that of a QED computation. The reasons for considering such a process in the
EW model are many, one of which is the high precision of the differential cross section
obtained as just discussed. Reasons which are, however, more directly relevant to our
anylyses are the following. Due to the theshold energy needed to create the = " pair,
the limit of the speed (3 of the colliding particles cannot be taken to go to zero. This is
unlike processes treated by the authors in QED such asin e e~ — e e™, efe™ — 27,
Therefore all arguments based simply on combining the spins of e, e™, without dynam-
ical considerations, fail. [As a matter of fact the latter argument would lead for the joint
probability in Eq. (5.73) we are seeking, the incorrect result (1/2)sin? ((x1 — x2) /2)
— an expression which has been used for years.] Another novelty we encounter in the
present investigation is that the polarization correlations not only depend on speed but
have also an explicit dependence on the underlying couplings. Again this latter explicit
dependence is unlike the situation arising in QED [Yongram and Manoukian, 2003;
Manoukian and Yongram, 2004].

The relevant quantity of interest here in testing Bell’s inequality [Clauser and
Horne, 1974; Clauser and Shimoney, 1978] in Eq. (4.1) as is computed from the elec-
troweak model. Here ay, as (a},a,) specify directions along which the polarizations
of two particles are measured, with pis(ay, az)/pi2(00, 00) denoting the joint probabil-
ity, and py2(ay, 00)/p1a(00, 00), p12(00, az)/p12(c0, 00) denoting the probabilities when
the polarization of only one of the particles is measured. [p12(00, 00) is a normalization
factor.] The corresponding probabilities as computed from the electroweak model will
be denoted by P(x1,x2), P(x1,—), P(—, x2) with x1, x2 denoting angles specifying
directions along which spin measurements are carried out with respect to certain axes

spelled out in the bulk of the paper. To show that the electroweak model is in violation
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with Bell’s inequality of LHYV, it is sufficient to find one set of angles x1, x2, X}, X5
such that S, as computed in the electroweak model, leads to a value of S outside the
interval [—1, 0]. In this work, it is implicitly assumed that the polarization parameters in
the particle states are directly observable and may be used for Bell-type measurements

as discussed.

5.2 Explicit Probability Expression

In this section, we consider the process ee~ — uT ™, in center of mass (c.m.)
frame, shown in figure 5.1 , with initially polarized electron with spin up, along the
z-axis, and initially polarized positron with spin down. p and k denote the momenta
of initial electron and initial positron, respectively. Similarly, p’ and k' denote the
momenta of final muon and final anti-muon, respectively. The transition amplitude of

this process (eTe™ — pt ™) is well known (see §2.5) :

1
a2

p o(k, s)7" u(p, o)

M =T(p, o'WV (K, ) <gw - q;‘Z”)

a J—

q qV p— v
b U0 0= 90 VL) (g4 2 ) Tk 510 (0= 20) u(p. o)

S.1)

where e=charge, g=weak coupling constant, fyy=Weinberg angle, M, = a mass of boson

g2

16€2 cos? O

We first simplify the expression for the amplitude of this process by expanding

(Z%, a = and b =1 — 4sin? Oy

the various terms in Eq. (5.1). Let

M = M + Ms, (5.2)

where
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((2p°)? + MZ) M3

+ Uvo(b — 75)V670(b — ¥5)u

a TTni(h _ 1
—W{UV(b Y5) Vo' (b — v5)u

+ ((2]\4])0%)2 — 1) UA°(b—v5)Vory’ (b — 75)u}

a TF i —
My = M2 AR {07 (b= 5)VTy' (b — vs)u}

- (Mi%) {U°(b =)V (b — v5)u. }

where ¢* = ¢* — (¢°)%, ¢ = (2p°,0), and ¢* + MZ = M3 — 4(p°)?

For the four-spinors of the electron and the positron, we have

0+ me So
u(p,o) = o o-p ¢ ’

PP+ me
; o-k ¢
[k e | 70 L S5
U(k73): +m k0+m5
2m,
&s
In our case, we choose p = —k, p° = kY, so that we can rewrite Eq. 5.6 as
o-p
0 - 55
ok, s) = |2 [T m,
2me
&s

where the two-spinors &,, &, we will be specified later.

And for the four-spinors of 1~ and i, we have

[p° 4+ m So'
Up,o)=|——= o-D ,
2my, —pga,

pIO + m“
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(5.4)

(5.5)

(5.6)

(5.7)

(5.8)
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o-k
210 — = &
VI, 8) = | | RO oy, (5.9)
2my,
55’
In our case, we choose p’ = —k’, p° = k°, so that we can rewrite Eq. (5.9) as

o-p
[0 SR
VK, s) = w P +my (5.10)
my
fs’

where the two-spinors &/, £, we will be specified later.

Figure 5.1 Diagram of the process e ¢~ — pt ™ in c.m. frame.
From conservation of energy momentum : p + k = p’ + £/, so that we obtain
p=0"p), »=0"p) (5.11a)
k=" -p), K =0"-p), (5.11b)

¢=(20°,0), p°=+P2+mZ p°=,/p?+m2, (5.11¢)
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P2+ m? =,/p2+m2, (5.11d)

p’+m. =p”?+m, (5.11e)
p’ =p°. (5.11f)

In this process, we will study the spin correlation of two final particles that de-
pend on speed () of two initial particles. If we define (3’ is the speed of two final

particles. Therefore, relation between (3 and /5’. From Eq. (5.11d), we have
p =k = (mey,meyp), (5.12)
p=k=(my mn5), (5.13)
and using the properties of the conservation of energy in this process, read as:
p’+m?=p*+ mi, (5.14)

by replacing the momenta of initially particles with the speed (5 and 3’) of emerging

particles, we have

2 212 2 212912 2
m:y- 3 +mg =my;y 15} +m,,

mg L €252 T 1] - mi L fl;/Q + 1]
M [ (0 8] = e 57 (- )]
1 _52 1 _5/2
me_ md
1— 52 o 1_@2

my,, (1= %) = me(1 = 67)
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2
(1 5% = 41 - §)

2

B2 =1- k(- ).

We obtain relation between 3 and ', written as

2
3 = \/1— D1 - p2). (5.15)

m

Give m = m,,/m., so that

2
ﬁ’:\/1—m2+m262:\/1—m2(1—62):1/1—%, (5.16)

where v/ = X
m

Form figure 5.1 , we rewrite the momenta of the particles in term of 6, ¢, we

have

p’ = |p'|(sin 6 cos ¢, sin O sin ¢, cos 9), (5.17b)
k' = —|p'|(sin @ cos ¢, sin @ sin ¢, cos 7). (5.17¢)

Consider the four-spinors of two initial and final particles, write in term of speed

(6 or "), we have (initial particle)

op _|p
p°+m. PO+ m,

(c'-0+0*-1+0%-0)

me’)/ﬁ 2
= — 0
MeY + Me
op _ W »
P+me y+1 7

(5.18)



166

and (final particle)
c-p [P

1. 2 - . 3
= o sinfcos¢g+ oc“sinfsin g + o° cos b
po+m, pO+ mu( ¢ ¢ )

3 01 0 —1
:M sin @ cos ¢ + i sin 0 sin ¢
myy + my, 10 1 0
1 0
+ cos 6
0 —1
v 3 cos 6 sin f(cos ¢ — isin @)
7+ sin @(cos ¢ + isin ¢) —cos
G p ~'B cosf  sinfe ¢ (5.19)
0 - . :
PPHmu Y+ 1\ Gnge®  —cosd
AZ

Figure 5.2 Diagram of the process ete™ — ™~ in c.m. frame.



Our case, we chose 6 = g & ¢ = 0. We rewrite Eq. (5.19) as

o-p Vg |10
p10+mu ’7’—|—1 01

and Eqgs. (5.17a)—(5.17¢c) are written as

p= |p|(07170)7 k:_’p’(()’lvo)?

p’ = |p'|(1,0,0),

K = —|p/[(1,0,0).
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(5.20)

(5.21a)

(5.21b)

(5.21¢)

We consider the process e”e™ — p~u™ in the center of mass frame (see fig-

ure 5.2 ) with the momentum of, say, e~ chosen to be p = 78m,(0,1,0) = —k, m,

denoting its mass and v = 1/4/1 — 32. The momentum of the emerging x~ will be

taken to be p’ = 7/3'm,(1,0,0) = -k, v/ = 1/4/1 — 3, and m,, is the mass of

p~ (™), the spinors of e, et are chosen as

and we obtain the four-spinors of e~ and e™, given by

umn>=wigi _T :

ip |

y+1[ipl

(5.22)

(5.23)
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and

ok, |)=— 7Tﬂ(ip (1 0) (0 1)) (5.24)

where p = (ﬂ>
v+1

For the four-spinors of ;= and

Up',o') = my +m | &
2mu p/O—lfo./

! 1 o’
—/2 ; . , (5.25)
p/glgal
! 1 - ,0—165/
VK, s) =y 2 , (5.26)
2 £y
and
— fy’ +1
Up' o) = T et 1 5.27
(pyo-) 2 (50./ pgo./o' > 9 ( )
,YI/BI
where £ and ¢!, will be specified latter and p' = ( = 1).
g
To calculate the transition amplitude of this process, by using
10
1= ) (5.28)
01
0 1 0 ; 0 o
V= , Y= , ; (5.29)
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ol = R R , (5.30)

then, the necessary matrix element for this calculation, we consider each the matrix
element in the amplitude of this process.
For the first needed matrix element, UWOV, on the right-side of Eq. (5.3), be

written as

_ ‘1 L0 [ =po'és
707 = (1 P et 1
0 —1 £y

1
v +1 _pla Es
; )(&L —p’&ilal) .

2

(
(7’+1

)[_plgifo_lgs/ + plfllo—lfs’}
U~V =0. (5.31)

and the second needed matrix element, U~y°V, on the right-side of Eq. (5.3), be written

as

T 7 +1 0 o' \[—po'és
07y = (T3 e o )|

—o' 0 fsl
_ ’7/ +1 t ret 1 UZESI
NEE o
poo gs’
7 i v +1 T 2et 1 0 1
Uy'v = (15 [fg,a &y — 2 olo'o 53/} . (5.32)
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On the right-hand side of Eq. (5.32), we define o'o’c! =7 as

i=1; olole! =o' or ot

i=2: olo?cl = —c*or — %52,

i=3; olodc! =—03or — 6%,

Since
7 +1

U,yzv _ (T)[&llglgs’éﬂ _ pl2€l/0'1€5’5i1 + 5(1;,0_2§S/5i2 + pl2€ilo_258,5i2

+§l/0358/6i3 +p/2§2/03fsf5i3]

_ (7, : 1)[0 =) Lo 68" + (14 %) ,0°E0 6"
+(1+9%) 52/0353'51'3} : -39

With using the property that is defined by

1—p?=1- Y
7+ 1

/ / / 1
=[(v+1)*- 7252]m
=21 -68%+29 + 1]m
1—p? = (v’i ol (5.34)

where 7(1 — 4”?) = 1, and

2
1+p/2:1+(7’ﬁ/>
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_ [(”}/ + 1)2 +7/25/2]m

=1 +5%)+27 +1]

( +1)?
1+ p?% = % (5.35)
where 1 + 372 = %(27’2 — 1), we then rewrite Eq. (5.33) as
U~V = €,0¢,6" + /€, 026,62 + '€, 03€,6%. (5.36)

and the third needed matrix element, 7w, on the right-side of Eq. (5.3), be written as

o (2 ) ) )

77 =0 (5.37)

and the finally needed matrix element, 7~y'u, on the right-side of Eq. (5.3), be written as

e (e (o) ()
—o' 0 J\ip |
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(R o) ]
(Gl )] o

0
The expression of (0 1) lof on the right-hand side of Eq. (5.38), be defined by
1

=
o =

—
e}

by

-i=1;<1 0)

-i=2;(1 0)
0 1 1 .

o i =3; (1 0) :(1 0) =1loré
—1/\0 0

With two matrix elements from above, we obtain

=)
—_

o
|
o

—
o

—
o
o

—_

)

Tyiu = (7_H)[p2 (52'1 _ i5i2) T (5i1 4 151'2)}
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— (_'V ; 1)[(1 +p°) 6" +1(1—p?) 67
y'u = [y6" 4167 (5.39)

In the next our considering, we will express the needed matrix element of

0 1
Eq. (5.4). With start from the exact calculation of 5 =
1 0
0 1 0 bl 0 0 1
70 —5) = -
0 —1 0 b1 1 0
1 0 bl -1
0 —1/J\—-1 bl
0 bl —1
(b —5) = , (5.40)
1 —-b1
and
; 0 o b1 0 0 1
V(b —5) = -
—o' 0 0 01 1 0
0 o' |[b1 -1
- 0 J\-1 b1
; —ot  bo?
V(b —15) = R (5.41)
—bo" o'

Form Egs. (5.40)—(5.41), the first needed matrix element, U~°(b — ~5)V/, on the
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right-side of Eq. (5.4), be written as

— "1+ bl —1 \[ —potéy
U7°(b—5)V = (7 > )(f; —p’g;al)

1 —b1 I
"}/ + 1 —bp/O'lfsl — gsl
(e e
—po gs’ - bgs/

v+l
=( )}W@$@—$@+W@w&@

2
e
UAP(b—5)V = — (7,; 1) (1-p") [52/55/]
= —¢léa (5.42)

and the second needed matrix element, Uvi(b — 75)V, on the right-side of Eq. (5.4), be

written as

— "1 —ot bol \[ —plotés
U (b—)V = (7 5 )(52 —p’gf,,al)

—bot o &y

i1 %
V41 poioléy + boiéy
< 92 )(52/ p/SjﬂO 1) ) .
bplc ‘o 155’ 0 153’

/ 1 ) ) ;
( 2)@@f$&+%&%wwWQwa&@

-2
4+

_ Plfl/Ulaifs/ )

With the expression of oo’ on the right-side of an above term, where o'c! + olo’ =
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26, be defined by

0 1}/0 1 10 .
o i =1; olo! = = =1 or &
1 0/\1 O 01
0 —i}({0 1 1 0 ,
o i=2; olol = = —i = —ioc% or —iog30"
i 0 10 0 -1
1 0[O0 1 0 1 ,
o i =3; ool = = =io? or io?6®
0 —1/\1 0 -1 0
and the expression of o'o?, be defined by
0 1}/0 1 10 .
o i=1; olo! = = =1 or 6%
1 0/\1 O 01
0 1}f0 —i 1 0 .
o =2 olo? = =1 = io? or io36*?
1 0/\i O 0 —1
0O 1)1 O 0 —1 .
o =23; olo?® = = = —io? or —ic26®
1 0/\0 —1 1 0

With two matrix elements from above, we obtain

7 +1

Uy (b—ns)V = ( )[21,0'52/0255,5@'3 —2ip'el,o%E 6% + b (1—p"?) ol ot
+0 (14 p?) €l o8 + b (1+p?) 52,0353/5“}
Ty (b= )V = [ () €0%60% — 1 (7/8) €0°6487 + bl 08"

b€l 026,46 + ' bE!, 03, 0% (5.43)

and the third needed matrix element, 77"(b — ~5)u, on the right-side of Eq. (5.4), be
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written as

SEOADID) bl
O o))
o)

77 (b — v5)u = 0. (5.44)

and the finally needed matrix element, 77'(b — 75)u, on the right-side of Eq. (5.4), be

written as
e 2
(el ) o]

Jrols erae( )
(o eronfo )]

10 A A 1 . .
Since we have <1 ()) ol ( ) = §"1—i"? and (0 1) o ( ) = 6" +i6%2. Therefore
1 0

—_

I
|
RN
2
w‘+
—_
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—
Q
)
l_l 1
b R
o
- = R
2 © = S
= o —~
o —~ D = 1S a0 o
= S o = = — B B
S o
o I — I -~ _ ~ — ~ bS]
/l\ o — . b ( — o A e ( _ Q
S A/ o A/ — = qmo —
(@) —
=N — — S o g = =
— ~__ I I ~_ | I _ _
~ I o I — — —
rm — — o — o o o — o — — —
P =T > -1 — — > > il
— o —
o — o _ < < _ - O _ © e _
g k= _ _
> o — (@] — — S (@] i S — (e < __ __
o N~ N———— o
) A/~ A/~ A/ T AN AN N ) =3
= o o o s — — — o 2
~__
m — — — S o ) ) W’ |
= ~__ ~__ ~__ 5 ~_ ~ ~ J <
C .o .o .o .~ e Ml\
= — N e = — o oe = .
o Il I Il Il Il Il o IS
m S ‘e o ~ S o
B ° ° — ° ° £
Y =] o
= =
B b= s3)
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7y (b — 5)u = byd™ +ibd"™ 4+ iyB6%. (5.45)
From Egs. (5.42)—(5.45), we obtain
Uy’ (b =)V (b — vs)u = 0,
U~ (b= 25) VoY (b = s)u = 10° €] €] ++'[ib" — 1B8[EL 0%, ]
+4'0[0" + )€l o). (5.46)

From Egs. (5.34)—(5.37), we can rewrite M as

1
(2p°)?

M, = { [ﬁllalf’swl +’Y’€l/0255'5i2 +7/§l’03€8’6i3} h(;il +i6i2] }’

where ¢ = 1, 2 we obtain

M, = (2]%0)2{7 gho'es] +iv [ghote] } (5:47)

From Egs. (5.42)—(5.46), we can rewrite M as

a

M = M3 — 4(p°)?

{w (€], 0 eg] + 2/ [ib* — vB8B €L 0%y

+'b[3 + yBl[E] o] } (5.48)

After a tedious calculation we finally have the amplitude, M = M; + M., of

this process as

a

M= 1 a0y {””2 €060+ o/ 10 = 1950 + 85" i) [s;a%s/]}

+ @{7 [52/0158/] + iy [52102&/} }
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— o ab? i Yab T
= 7(4(1)0)2 + M2 —4(}70)2) [50/0155’] + W[ﬁ +iv0] [50’0355']

+ < y (;“)2 i _a4 P [ib? — wm) [52,0258/} . (5.49)

The measurement of the spin projection of the muon in our process is specified
by using properties of the representation of the spin operator S along an arbitrary n for

spin 1/2, shown in figure 5.2, as it is derived in Appendix A. For the two-spinors, we

| R
|
| X2//
+
I ) K
| /
| /
| /
|
| s
I P
! /7
L
| 7
_ v +
S [ —t

Figure 5.3 The figure depicts the process e et — p~u™, with e~, e™ moving along
the y—axis, and the emerging muons moving along the x—axis. x; and Y
denote the angles with the z—axis specifying the directions of measurements
of the spins of 1~ and u ™, respectively.
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have (see in Eq. (A.83) and Eq. (A.97))

X1
§or = e (5.50)
0 sin X1 7 ‘
2
flr = (cos % sin %) ) (5.51)
X2
s = e (5.52)
—sin X2 .
2

0 1 cos X2
eholey = (COSE sin &> 2X2
2 2 10 sin =
2
— sin X2
— X1 .oXa 2
= | cos == sin =
2 coS X2
2
_ [ X1 X2 X2 X1
= COS — SIn — + cOoS — sin —
2 2 2 2
¢l oley = sin <X1 > X2> , (5.53)
and for ¢ = 2, we have
0 —1 cos X2
52,0253/ = (COS X1 sin &> 2)(2
2 2\i o J\ —sin 5

1sin X2
B ( X1 X1> 9
— COS 7 Sl —

2 1cos X2

[ X1 X2 X2 X1
=1 |cos &= sin &= 4+ cos == sin =~

2 2 2 2
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(5.54)

52,0258, = isin (Xl i Xz) ,

2

finally, for = 3, we have

1 0 cos =
52/0355' = (cos % sin %) 2

_ ( X1 . X1) cos 2
= | cos= sin“—
2 2

[ X1 X2 X2 . X1}
COS — COS — -+ Ssin — sin —
2 2 2 2

ehod¢, = cos (%) . (5.55)

The following above calculation, giving

— 1 ab? (X1 X2
M= 7<4(p°)2 - 4(190)2) o ( 2 >

/ i . ). . +
o (4@10)2 g agrpl 19 ]> (Xl 2 XZ)

/

'ab b X1—X
gz ggopl? +idlcos (%) . (5.56)

After we simplify Eq. (5.56), given

. 1 ab2 . X1 — X2
M= 7<4<p0>2 Tz 4<p0>2) " ( 2 )

1 ab? X1+ Xe
/: ..
+“(4@%2 - 4<p0>2>lsm ( 2
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i 16y Ba sin X1+ Xz L 7'y Bab cos [ XL X2 (5.57)
M3 — 4(0)? 2 ME — 4(p0)? > ) ©

where we note that ' = (l), m = ﬂ, 6 = \/1 —m?(1 - ?), p” = m.y and
m m

e

So that, we rewrite the amplitude in Eq. (5.56) of this process as

Y= \/7
= () () { (M e o (252)
(8 (o)
(R (232) ) (3

i (mf—“_ﬁJ VI =m0 = ) sin (%) } (5.58)

1 1
We will approximate M because ( \/1—7ﬁ2> < MZ — dm2y? ) , we rewrite Eq. (5.58)

as

M x (—M%<41m_g ) + ab® — 1) sin (Xl 5 X2>
_ <%> <M241m—2 3%) b 1) “in (Xl;er)
( ) aby/1 —m2(1 — [32) cos (Xl 5 XQ)

(g T (252 (5]

(5.59)

Obviously, there is a non-zero probability of occurrence of the above process.

Given that such a process has occurred, we compute the conditional joint probability
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of spins measurements of ;~, p* along directions specified by the angles yi, Y2 as
shown in figure 5.1 . Here we have considered the so-called singlet state. The triplet
state leads to an expression similar to the one in Eq. (5.77) for the probability in question
with different coefficients A(E), ..., F(£), N(&) and leads again to a violation of Bell’s
inequality. The corresponding details may be obtained from the authors by the interested
reader.

A fairly tedious computation for the invariant amplitude of the process in fig-

ure 5.1 leads to

e (25 o (52 (52

i [D(é’) sin (%) + B(E) cos (X1 5 X2>} , (5.60)
where
AE) = %%+ b’ —1 (5.61a)
=iz T , .6la
m M?
B =—-—"2)(-2 21 61
= () (M ). sty
cle) = Lme fer (5.61¢)
- Emy, H '
_ a 2 __ 2 2 _ 2
D) = - [E2 —m2 \/E* —m2, (5.61d)
E(&) = —;‘Tb\/g2 —m2, (5.61¢)
o
and
2
a=-—9  >0353, b=1—4sin’by = 0.08, (5.62)

16e2 cos? Oy
g denotes the weak coupling constant, 6y is the Weinberg angle, e denotes the electric

charge, and £ denotes the energy that depend on the speed (/) of the initial electron
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(positron), & = m,/+/1 — (2. The contribution of the Higgs particles turns out to be
too small and is negligible.
The probability density of this process is given F(x1, x2) = |M]|?, be written

as:

Fla:xe) = [A(é’) sin (%) + B(E)sin (%) + C(E) cos <><1 2 mﬂ :

+ [D(E) sin (M) + B(£) cos (M)} 2 (5.63)
: : . .

To normalize the expression in Eq. (5.63), we have to sum F'(x1, x2) over the

spin polarization directions specified by the pair angles:

(X1, x2), (u+mx2), (xLxe+7m), (xi+mx2+7). (5.64)

That is, we have to find the normalization factor
N(E) = F(x1,x2) + F(x1 + 7, x2) + F(x1,x2 +7) + F(x1 + 7, x2 + 7). (5.65)

The first one, we rotate angle y; with 7, by replacing x; — x1 + 7, given

F(xi1+mx2) = {A(E) sin (W) + B(€) sin (W)

LO(E) cos (HT—X)]

+ [D(g) sin (W) + E(€) cos (W)r

- {A(g) cos (Xl ) XQ) + B(E) cos (%)

—C(€)sin <X1 5 XQ)F
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4 {D(S) cos (%) _ E(&)sin (Xl . X2)r. (5.66)

The second one, we rotate angle y, with 7, by replacing x» — X2 + 7, given

F(x1,x2 +7) = {A(S) sin <X1_2£) + B(E) sin (%M)

+ {D(S) cos <¥> + E(€) sin (Xl - XQ)F. (5.67)

Finally, we rotate angle x1, x2 with 7, by replacing x1 — x1 + 7, X2 — X2 + 7, given
Fixp+m,xa+m) = [A(S) sin (Xl 5 X2> + B(€) sin (Xl ;XQ - 7T)
+C(E) cos (%)r
+ {D(E) sin (Xl —;X2 —|—7r) + E(E) cos (Xl 5 X2)r

- [A(g) sin (Xl - X2> — B(&)sin (%)

ey (25
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The latter works out to be

o) [ty (32) ey (372 ecterom (252

+ :D(S) sin (Xl‘gxz) + E(E) cos (Xl ;XQ)F

- 2
+ |—D(€)sin <¥> + E(E) cos (%)] : (5.69)

To convenient calculation of the normalization, we separate N (€) into two term,

N(E) = Ny + Nj. Therefore the first term, we write as:

N, = {A(g) sin (Xl 5 X2) + B(€) sin (Xl_gm) + C(E) cos (Xl 5 Xz)r

+ :A(é’) cos <X1 ;“) + B(E) cos <X1 ‘2”‘2) — (&) sin (Xl > XQ)T

+ :—A(é’) cos (%) + B(E) cos (Xl ; XZ) + C(€) sin (Xl 5 XQ)} 2
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4 [A(é‘) sin (Xl . X2) —_ B(€)sin (%) + C(€) cos <X1 . X2>r.

(5.70)

We expand the square term in Eq. (5.70) and then simplify it. Giving

X1~ X2 2 (X1~ X2 o [ X1 — X2
sin < 5 )+cos ( 5 )—i—cos (—2 )
X1 — X2
+ sin? ( 5 )]
sin? X1t xe + cos? X1t X2 + cos? X1+ X2
2 2 —2
+ sin? —X1+X2
2
+eE) [Sinz (252 o (250 o (2522)
2 2 5
o f X1~ X2
+ sin ( 5 )]
. X1 — X2 . X1 —+ X2 Xl X2 X1 + X2
+2A(5)B<5> sin | =——~= | sin | &=——~= | 4+ cos COS
2 2 9 5
— cos X177 X2 coS X1+ X _sin X1 — X2 sin X1+ X2
+ 2A(5)C(5){ sin (Xl 5 X2) cos (Xl 5 X2) — cos (Xl ; X2> sin <X1 ;Xz)

= [A(&)

+[B(E))?

— oS X1 — X2 sin X1 — X2 4 sin X1 — X2 cos X1 — X2
+ 23(5)0(5){ sin (Xl ;FX2> cos (Xl ; Xg) — cos (Xl erxg) sin (Xl ; X2
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X1+X2) . [ X1— X2 (X1t X2 X1~ X2
+cos | &/——= | sin | =——= | —sin [ =——== ] cos )
2 2 2 2
5.7
This is, we have to find the first term of the normalization factor
v =2{ AP + BEP + P}

For the second term /N5, we have

o= {D(“:) sin (%) + E(E) cos (Xl ;XQ)F

+ | D(&) cos <X1;X2> — E(€)sin (Xl . XQ)_ 2

2
+ |=D(&)sin (%) + E(€) cos (Xl . X2>] . (5.72)

We expand the square term in Eq. (5.72) and then simplify it. Giving

Ny = [D(E)]2 [sin2 (—Xl —; Xz) + cos (Xl ;_XQ) + cos? (—Xl ; X2)

1 sin2 (Xl + Xz)
2
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JrQD(S)E(‘C;){Sin(%)co (Xl 5 XQ) —COS(Xl—;X?)Sin(Xl 5 XQ)
+ cos X1+ X2 sin(XL— X2\ _ . (X + X2 X1— Xz
2 2 —2 5 .

This is, we have to find the second term of the normalization factor
Ny =2{[D(E)]* + [E(E)*}. (5.74)
The latter works out to be
2 2 2
+e@) + [DE) + [B@)}. 679

Using the notation F'(x1, x2) for the absolute value squared of the right-hand
side of Eq. (5.3), the conditional joint probability distribution of spin measurements

along the directions specified by the angles x1, X2 is given by

P(x1, x2)
i3 cmm(52) o7
ot e (1) ¢ pepes(252)]'. 57

The probabilities associated with the measurement of only one of the polariza-
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tions are given respectively, by

F(x1,x2) + F(x1, x2 +7)

P(x1,—) = N(E) : (5.78)
F F

P(—,xs) = (X1, x2) }L\[(g()Xl + 77,X2)‘ (5.79)
For F'(x1, x2) + F(x1, X2 + 7), we have
F(x1,x2) + F(x1,x2 + )
= [A(&)]?| sin? <X1 _ XQ) + cos? <X1 _ X2>

2 2
+ [B(&))? | sin? (Xl —; Xg) + cos? (Xl ;XQ)
+[C(&)]?] sin? (Xl ; Xz) + cos? (Xl ; XZ)
+ QA(S)B(S){ sin (Xl — XQ) sin (Xl +X2> — cos (Xl — X2) coS (Xl +X2> }

2 2 2 2
. X1 — X2 X1 — X2 X1— X2\ . X1 — X2

+2A(5)C’(5){s1n( 5 )COS( 5 ) —cos( 5 )sm( 5 ) }
+ 23(5)0(5){ sin (Xl —; XZ) cos (Xl ; XQ) -+ cos (Xl ; X2> sin (Xl ; X2> }

—2A(E)B(E) cosx1 +0—2B(E)C(E) sin x1

= 2B(E)AE) cos xa + C(E)sinxa). (5.80)
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The probabilities associated with the measurement of only one of the polarizations is

_ %(;) [A(€) cos x1 + C(€) sin xa . (5.81)

And similarly for P(—, x2), for F'(x1, x2) + F(x1 + 7, x2)

F(x1,x2) + F(xa + 7, x2)

+2A(E)B(E) cos x2 + 0+ 2B(E)C(E) sin x2

= 5+ 2B(E)IAE) cos xa + O(E) sina] (5.82)



192

The probabilities associated with the measurement of only one of the polarizations is

P(=x2) =5+ i:)) [A(E) cos x2 + C(E) sin xa]. (5.83)

2
N(

N | —

It is important to note that P(x1, x2) # P(x1, —)P(—, x2), in general, showing
the obvious correlations occurring between the two spins.

The indicator S in (5.1) computed according to the probabilities P(x1, x2),
P(x1,—), P(—, x2) in (5.7), (5.8), (5.9) may be readily evaluated. To show violation of
Bell’s inequality, it is sufficient to find four angles x1, X2, X}, X5 at accessible energies,
for which S falls outside the interval [—1, 0]. For £ = 105.656 MeV, i.e., near threshold,
an optimal value of .S is obtained equal to —1.28203, for x; = 0°, x2 = 45°, x} = 90°,
X5 = 135°, clearly violating Bell’s inequality. For the energies originally carried out in
the experiment on the differential cross section at £ ~ 34 GeV, an optimal value of S is
obtained equal to —1.22094 for x; = 0°, xo = 45°, x] = 51.13°, x}, = 170.85°.

As mentioned in the introductory part of the chapter, one of the reasons for this
investigation arose from the fact that the limit of the speed 3 of e~e™ cannot be taken
to go to zero due to the threshold energy needed to create the p~ ™ pair and methods
used for years by simply combining the spins of the particles in question completely
fail. The present computations are expected to be relevant near the threshold energy for
measuring the spins of the ;¢ pt pair. Near the threshold, the indicator Sqrp computed
within QED coincides with that of S' given above in the electroweak model, and varies
slightly at higher energies, thus confirming that the weak effects are negligible. Due
to the persistence of the dependence of the indicator S on speed, as seen above, in a
non-trivial way, it would be interesting if any experiments may be carried out to assess
the accuracy of the indicator S as computed within (relativistic) quantum field theory.
As there is ample support of the dependence of polarizations correlations, as we have
shown by explicit computations in quantum field theory in the electroweak interaction
as well as QED ones, on speed, we hope that some new experiments will be carried out

in the light of Bell-like tests which monitor speed as further practical tests of quantum
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physics in the relativistic regime.



CHAPTER VI
POLARIZATION CORRELATIONS IN PAIR

PRODUCTION FROM CHARGED AND NEUTRAL

STRINGS

6.1 Introduction and General Survey

In this chapter, we investigate the polarizations correlations of e*e™ pair pro-
ductions from charged and neutral Nambu strings via processes of photon and graviton
emissions, respectively. We consider circularly oscillating closed strings as a cylindri-
cal symmetric solution [Vilenkin, 1981; Gott, 1985; Larse, 1994; Manoukian, 1991,
1994, 1997, 1998; Manoukian and Ungkitchanukit, 1994] arising from the Nambu
action [Manoukian, 1991, 1994, 1997, 1998; Manoukian and Ungkitchanukit, 1994;
Goddard, Goldstone, Rebbi and Thorne, 1973; Kibble and Turok, 1982; Sakellariadou,
1990; Albrecht and Turok, 1989], as perhaps the simplest string structures in field theory
studies. Explicit expressions are derived for their corresponding correlations probabil-
ities and are found to be speed dependent. In particular, due to the difference of these
probabilities, in general, inquiries about such correlations, would indicate whether the
string is charged or uncharged. In the extreme relativistic case, however, these proba-
bilities are shown to coincide. The study of such polarization correlations are carried
out in the spirit of classic experiments [cf. Clauser and Horne, 1974; Clauser and Shi-
money, 1978], to discriminate against Local Hidden Variable (LHV) theories. In this
respect alone, it is remarkable that our explicit expressions of polarizations correlations,
as obtained from dynamical relativistic quantum field theories, are found to be in clear
violation with LHV theories. The speed dependence of polarizations correlations is a

common feature of dynamical computations in quantum field theory.
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The trajectory of the closed string is described by a vector function R(o,t),
where o parameterizes the string, satisfying [Manoukian, 1991, 1994, 1997, 1998;
Manoukian and Ungkitchanukit, 1994; Goddard, Goldstone, Rebbi and Thorne, 1973;
Kibble and Turok, 1982; Sakellariadou, 1990; Albrecht and Turok, 1989]

R-R"=0, (6.1)
with constraints

) . 2
R-R =0, R2+R’2: 1, R(a+—ﬂ,t) = R(o,1), (6.2)

m

where the mass scale m is taken to be the mass of the electron, R = oR/ot, R =

OR /0o, with the general solution

R(o,t) = =[A(c —t) + B(o + )], (6.3)

N | —

where A and B satisfy, in particular, the normalization conditions A = B”? = 1. For
the system in Eqgs. (6.1-6.2), we consider a solution of the form (Gott, 1985; Larse,

1994; Manoukian, 1991, 1994, 1997, 1998; Manoukian and Ungkitchanukit, 1994):

1
R(o,t) = —(cosmao, sinmao, 0) sin mt, (6.4)
m

with the z-axis perpendicular to the plane of oscillations.

6.2 Pair Production from a Charged String

In this section, we consider ete™ production by Nambu string. We analytical
calculate the polarization correlation of ete™ production from a closed charged string
arising from the Nambu action as a solution of a circularly oscillating closed charged

string as perhaps the simplest object generalizing emissions from point-like particles
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within the framework of quantum electrodynamics. The charged string, during one
period of oscillation, to lowest order in the fine-structure constant, emits a virtual photon
which in turn decays into e e~ pair with momenta p,, p, and spins o1, o, respectively.
From this we study the polarization correlation of the e™e™ pair.

For a string of total charge (), this generates a current density [Manoukian, 1994]
J#(x) with structure (z = (t,r, 2))

_ d*p [ dg [ dP° . ipo 0
r0= [ | am | et e, 6

JH(P°,p) =27 > §(P° — mN)B*(p, N), (6.6)
N

summing over integers,

B%(p,N) = anJ3, (%) : (6.7)
N

B(p,N) = T;?pBo(p, N), (6.8)

an = Q(—1)?cos (%) , (6.9)

where Jy/; are the ordinary Bessel functions of order /V /2.

We consider the process of e*e™ pair production via a photon emission, given by
the amplitude [Manoukian, 1991, 1994, 1997, 1998; Manoukian and Ungkitchanukit,
1994], [cf. Wichoski, 2002; Transchen, 1988], up to an overall multiplicative factor

irrelevant for the problem at hand (see in Eq. (2.125)).

1 _
Aoced"(2p,p, + py) 2 [@(py, 01)7,0Ps, 02)] (6.10)

(p1 + p2

with the four momenta of e, e™, respectively given by

p, = k(0,1,0), py,=£k(1,0,0), k=myp (6.11)
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|k

= A

P1

P

Figure 6.1 The measurement of the spin projection of the electron is taken along an
axis making an angle x; with the z-axis and lying in a plane parallel to the
x-z plane.

W=l = )2 = 4 =y .12

where v = 1/4/1 — (32 is the Lorentz factor. The measurement of the spin projection
of the electron is taken along an axis making an angle x; with the z-axis and lying in a

plane parallel to the z-z plane (see in figure 6.1 ),

ko1
Y +m &1 PO 4+m [ o062
VS o Y | (6.13)

p0+m §1 62

where the direction of the spin of the positron lies in a plane parallel to the y-z plane,
and the two-spinors Y1, x2 will be specified later (see in Appendix A).

The expression for the amplitude of this process be written:

1
Ax —eJ°(2p°,py + Pz)m[ﬂ@l)’yov(m)]
1 .
+eJ(2p°, py + pZ)W[ﬂ(]h)'YZU(pQ)]- (6.14)
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In our process, we will study the polarization correlation of e™e~. Therefore, we
not sum over all spins of eTe™ and by using the four spinors of eTe™ in Eq. (6.13). We

have

0 1 0 0 ko
ﬂ’j/ol} = p m éT _é‘T koo m p0+m§2
2m ! LpO+m

-1 &
0 ko f
(Y (o gt ke Potm
2m 1 1pOtm
—&2

3

0
P+ koo ko
- ( om ) {_p0+m§101§2+p0+m§102§2

0 k
— (p 2;m> o m[fialéé — o).

By using properties Egs. (6.11)—(6.12), we rewrite above term as:

_ k
UVOU = %[_5101& + 510252]

_ 8

5 [_510152 + 510252]- (6.15)

For v, we have

0 ) ko
ﬂ'yiv = (p +m) (fT —gT ko ) 0 o p0+m£2
2m ! 1pOtm
—o; 0 3

0 .
(P (g ) [ L7
2m 1 LpO+m k

o1
po+m0i0152
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)2510201‘0152]- (6.16)

0
— i p +m T ) _
o= (%2 ot A

To simplify above term, we change 0,0;0, by using the properties of the Pauli matrix

(see in Appendix A). Given by
1 = 020101 = 0201 = 02,
1 =2 020901 = 0501 = O7.

We note that = 3 is not considered because we consider the momenta of e*e™ in z-y
plane.
In this case, we obtain

0 [ 2 i
_ p-+m k
' = ( o ) ol - (p0+m) Eloatal

0 [ 2 i
_ p-+m k
uyto = ( om ) 5;0252 - (po +m) 510152 .

The matrix elements are needed to use in Eq. (6.14), be written:

. 0 Eo\°
uy'v = (p 2—;m> <1 - <p0+m) ) o1& + o, (6.17)

where ¢ = 1, 2.

To simplify Eq. (6.17), let

(Po;;lm) (1 N (poim)Q) N (p(’;;lm) (poim)2<(p0+m)2 - kz)




by using properties in Egs. (6.11)—(6.12), we have

_ (L) ( ! ) (m (20" +m) +m*¥*(1 — %))

) (m (2my 4+ m) + m*+*(1 — 3%))

) () ey - )

The matrix elements are needed to use in Eq. (6.14), be written:

'y = (o1& + o8,

where 1 = 1, 2.

We consider the electromagnetic current
JHPY,py +py) = 2725(130 —mN)B*(p, + Py, N),
N

where

mN

= " (p;+p,)B(p; +p,, N
|p1+p2|2(p1 P2) B (p; + P2, N)

B(p1 + P2, N)

BY(py + Py, N) = anJx 5Py + ol /2m).

200

(6.18)

(6.19)
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Or write in term of the summation of B(p, + p,, N)
J'(20°, |py + pyl) =27 Y 5(2p” — mN)B"(p, + p,, N), (6.20)
N
when mN = 2p° and p, + p, = k(1, 1,0), therefor, |p, + py| = V/2k, we have
L0
B(p, +py, N) = 75 (Py + P2 N). (6.21)

By replacing Eq. (6.15), Eq. (6.17), Eq. (6.20) and Eq. (6.21) in Eq. (6.14), we obtain

70

(pﬁ_—pQ)QT[—gm& + £ o96)]

Ao — 271'625(2]?0 —mN)B%(p, + py, N)
N

+27T62(5(2p0 —mN)B(p; + py, N) [5101§2+§I(72§2]7
N

(p1 + p2)?

V5

mj[—fiﬁfz + €] 028)]

= —2me > §(2p° — mN)B"(p, + p,, N)
N

+ore S a2 mN)%BO(p, N) €016 + Elonte).
N

(p1 + p2)?

After we simplify above term. We obtain

1
0o 0
A x 2me EN d(2p” — mN)B (p1+P27N)(p1+p2>2
1 1
X { [B + g] (loi&o] + [B - ?} [510252}} ; (6.22)

where the two-spinors Y1, x2 Will be specified later.
The measurement of the spin projection of the electron (positron) in our process
is specified by using properties of the representation of the spin operator S along an

arbitrary unit vector n for spin 1/2, as it is derived in Appendix A. For the 2-spinors,



we have (see in Egs. (A.67)—(A.68))

(- cOs (X?) () — sin (%) |
—sin 71) cos (%)

/\

Then we calculate the exact [€]0;&] where i = 1,2. For i = 1, we have

s ) ) (1)

= X)) —gin (&L cos (%)
(cos () —sim(3) (Sm(%))
= feos (5) cos (5) o (§) in (5]

510152 = CO8 (%) )

wlig

and for i = 2, we have

202

(6.23)

(6.24)

(6.25)
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A tedious but straightforward computation gives

—i 292 o (X2 257 cos (Xitxz
N (@’:ET ) O 5 s v

(6.26)

where we note that 2p°/m = 2v is quantized. Given that the above process has oc-

1
curred, a standard computation. We can neglect Y §(2p° — mN)B®———— dis-
2.0 G
appear after we normalize probability. So that, we rewrite the amplitude of this process
as:
2 2 —
A x [1 + %] cos (%) —1i [1 — %] cos (%) ) (6.27)

The probability of this process is given F'(x1, x2) = |A|?, be written as:

2 2
F(x1,x2) = {H%} OSQ(%) + {1—%} cos (Xl 5 X2). (6.28)

To normalize the expression in Eq. (6.28), we have to sum F'(x1, x2) over the

spin polarization directions specified by the pairs of angles:
(X1, x2), (a+mx2), (xxe+m), (a+mxe2+m) (6.29)
That is, we have to find the normalization factor
N=F(xi,x2) + F(x1 +mx2) + F{xi,x2 +7) + F(xa + 7, x2 + 7). (6.30)

The first one, we rotated angle y; with 7, by replacing x; — x1 + 7, given

2 272 N
F(x1+7, x2) = {1+§} sin? <¥>+ {1 - %] Sinz(¥>. 6.31)
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The second one, we rotated angle y» with 7, by replacing yo — Y2 + 7, given

272 272 _

Flxixotm) = |14 20| gnz(XEx2) 1y D007 G X=X )
2 2 2 2

Finally, we rotated angle Y1, x2 with 7, by replacing x; — x1 + 7, X2 — X1+ 7, given

272 272 _
Flxi+mx2+7) = 1+ﬁ cos? Xt X + 1—ﬁ cos? [ XL A2 )
2 2 2 2
(6.33)

The latter works out to be

N =2

2 2
[1 + 7762} + [1 — 7752} ] . (6.34)

where

_ m [2\/1 —ﬁ2+ﬁ2]2

{1_7_52}: o2 T
2 2¢/1— 32

~ T VI

2 2

[1+7—5T+ [1—762]2: 4(1i52) {[2\/1—752+52}2+ [2W—52r}

1 2 4
:m{S(l—ﬁHw}

212 272
{H%} +[1_7§] :4(1352) (=) (-39

Therefore, given that the process has occurred as expressed in figure 6.1 , with
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electron moving along y-axis and positron moving along z-axis, the probability of the

spin polarizations, specified by the angles x1, X2, is rigorously given by

P
P(x1,X2) = w (6.36)

Therefore, we obtain probabilities as

2 2
1+ %] COSZ(XI—;XQ) 4 [1 o 7752} COS2(X1£X2

QHH@]ZP_%Q}

as in Yongram and Manoukian (2003) and Manoukian and Yongram (2004), given the

P(x1,x2) = , (6.37)

following explicit expression for the probability of the simultaneous measurements of

the spins of e~, e™, with angles x1, X2, as specified above,

(VT = ) o (252) + (2T + ) cost ()
4(2- 62’ |

P(X17X2) =

(6.38)

the so-called probability of the polarizations correlations of the emitted pair and is speed
dependent. If the spin of only one of the particles, say, that of e™, is measured, then we
have to sum Eq. (6.38) over the two possible outcomes for e : x», x2 + , for a given

X2, 1.e., for the probability of measuring the spin of e~ only, we have

P(x1,—) = P(x1,x2) + P(x1, x2 + ) = 1/2. (6.39)

Similarly, for the probability P(—, x2), where only a measurement of the spin of e* is

made, we obtain

P(—,x2) =1/2. (6.40)
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In the extreme relativistic case 7 — 1, Eq. (6.38) gives

1 _
Pl e = 5 [cos2 (Xl 5 Xz) + cos? (Xl ;“)} (6.41)

6.3 Pair Production from a Neutral String

In this section, we consider ete™ production by Nambu string. We analytical
calculate the polarization correlation of ete™ production from a closed neutral string
arising from the Nambu action as a solution of a circularly oscillating closed neutral
string as perhaps the simplest object generalizing emissions from point-like particles
within the framework of quantum electrodynamics. The neutral string, during its oscil-
lation, to lowest order in the gravitational coupling constant, emits a graviton which in
turn decays into eTe™ pair with momenta p,, p, and spins oy, o9, respectively. From
this we study the polarization correlation of the e*e™ pair.

The neutral string, of a given mass ), generates an energy-momentum tensor

density 7" (z) with structure [Manoukian, 1998]

d’p [ dg [™dP° , . .
™ (z) = / ( P / 1 / elPTelazg =it ur (PO 1) (6.42)

2m)% ) oo (27) J oo (27)
(P’ p) =21 Y 6(2p” —mN)B"(p,N) (6.43)
N=—00

_ Ip|

BY(p, N) = BnJip(2), =5 (6.44)
Oa POpa 2

B <p7N) ZHNW‘]N/2<Z)7 a = 172 (645)
ab _ ab papb _

B®(p,N) = 0y | AnG +ENW . a,b=1,2 (6.46)

B"(p,N)=0, p=01,2,3 (6.47)
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1 2
Ay =7 [J%H(z) - J%A(z)] , (6.48)
By = Jy (), (2), (6.49)
By = M(—=1)N?cos (%) . (6.50)

Here J, denotes a Bessel function of order v.
For eTe™ pair production via the emission of a graviton, the amplitude of the

process is given by

1
[ga,ugku - ngf)\glw
Ao T(2p°, py + py) a— LS (6.51)
(p1+ p2)

where T" _ is the energy-momentum tensor density associated with the pair, see in
Eq. (2.127), with the proportionally constant depending linearly on the gravitational

coupling G
T ocm[y" (p” — ")+ (0" —p™)]. (6.52)

From Egs. (6.43)—(6.44), Eq. (6.11), Eq. (6.22), this simplifies to

Ao — 1 s {—=2muvT™ + 2 [(wy,v) (py, — p}) + méuv] T®} . (6.53)
(p1 + p2)

The recurrence relation
Jy_1(2) = ——Ju(z) — J%H(z), (6.54)

allows one to express Ay, Ey in terms of Jy s +1, Jy/2 which differ by one order only,
and for sufficiently high energies, they may be expressed in terms of Jy 5.

So that, we can rewrite the amplitude of this process, with replace p;, ps by p,
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p’, respectively, as

1 g
A x TESIE {T%a[2v0(po — py) — 2m]v + 2T ulyo(p; — p}) + 7i(Po — Ph)]v

+TYalyi(p; — py) + (0 = i) + 2méylv}, (6.55)
where p,B* = 0, p® = mN/2 = p”°.
Therefor we can rewrite Eq. (6.55) as

1 .
A x W {TOOE[—Qm]v + 2T% [0 (ps — p))v

+ TYalyi(p; = py) +7(pi — pi) + 2mdylv} . (6.56)

Consider T%u[—2m]v in Eq. (6.56) with T% = 27 >"F__ 6(2p° — mN)B®. In our
process, we will study the spin polarization correlation of e*e~. Therefore, we do not

sum over all spins of eTe™ and by using the four spinors of e*e™ in Eq. (6.13). We have

0 0 _ ko
v =4/ P m gl —g ko prm p0+m£2
2m 1 1p04+m 2m ¢
2

ko
B P’ +m <fI ¢l i ) — 0 &2

2m 1pO+m
&

By using properties Eqs. (6.11)—(6.12), we rewrite above term as:

0
P +m k t
(P [ e

k
po n mg'lto-2£2

0 k
- <p 2:1m) O +m [610152 N 510252]

_%[510152 + 5{‘7252]
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= _ﬁ[ﬁ‘ﬁ& + 510252]

The matrix elements are needed to use in 7°°u[—2m]v of Eq. (6.56), be written:

VB ot

uv = __[510152 + &loty). (6.57)
To this, we obtain
(—2m)T%uv = (—2m)2n Z 6(2 N)B% ( 75) [510152 +§102§2]
N=—0c0
= k2m Z 6(2 N)B[¢lo1& + o). (6.58)

And the second term (27% [y, (p; — p’)]v) in Eq. (6.56), we rewrite as

2TOz [,70( p;-)]’l) — 2T0i(p o p/)iﬂ’}/ov

=2€{T"(p—p)' +T%(p — p')*}uyov

= 2{—kT"" + kT*}uryov

= 2k{-T"" + T }uryov (6.59)
where
(p—P) =(pi —p))
=k(—1,1,0).

To express —T°! + T in Eq. (6.59). We use the properties: p + p’ = k(1,1,0),
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k =m~p, p° = myand |p + p'|* = 2k%. We have

20°(p+p)' 2°(p+ p’)z}

—T% 4 79 =271 §(2p° — mN)BY[—
2 T p+p/f?

N=—o0
2m22 2m272 1]
2m2~42(32 | 2m2~2 32

=27 i §5(2p" — mN)BY[— ]

=0.

And we compute @yov in Eq. (6.59), we not sum over all spins of eTe™ and by using

the four spinors of e™e™ in Eq. (6.13), and using

0 -1 0
0 1
We have
ko1
B 20 +m -1 0 PO +m [ 505, S2
wyov =4\ =5 (ﬁ - Ipﬁifn) R r
0 1 &

ko
() (g ) (0] [P
1 —S1,04m
2m PO+ 0 1 &

(P m : - pgilmfz
&

By using properties Egs. (6.11)—(6.12), we rewrite above term as:

0+ k k

= Qmm)[po n mﬂm& T mfiﬁfﬂ
0 k

=( 2;m)po n m[ﬁm& — &loa6)]
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_ ko i
=5 [{101&e — 1026

_P

5 [Elo1&y — €028

The matrix elements are needed to use in 2{—kT% + kT?}uryyv of Eq. (6.56), be

written:

uyv = g[ﬂal& — 510252]- (6.61)

To this, we obtain
2T%u[yo(ps — pl)]v = 0. (6.62)

Finally, the last term (T @[ (p; — p}) +; (pi — p;) +2mdi;|v) in Eq. (6.56), we rewrite

as

Tl (p; — 1) + i (pi — p}) + 2mdi;]v
= TYaly(p — p'Y +7(p — )’ + 2mé;lo. (6.63)

To expression Eq. (6.62), we will calculate the energy-momentum tensor 7%
where T =21 > %__ _ 6(2p°—=mN)B* (p+p’, N) and B (p+p’, N). Therefore,
we have (fori = j = 1)

(Pp+p)'(p+p)
Ip + p'|?

(k) (k)
2k?

B" =8yAn + ByEn

=0OnvAN + BNvEN

1
B =0OnAN + §BNEN



and (fort =5 = 2)
(p+p)(p+p)°
Ip+ p'|?

(k) (k)
2k?

B® =3yAn + ByEn

=0ONAN + By EN

1
B* =0yAn + §5NEN-

From above, we found B! = B?2, For wheni = 1 and j = 2
(p+p)'(p+p)
Ip+p'[?

(k) (k)
2k2

BY =BxEy

=0OnEN

1
B12 :§ﬁNEN-

Forwhenj =2and j =1
(p+p)(P+p)
p+p'f?

(k) (k)
2k?

B*' =By Ey

=0OnEN

1
B21 :iﬁNEN.

From above, we found B'? = B?!.

To this end, we can rewrite Eq. (6.63) as

T7alyi(p; — 0)) + i (pi — 1)) 4 2mé;]v

212

=T"a[v(p—p) +n(p—p)' +2mlv+Tu[y(p — p)° +1p —p) '
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+ T aly(p — p)' +7(p — p)Jv+ T%a[y(p — p)* + 72(p — P)* + 2m]u.
By using properties Egs. (6.11)—(6.12), we rewrite above term as:
= THa[—ky1 — by + 2m)v + T ulky, — kyelv + T?a[kys + kvyz + 2m]v
+ T2 4] —kyy + ky]v
11 2m 12— 22— 2m
= —kT U v+ T v+ kT u[*yl—’yg]v—i-kT U (Y2 + 72 + ? v
+ kT a[—2 + v,

with arranging above term #vy,v, UY.v, iv, and by using properties T2 = T2, we

rewrite above term as:

2
= —k}THﬁ |:2’)/1 — (?m>:| v+ legﬂ[71 - ’72]1} + kTQlﬂ[—’)/Q + ’71]’0

2
+ kT*a [272 + (%)} v

= k[-2T" 4+ T2 + T [ay,v] + k[27% — T — T*"|[uryov] 4 2m[T 4 T][uv)]

= 2Kk[T" — TH)[uyv] + 2k[T* — T*?|[uryv] + 4mT v, (6.64)

Hence

T? - T" =27 Y (2" —mN){B"” - B"}

N=—00

—on Y 02— mN) Ay — (BuA + 50xEn))

N=—00
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— —or Z §(2p° — mN)[ByAn], (6.65)

N=—o0c0

and

T -T" =21 Y  6(2p° — mN){B* - B}

N=—o00

=27 Z (5(2}90 - mN){(ﬁNAN + %ﬂNEN> - %BNEN}, (666)

N=—o00

or Eq. (6.66) be written as

T2 -T2 =21 Y 6(2p" — mN)[ByAy]. (6.67)
N=—0c0

For u;v, we have

0 ) _ _koy
Uy;v = (p +m) (8 — & o ) 0 o P2
‘ 2m 1 LpO+m
—o; 0 S

0 )
_ P +m §T —§T ko 0:&2
2m 1 1pO+m koy

po+m0i0'1§2

0 2
_ p’+m k
uyv = ( om ) [flrai& - <p0+m) 510201'0152] :

To simplify above term, we change o,0;0, by using the properties of the Pauli matrix

(see in Appendix A). Given by

1 =1 090101 = agaf = 09

1 =2 090901 = 0%01 =0

We note that 7 = 3 is not considered because we consider the momenta of e*e™ in x-y
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plane.

In this case, we obtain

0 [ k 2

/I_L"}/lv — (p 2_;771) 510'152 —_ (po n m> 610252 , (668)
0 [ k 2 i

Uy = (P 2; m) ooty — (po - m> ol . (6.69)

By replacing Egs. (6.65)—(6.69) in Eq. (6.64), we obtain

TYulvi(p; — ;) + 75 (pi — i) + 2mdi;)v

—2k2m) Y 62" - mN)[f ] (po *m) { —€lone - ( - )Zdal&

e 2m 0 +m

2 )
+£Io—252+( u ) dazfz}+4m<2w> > 6(2p° — mN)

0
p +m N=—o00

X [BNAn + %6NEN] (‘%) [510152 + 510252]

N=—o00

— 2k(2n) i 0(2p" — mN)[By An] (p02;m> (1 i <P° ‘k; m)Q)

X {—510152 + 510252}

=k

—2Ben) 37 8P - mN) By Ax + SAvExliglnts + o)

N=—o00

. . . . P’ +m
On the right-hand side of an above term we will rewrite ( 5 )
m

ki 2
X (1 + ( 5 ) ) in term of speed(/3), defined by:
P +m

' +m 1

o L0 ) 8

= (

2m



= [m][@o)Z +2mp° +m® + k7|
= [m][(mv)Q +2mPy 4+ m® + (myB)?,
and by replacing p° = m~, k = m~/3 in an above term, we obtain
= _2(71 o) [V + 2y + 14 (7))
S
= lap 7] @D+ 0+ )
1 1 (1+3%)
= 2 )4 -7/
| G T
and then replacing v = /1 — 32, we finally obtain
[ VIR ([ /IEF s
2(/1-2+1)| [ V/1-5 (1—-57)
| vimR '(2 L=pP+(1=p), (0+5)
2(/1-+1)] | 1— 2 (1-p5%)
VL o 1—ﬁ2+1))
ClaVi-m+y| | 1-#
J— 1 J—
Ve

The latter works out to be

T u[yi(p;

=2k(27m)~y
N=—0c0

— ) + i (ps

Z 5(2p° — mN) [y An{—Elon& + Eloas}
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—2k(2m) Z 5(2p° — mN) {BNAN + %BNEN] [l1&s + €l 0a8)]

N=—o00

=2k(2m) > o(2p° - mN)ﬁN{VAN[—ﬂmfz + &zt

N=—o00

— {AN + %EN} [Eloi&y + 510252]}-

A tedious but straightforward computation gives

w;p/)z{(k)@”) Z 3(2p° — mN)ﬁszzv/Q(x)[ﬂUl& I3

+ 2k(2m)~y Z d(2p —mN)ﬁN{’YAN[ 510152—1‘510252]

N=—0c0

- {[AN + %EN]KI%& + 510252}}}}.

By using properties Egs. (6.11)—(6.12), we rewrite above term as:

J
x RONT Z 5(2p° — mN) { (x)[5101§2+51‘7252]

p+p
+ (VAN) [—€ o1& + o] — (AN + %EN) Elo1& + 510252]}
Ak T /2() 1
- p+1;7T2 Z a(2p° — {[ N/; — VAN — <AN+§EN>
J2
N/;(x) —+ ’}/AN — (AN + %EN> [610252]} R

and we have (p + p')? = 2m?y?(3? — 2). Therefore, giving

2
. 4kﬁN7r 25 {[JN/;<x)_7AN (AN+1EN)

2m?2~?

217

[5;0152]

[510152]



J12\7/2(37)

1T

1
+yAN — (AN + EEN)

[510252]} )

where

In full form of the amplitude of this process may be rewritten as:

4](75]\[7?
Ao<2m2 252 —9) 252]) —mN)

Tja(® 2
x{[ /2< )—’YAN—i[JIQV (z )+JN (z )}] [510152]

n [‘]N/;<x)

And using Egs. (6.24)—(6.25), we obtain

Not important

A\
la ™~

_ A4APBNpm
A x (P =D Z 5(2

2

302
x{[ o )_7AN—%[J22+( )—I—JN 1(x)}] cos(x1 + x2)

s [']12\//2(37)

—l—vAN—;L[J% Lz )—l—JN (@ )]] [510252]}~

5 + yAN — i [J%H(x) + J%l(x)}] cos(x1 — XQ)} )
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(6.70)
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So that, we rewrite the amplitude of this process as:

J12\f/2<x)
2

1

A x 1

—yAy — |:J2%+1(ZE) + J?zv_l(x)}] cos(x1 + X2)

J? 1
—i [ N/;(x) + AN — 1 [J%H(x) + szl(x)]] cos(x1 — X2)- (6.71)

The probability of this process is given F'(x1, x2) = |A|?, be written as:

‘]12\72 L 2 2 ’ 2
F(x1,x2) = [ /2< ) —’YAN_i [J%+1(x)+Jﬁ 1(x)}] cos”(x1 + x2)

> —

T30 (@ 2 2 ?
+ [ 22) +vAN — : [JQ%H(”U) + ng(x)]] cos™(x1 = X2):

2 4
(6.72)
Let
_’]12\[ 5 (2) 1r 1]
AP) = | o= —7An = 7 B, (@) + B @) | (6.73)
_JJQV 2 (2) 1r 1]
B(B) = /2 Ay = 7 [ @)+ 7 @) (6.74)
And we use identity of Bessel Functions
N
JN/271<5U) = ;JN/2($) - JN/2+1($) (6.75)
/12
2
m:|p+p‘ :\/_k:ﬁ (6.76)
2m 2m /2
20 2
20" =mN — N =2 - 210 _ o, (6.77)
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Therefore

Ao+ ]
J% () 2
= 22 —’yi <Jﬂ+1(l‘) J%_l(I)> —% [JJQ;+1($)+J2% 1(‘%)}
(@) 2
= 22 —’& < %H(ic)_ [%Jg(x)—Jerl(x)])
1, 22 2
-1 [JJQVH(SC) + <7jgf () — J12V+1(33)> ] : (6.78)

Now N/2 differ by one unit here .. for sufficiently high energies p° —

LARGE, ZJN/2+1 — JN/2

J% () ?
Af) = —2—— ’Yl (Jg(x) - [&JN(CU) - JN(QT)D

2 4
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Jx(@) |4 2v/2 2v/2 1y vz
2 {5<[1[71 B 7_1”)_7<1_7>
AW (], 2va] ava) (o veY
e e\ ) U
@ [ (aa ] A vz
2 {(ﬁ [1_7]>_27<1_7>
@ (VB f2ve V2
2 <1_7>{7_27(1_7>}
Ta@ (VB (2 V2
S (1-3) O ()
J ()
and B([) as
J} (@)
§) = 407 [ @) + @) - 2y @)y @)

— 411 [J%H(l‘) + (ﬁt]g’ (z) - J’2V+1(5C)> ] : (6.80)

Now N/2 differ by one unit here .-, for sufficiently high energies p° — large, :.J. N/241 —
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(6.81)

){\/i—i-’yﬁ—’}/\/i}.
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The exact probability of this process is given

F(x1, x2) = A%(B) cos? (Xl ; XQ) + B2() cos? (Xl ; X2) . (6.82)

To normalize the expression in Eq. (6.82), we have to sum F'(x1, x2) over the
spin polarization directions specified by the pairs of angles same as in Eq. (6.29). That
is, we have to find the normalization factor same as in Eq. (6.30). The first one, we

rotated angle x; with 7, by replacing y; — X1 + 7, given

F(x1 + 7, x2) = A%(B) sin? <X1 er X2> + B2(3) sin® (Xl 5 Xz) (6.83)

The second one, we rotated angle y, with 7, by replacing o — X2 + 7, given

Flxi, x2 +7) = A(8) sin? (%) + B*(f) sin® (%) (6.84)

Finally, we rotated angle x1, x2 with 7, by replacing x; — x1 + 7, X2 — X1+ 7, given
F(x1 +m,x2 +m) = A*(3) cos? (%) + B*(B) cos® (%) (6.85)

The latter works out to be
N =2[A*(3) + B*(B)]. (6.86)

Therefore, given that the process has occurred as expressed in figure 6.1 , with
electron moving along y-axis and positron moving along x-axis, the probability of the

spin polarizations, specified by the angles x1, X2, is rigorously given by

A%(B) cos? (X322) + B?(3) cos? (X5X2)
2[A%(B) + B*(B)]

P(x1,x2) = (6.87)

as in Yongram and Manoukian (2003) and Manoukian and Yongram (2004), given the
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following explicit expression for the probability of the simultaneous measurements of
the spins of e~ e™, with angles 1, X2, as specified above,

P(x1,x2) = [V2 — 78 + V2% cos?(x1 + x2) + [V2 + 78 — 7v2]? cos®(x1 — x2)

2| [V2 =18+ V22 + [V2+ 78 — V2]

(6.88)
At high energy  — 1,7 — oc. We obtain
AB) = V2 =3B +7V2
~ (V2 1)y, (6.89)
B(B) = V2+~8—1V2
~ —(v2—1), (6.90)
to obtain
P xa) — cos (X1 + X2) + cos?(x1 — x2) 691)

4

Same as for charged string (for extreme relativistic case). Consider A(3) and B([3), we

have y = 1/4/1 — 3

A9 =2 5
1 2
:—m(ﬁwﬁ)—mﬁ),
B(3) =V2+ \/11_7525— \/11—752\/5
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and we then square above term, be written as

A%(B) = (ﬁ) (ﬁm - ) —ﬁ+\/§>2 (6.92)

B*(B) = (ﬁ) <\/§(\/ 1-p%)+08— \/§>2 : (6.93)

Here
(VEWT=3%) + (VE—5)) =45~ 230+ 2(V2 ~ )21~ 7), (6.94)
(VAW/T— )~ (vV2- 1) =4— 3~ 2v20 —2(v2 - A)/2T— 3P). (699

Add Eq. (6.92)—(6.93), we obtain

AX(B) + B*(B) = 2 <\/%52> (4—3*—2v20). (6.96)

All told, given that the above process has occurred, a direct straightforward sim-
plification of the expression in Eq. (6.56) leads to the following expression for the po-

larizations correlations probability of the pair

Pha, o] = 4(4— @21_ 2v/25) { (\/W— \/§+5>2cos2 (—Xl ;X2>

+ (V=) + V2 ) ot (152) }

(6.97)

and again is speed dependent, Py, —] = 1/2 = P[—, x| for a measurement of the
spin of only one of the particles. The fact that the polarizations correlations probabilities
of the eTe™ pair emitted from the charged and neutral strings are different in general,

such inquiries indicate, in principle, whether the string is charged or uncharged. In the
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extreme relativistic case, the probability in Eq. (6.91) coincides with the expression on
the right-hand side of Eq. (6.41) for a charged string.
Finally we note that these dynamical relativistic quantum field theory calcula-

tions lead to a violation of LHV theories. To this end, define:

for two pairs of angles (x1,Xx2), (X}, X5). To show violation with LHV theories, it
is sufficient to consider one experimental situation which gives for .S a value outside
[Clauser and Horne, 1974; Clauser and Shimoney, 1978] the interval [—1,0]. To this
end for 5 = 0.8, x1 = 0°, x2 = 160°, x} = 100°, x;, = 10°, we obtain S = —1.088,
S = —1.103 for the charged and neutral strings, respectively, leading to a clear violation

of LHV theories.



CHAPTER VII
CONCLUSION

A systematic dynamical analysis of polarization correlations of simultaneous
measurements of spins of two particles produced in fundamental processes has been
carried out based on our explicit computations emerging from present celebrated gauge
theories of elementary particles in quantum field theory and hence are applicable, in
particular, at high energies. Here we recall that quantum field theory is the non-
phenomenological theory which results in extending quantum physics to the high-
energy relativistic regime. Given that the processes in question have occurred, we have
computed the corresponding explicit joint probabilities, or probability counts, of spin
measurements along given directions for the two particles observed, as well as for the
measurement carried out on the spin of only one of the two particles. Such probabilities
are referred to as conditional probabilities by probabilists and rely on the fact that the
processes have occurred with non-zero probabilities. We have encountered that these
dynamical calculations following directly from quantum field theory lead to non-trivial
speed dependence of the polarization correlations due to the mere fact that particles
have non-zero speeds in order to collide or to travel to the detection region and, in some
cases, due to a threshold energy needed to create given particles. This is unlike naive
arguments based simply on combining spins which are of kinematical nature void of
dynamical considerations. In all of our QED computations, we will see below, that for
the zero speed limits, our expressions reduce to the naive ones just mentioned. In par-
ticular, their 5 — 0 limits violate Bell’s inequality—a result known for years. On the
other hand, due to the threshold energy needed to create p+p~ from ete™ scattering
in the Weinberg-Salam electro-weak theory, the speed zero limit cannot be taken and
formal arguments based simply on combining the spins of ™, ~, without dynami-

cal quantum field theory considerations, completely fail. Here we encounter the novel
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property of coupling dependence as well in addition to speed dependence. Due to recent
overwhelming interest in extending the point-like property of a particle to an extended
one, such as of a string, similar analyses as above has been carried out for pair ete™
creation by circularly oscillating charged and neutral Nambu strings. In particular, in-
quiries about polarization correlations alone, indicate whether the string in uncharged
or neutral. In the extreme relativistic case the corresponding correlations are found to
coincide. For the neutral case, the production of a graviton by the string is encountered
which in turn decays to the e™e™ pair. All of our correlation probabilities computed are
novel and have been published. It is remarkable that they all, with no exception, lead to
a violation of Bell’s inequality of tests against Local Hidden Variables theories.

We summarize our findings giving expressions of the probability counts of spin
measurements of the processes considered in this work and provide some additional
comments.

The probability of photon polarizations correlations in e e~ — 2~ with initially

unpolarized e™, e, in Process 1, is given by

1 — [cos(x1 — x2) — 23? cos x; cos X2]2

20+ 2521 — 2] ’ b

Plx1,x2) =

forall 0 < g < 1.
For the measurement of only one of the polarizations the corresponding proba-
bilities are given by

144821 — ) cos s

Mo = ema -y 7

144571 — 3?) cos® xo
Pl == ma—my 7

We note the important statistical property that

Plx1, x2] # Plx1, —|P[—; x2], (7.4)
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in general. showing a non-trivial dependence between the two spin measurements.
In the notation of Local Hidden Variables (LHV) theory (Clauser and Horne,
1974; Clauser and Shimoney, 1978; Fry, 1995; Selleri, 1988), we have the identifica-

tions

P, 12(6L17 GQ)
P = —C 7.5
[Xl’XZ] P12<OO7 00)7 ( )
given that the two photons have emerged (back-to-back) along the z-axis.
For the measurement of only one of the polarizations
Plg(al, OO)
P — === 7.6
[X17 ] P12(OO,OO>7 ( )
P12(OO, ag)
Pl— = —_—z 7.7

where a1, as specify directions for measurements of polarizations. Defining (see Ap-

pendix E)

S = P[x1.x2) — Plx1, Xa) + P[x1, Xx2]

for four angles x1, x2, X}, X5 LHV theory gives the Bell-like bound (Clauser and
Horne, 1974; Clauser and Shimoney, 1978):

-1<S5<0. (7.9)

It is sufficient to realize one experimental situation that violates the bounds in
Eq. (7.9).

For example, for x; = 0°, xo = 67°, X} = 135°, x4 = 23°, Eq. (7.1), Egs. (7.2)—
(7.3), as obtained from QED, gives S = 0.207 for § = 0 that violates Eq. (7.9) from
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above. For y; = 0°, x2 = 23°, x|} = 45°, x4 = 67°, we obtain S = —1.207 for § = 0

violating Eq. (7.9) from below. Both bounds are violated for all 5 < 0.2 for these same

angles, respectively.

The probability of photon polarizations correlations in e*e~ — 2~ with initially

unpolarized e, e”, in Process 2, we have

A(B) + B(B) cos®(x1 — x2)
22AB)+BE)]

Pﬁ[XbXZ] =

where

A(B) =

[4+4(1 -5 — (1527 1+4 3 B
i3 m(w)‘i*?’

56) = —1-5 |1+ L w (112

given that the two photons have emerged (back-to-back) along the z-axis.
For the measurement of only one of the polarizations be written as
2AB)+B@B)] _1

b = gy v py ~2 e

for all 0 < 3 < 1, and the latter are, respectively, independent of x1, x2.

Again we have the important statistical property

P/@[XLXQ] 7é Pﬁ[Xla _]PB[_J@],

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

in general. It is interesting to note that an equality in Eq. (7.4) holds in the extreme

relativistic case 5 — 1, where each side is equal to 1/4.

Only in the limiting case 3 — 0, the joint probability in Eq. (7.10) for this

process coincides with that in Eq. (7.1) for the first process.
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As in Eq. (7.8), we define

Sp = Pslx1, x2] — Palx1, Xa] + Pslxi, x2]

for four angles 1, X2, X}, X5, LHV theory gives (Clauser and Horne, 1974; Clauser and
Shimoney, 1978)
-1 <53 <0. (7.16)

For § — 1, an equality holds in Eq. (7.14), S3 — —1/2, and this pro-
cess, to be useful for testing the violation of Eq. (7.16), should not be conducted
at very high speeds. For x; = 0° x2 = 67° x] = 135° x5 = 23°, we have
Ss = 0.120,0.184,0.201,0.207 for 8 = 0.2,0.1,0.05,0.01, respectively, violating
Eq. (7.16) from above. For xy; = 0°, x2 = 23° x} = 45° x4 = 67°, we have
Sz = —1.120,—1.184, —1.201, —1.207 for 8 = 0.2,0.1,0.05,0.01, respectively, vi-
olating Eq. (7.16) from below. For 3 larger than 0.2 but close to it, S already turns out
to be too close to the critical interval given in Eq. (7.16) to be relevant experimentally.

For completeness, we mention that for the annihilation of the spin 0 pair into 2,

Process 1, the following probabilities are similarly worked out:

(cos(x1 — x2) — 23% cos x1 cos X2)2

P = 7.17
[X17X2] 2[1 _ 262(1 _ ﬁQ)] ( )
forall 0 < g < 1.
For the measurement of only one of the polarizations be written as

1= 4821 — B cos®

Ply, —] = 7.18
1 —48%(1 — %) cos?

Pl o) = LA G cos xs (7.19)

201 =231 - p?)]



and violates Bell’s inequality of LHV theories forall 0 < 3 < 1.
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For example, for y; = 0°, xo = 23°, x| = 45°, x4 = 67°, Eq. (7.17), Eq. (7.18),

Eq. (7.19), as obtained from scalar electrodynamics, gives S = 0.207 for 3 = 0 that

violates Eq. (7.9) from above. For x; = 0°, xo = 67°, x| = 135°, x4 = 23°, we obtain

S = —1.207 for B = 0 violating Eq. (7.9) from below. Both bounds are violated for all

£ < 0.2 for these same angles, respectively.

The probability of photon polarizations correlations in spin 0 pair into 2, Pro-

cess 2, accordingly, for the joint conditional probabilities, we have

A(B) + B(B) cos?(x1 — x2)

Pslx1, x2] = 2[2A(83) + B(B)]

where

A(ﬁ) _ {_4<1 _ﬁ2) + (1 _52>2} hl(l_'—ﬁ) +

46 1-p

B(3) = (1 -5 {1+ a-5 1n(1+6)} .

26 1-p

the measurement of only one of the polarizations as:

1
Pﬂ[Xl: _] = 5 = Pﬁ[_ax2]7

for all 0 < B < 1 and independent x1, xo.

9

3

(7.20)

(7.21)

(7.22)

(7.23)

Only in the limiting case 5 — 0, the joint probability in Eq. (7.20) for this

process coincides with that in Eq. (7.17) for the first process.

As in Eq. (7.8), we define

Sﬁ = Pﬂ[XhXQ] - Pﬁ[XlaXIQ] + P,B[XIMXZ]

(7.24)
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for four angles x1, X2, X}, X5, LHV theory gives [Clauser and Horne, 1974; Clauser and
Shimoney, 1978]
-1 <855 <0. (7.25)

For § — 1, an equality holds in Eq. (7.20), S3 — —1/2, and this pro-
cess, to be useful for testing the violation of Eq. (7.25), should not be conducted
at very high speeds. For x; = 0° x2 = 67° x] = 135° x5 = 23° we have
Sz = 0.120,0.184,0.201,0.207 for 5 = 0.2,0.1,0.05,0.01, respectively, violating
Eq. (7.25) from above. For y; = 0° x2 = 23°, x| = 45° x, = 67°, we have
S = —1.120,-1.184, —1.201, —1.207 for 8 = 0.2,0.1,0.05,0.01, respectively, vi-
olating Eq. (7.25) from below. For (3 larger than (0.2 but close to it, Sz already turns out
to be too close to the critical interval given in Eq. (7.25) to be relevant experimentally.

The probability of photon polarizations correlations in e"e~ — e~ e~ with ini-
tially polarized e, e™, so-called Case I, § = 0 and ¢ = 7/2, has been given in work of

E. B. Manoikian and N. Yongram (2004) to be

1 _
Pl x] = 5 sin? (%) , (7.26)

forall 0 < g < 1.

For the measurement of only one of the polarizations we have

1

Phu. -] = (7.27)
1

Pl=,x2] = 3 (7.28)

The probability of photon polarizations correlations in e"e~ — e~ e~ with ini-

tially polarized e, e~, so-called Case II, ¢ = 0 and ¢ = 0, has been given in work of
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E. B. Manoukian and N. Yongram (2004) to be

Phael = ﬁ(ﬂ) (14607 p)sin (Xl ; X2> — 4p* cos <X1 ;X2>]27
(7.29)
where
N(p) = [(1+6p* + p")* + 16p"], (7.30)
and

1 4p2(1 4 6p% + p*) .
P - === 7.31
(X1, —] 2 0+ 607+ p' 2+ 16 sin x1, (7.31)

1 4p2(1 + 6% + p?
Ploiy] = L A (46040
2 (146p%+ p*)? + 16p*

sin xa. (7.32)

Now we make the very important observation that in the formal limiting case
B — 0, Eq. (7.29), Egs. (7.31)—(7.32) show that P[y1, xa] — (sinz[(xl — Xg)/ZD /2,
Plx1,—] — 1/2, P[—, x2] — 1/2 coinding with fromal arguments based simply on
combining the spins of e" e~ [see page 3 of Chapter I, Introduction], expressions which
have been used for years [cf. Clauser and Shimoney, 1978] showing the incorrectness of
such arguments for 5 # 0 due to the simple fact that the electrons move upon collision
to the detection region.

For all 0 < 3 < 1, angles x1, x2, X}, X5 are readily found leading to a violation
of Bell’s inequality of LHV theories. For example, for 3 = 0.2, x; = 0°, x2 = 23°,
X1 = 45°, x4, = 67°, S = —1.187 violating the inequality from below.

The probability of photon polarizations correlations in e e~ — 2~ with initially

polarized e, e, so-called Case I, § = 0, has been given in work of E. B. Manoukian
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and N. Yongram (2004) to be

1 _
P[x1, x2] = §sm2 (Xl 5 X2> , (7.33)

forall0 < B < 1.

For the measurement of only one of the polarizations we have

1

Plx1,—| = 3 (7.34)
1

Pl—, x2] = 3 (7.35)

The probability of photon polarizations correlations in e*e™ — 2+ with initially
polarized e™, e, so-called Case II, § = /2, has been given in work of E. B. Manoukian

and N. Yongram (2004) to be

(1 + /02)2 SiHQ(Xl —X2) + 62(1 - P2)2 COSQ(Xl + Xz)

Plx1, x2] = , 7.36
e 21+ 2+ 21— 2] (730
forall 0 < g < 1.
For the measurement of only one of the polarizations we have
1
Pl —] =3, (7.37)
1
Pl=xo] = 5 (7.38)

A clear violation of Bell’s inequality of LHV theories was obtained for all 0 <
B3 < 0.45. For example, for § = 0.3, with x; = 0°, x2 = 45°, x] = 90°, x5, = 135° give
S = —1.165 violating the inequality from below. For larger (3 values, alone, one cannot
discriminate between LHV theories and quantum theory for this process. A violation
of Bell’s inequality for at least some (3 values, as seen, however, automatically violates

LHYV theories.
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The probability of photon polarizations correlations in e"e~ — e~ e~ with ini-

tially unpolarized e, e~ has been given in work of E. B. Manoukian and N. Yongram

(2004) to be
1 — 32)(1 + 34?%)sin? (1222 4 g4 cos? (X2x2) 4 434
P[leXQ] = ( )( ) ( 2> 4 ( 2 ) ) (739)
2(14+ 282 +64%)
forall0 < g < 1.
For the measurement of only one of the polarizations we have
1
Pha.—]= 3, (7.40)
1
Pl=xal = 5. (7.41)

The probability of photon polarizations correlations in ee™ — p* ™ with ini-
tially unpolarized e, e~ has been given in work of N. Yongram, E. B. Manoukian and

S. Sirinan (2006) to be

Pl ) = 5777 () sin(2522) + B(E)sin(22422) + C(E) cos(22)]
77 D) sn(252) + B(E) cos(232)]" (7.42)

where

and




237

B(E) = -2 e,

my,

The probabilities associated with the measurement of only one of the polarizations are

given respectively, by

Plx1, -] = % — %(gg)) [A(E) cos x1 + C(&) sin x4 ], (7.44)
Pl—,x2] = % + 2]5((;)) [A(E) cos x2 + C(E) sin x2]. (7.45)

Here we note the non-trivial speed as well as couplings dependence [see Chap-
ter V for more details] neither of which may be taken to go to zero and hence formal
arguments of simply combining the spins of ™, = completely fail.

To show violation of Bell’s inequality, it is sufficient to find four angles i,
X2, X1, X5 at accessible energies, for which S falls outside the interval [—1,0]. For
E = 105.656 MeV, i.e., near threshold, an optimal value of S is obtained equal to
—1.28203, for x; = 0° x2 = 45° x; = 90°, x5 = 135°, clearly violating Bell’s
inequality. For the energies originally carried out in the experiment on the differential
cross section at £ ~ 34 GeV, an optimal value of S is obtained to be equal to —1.22094
for x1 = 0°, x2 = 45°, x} = 51.13°, x4, = 170.85°.

The probability of photon polarizations correlations in e*e™ pair productions

from a charged Nambu strings with initially unpolarized e*, ¢~ has been given in work
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of E. B. Manoukian and N. Yongram (2005) to be

(2vT= 7 — 7)ot (2322) + (2T 2+ ) cos? (2252

P[Xl;Xz] = 4(2 — 52)2

(7.46)

The probabilities associated with the measurement of only one of the polarizations are

given respectively, by

1

Pha.—]= 3, (7.47)
1

Pl-x] = 5. (7.48)

The probability of photon polarizations correlations in e*e™ pair productions
from a Neutral strings with initially unpolarized e*, e~ has been given in work of

E. B. Manoukian and N. Yongram (2005) to be

Pha, o] = 4 (4 _ 521_ 2\/55){ (\/W— \/§+6)200s2 (—Xl g XQ)

b (VI 4 V3 - )’ ot (X522) }

2

(7.49)

The probabilities associated with the measurement of only one of the polarizations are

given respectively, by

1

Plx1,—] = 3 (7.50)
1

Pl= ] = 5. (7.51)

To show violation with LHV theories, it is sufficient to consider one experimental situa-

tion which gives for S a value outside (Clauser and Horne, 1974; Clauser and Shimoney,
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1978) the interval [—1,0]. To this end for 8 = 0.8, xy; = 0°, xo = 160°, x} = 100°,
X5 = 10°, we obtain S = —1.088, S = —1.103 for the charged and neutral strings,
respectively, leading to a clear violation of LHV theories.

All of the above explicit expressions of our probability counts are novel. They
provide ample support of the dependence of polarization correlations on speed as we
have seen in our computations in quantum field theory in the electro-weak interaction
as well as in the QED ones. We hope that some new experiments will be carried out
in testing these expressions following unambiguously from our present ever reliable
gauge theories which have been so far in excellent agreement with experiments and that
will monitor speed and lead also to some new Bell-like experiments exploring quantum

physics, i.e., quantum field theory, further in the high-energy relativistic regime.
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APPENDIX A

NOTATION

In this Appendix we summarize the notation for relativistic four-vectors, for

Dirac matrices and for spinors.

A.1 Vectors and Tensors

In the natural system of units, the speed of light, c, is equal to unity, so that the

space-time four-vector is denoted (h = ¢ = 1)
v = (2°,x) = (¢,%)

z, = (—2",x) = (—t,%), (A.1)

where the Greek index p varies from 0 to 3 and the Roman indices on three-vectors vary

from 1 to 3. Other frequently encountered four-vectors are

energy-momentum: p* = (p°, p)
four-gradient: 0, = (%, V> ot = (—%, V)
four-current: J* = (J° J)

four-vector potential: A* = (A% A) = (¢, A)
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The invariant length of the four-vectors is written

2’ =11 = g,a"r =z, =x — (2°)? (A.2)

where a sum over repeated indices is always assumed and g§ = (gu) = (M) =

diag(—1,1, 1, 1) is the metric tensor

-1 0 0 0

0O 1 00
g = (g/u/> =

0O 010

0O 0 01

The symbol p is used to denote either the energy-momentum four-vector or the magni-
tude of the momentum three-vector (they can be distinguished from each other by the

context in which they are used). The four-divergence of a vector field is

O, J" = %JO +V-J. (A.3)

In manipulating three-vectors and tensors, we use the Kronecker ¢;; function
and the antisymmetric symbol ¢;;,, which is antisymmetric in any pair of indices and

1

normalized to €105 = €'? = 1. Useful identities are

€ijk€jkir = 2040
€ijk€il 'k = 5ii’5jj’ - 51‘]"6]‘1"- (A4)

When manipulating four-vectors and tensors, we will sometimes need the four-
dimensional antisymmetric symbol €,,,s5, which, when all indices are down, is anti-

symmetric under the interchange of any pair of indices and normalized to €123 = 1 and
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V123 — 1, Useful identities are

€ L\ =24

Cars€u VN = 6. (A.5)

A.2 Dirac Matrices

The Dirac matrices v* satisfy the following anticommutation relations:

{7V} =AM A = 29" 1y (A.6)
where
1 000
10 1 0 0 0
1= and 1, = =
0 1 0 1 10
0 001
The 4 x 4 representation of these matrices used in this thesis (7 = —~q)
0 1 0 i 0 g;
v = v = , (A.7)
0 -1 —0; 0
where the o are the Pauli matrices
0 = (017 02, O'3>
01 0 —i 1 0
o1 = 09 = g3 — . (AS)

10 i 0 0 —1
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Note that

A0t — A0
¥ p—
Py = 2. (A.9)

Other matrices which are related to or constructed from the y-matrices, are 3 = ~°,
. 1 . . . )
o = 0y, ¥5 = iy0y1243, ot = 3 [v*,~"], the charge conjugation matrix C = —ic,

and time inversion matrix 7 = C~°. Their explicit 2 x 2 block form is

0 o 0 1
=1y = , "= :
o 0 1 0
4 0 oy 0 —lio
o =ia; =1 , C= ? :
og; 0 —1i09 0
.. O 0 —io 0
o = APay, = T ? , (A.10)
0 oy 0 —io9

where ijk are in cyclic order. Note that C = —CT = —C~!, (7°)? = 1, and that

C”y“C_l _ _,-)/MT

Pt = —yHy°. (A.11)

Using the notation

P=7"pu =,
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the following identities hold for the y-matrices:

VY = —4 x 1y

Vi = 24
7”?”57;1 =4a-b
YEdbdy,, = 2¢bd. (A.12)

In d dimensions, these identities generalize to

VYo =d X 1q
Ve = (2 — d)d
e = da-b— (4 — d)dp
Vi ibfve = —2¢bd + (4 — d)dbs

= —(6 — d)¢bdt +2(4 — d)[db- ¢ — pc - a + ¢a - b]. (A.13)

A.3 Trace Theorems

The trace of an odd number of y-matrices is zero. Other traces are

Tr{y"7"} = —4g"

Tr{dp} = —4a - b

Tr{d¢b¢d} = 4(a-bc-d—a-cb-d+a-db-c)
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Te{y°#p} = 0

Tr{ dhid} = die,,n, a0 dP. (A.14)

A.4 Dirac Spinors

The four-component Dirac particle u and antiparticle v spinors are defined by

the relations

1
u(p,s) =V E,+m o-p x°
E,+m
o-p
v(p,s) = /E, +m | Eo T | [“ioyy’], (A.15)
1

where E, = y/m? + p? is the relativistic energy of the particle and the two-component
spinors x are

(1/2) _ U2 = (A.16)

The antiparticle two-component spinor is sometimes denoted by 7(*), where 7(~*) =
—ioyx(®). Hence

! Nt = gy (12 - (A.17)

+1 0

(=1/2) (+1/2)

n —lo2X

Note the sign (phase) of 1(+1/2). This phase convention is introduced so that the spinors

are charge conjugates of the another (see below).
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The adjoint Dirac spinors are

u(p, s) = u'(p, s)7"

7(p, s) = v'(p, s)7". (A.18)

With this definition, the spinors satisfy the following normalization and orthogonality

relations:

u(p, s)u(p, s’) = 2mdy u(p, s)u(p,s’) =0

v(p, s)v(p, ') = —2mdsy u(p, s)u(p,s’) = 0. (A.19)

The completeness relations are expressed in terms of the positive and negative energy

projection operators

— _ Typ+m
; U(p, S)U(p, S) - T
_ __(wp+m)
20,0l ) = =5 (A.20)
The v and v spinors are related by conjugation:
Cv'(p,s) =u(p,s)  Cu'(p,s)=v(p,s). (A21)

A.S Two-Spinor

Let the unit vector

n = (cos x,sin x, 0), (A.22)
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Figure A.1 The figure depicts e~ e~ scattering, with the electrons initially moving
along the y-axis, while the emerging electrons moving along the z-axis.
The angle x, measured relative to the x-axis, denotes the orientation of
spin of one of the emerging electrons may make.

and
hlo O
S = 3 (A.23)
0 o
So that
h 01 0 g9 0
S:n=— cos x + sinx| , (A.24)
2
0 oy 0 o
we approximate S - n, therefore, above is written as
01 COS X + o2 sin Y 0
S.n~ | ? . (A.25)
0 01 COS X + og8In Y
To specify the two spinors &, for the pour-spinor is written as
0 1/2
P’ +m £
ur) = (") , (A.26)
m o-p

pO+m
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from
(S - n)u(p) (A.27)
Therefore
01 COS X + 098I Y &
! ? - . (A28)
0 01 €08 Y + 09 8in Y pojrmﬁ pg:jng
0 1/2
where <p + m) be canceled out.
2m
We have
[01 cos x + ogsin x| € = &, (A.29)
[01 cos x + oasin x| € = &, (A.30)
where g ‘P be canceled out.
pr+m
a
Let¢& = , where a, b are the real number, and we chose Eq. A.29, given by
b
01 a a
cos x + =
10 b b
0 cosxy —isiny | [ a a
cos x +1isiny b b
a a
= , (A.31)



we obtain

be ™™ =q

aeX = b.

From Eqgs. A.32 and A.33, we obtain the collected solution as

a = Ce /2
b= CeX/?,
where C is the constant.
Therefore
e*iX/2
§=C
eix/2

To normalized the two-spinor, £7¢ = 1, given
gT =t <eix/2 eix/2> ’

we have

9 . ) e_iX/2
|C’| elx/2 e—lX/2 =1

e1)(/2

1
CP ==
O = 3

Nl
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(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)

(A.38)
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Therefore, we obtain

E=—— ) (A.39)

Figure A.2 The figure depicts e*e™ annihilation into 2~y, with e™, e~ moving along
the y-axis, and the emerging photons moving along the z-axis. y denotes
the angle the polarization vector of one of the photons may make with the
Z-axis.

Let the unit vector

n = (0,sin x, cos x). (A.40)
So that
h oy 0 o3 0
Sen=—-|— siny + cos x|, (A.41)
2
0 09 0 O3

we approximate S - n, therefore, above is written as

09 sin xy + o3 cos 0
S.pn | TIATOREOX . (A.42)

0 02 SIn X + 03 COS X



To specify the two spinors &, written as
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098I X + 03 COS X 0 13
? ’ _ C (A43)
0 oasin X + oy cosy | \ TR TR g
0 1/2
where <p + m) be canceled out.
2m
We have
[09 sin y + 03 cos x| £ = &, (A.44)
[09 8in y + 03 cos x| £ = &, (A.45)
where 5 be canceled out.
P’ +m
a
Leté& = , where a, b are the real number, and we chose Eq. A.29, given by
b
0 —i 1 0 a a
siny + cos X =
i 0 0 —1 b b
cosy —isiny||[a a
= , (A.46)
isiny —cosx /\b b
we obtain
acosy — bisiny = a, (A.47)
aisin y — bcosx = b, (A.48)



we chose Eq. A.47, so that, we get

bisin
a= .
1 —cosy
Therefore
_ bisiny _:_siny
f _ 1—cosx b l—cosx "’
b 1

To normalized the two-spinor, £7¢ = 1, given

T —pt [ sin
g =b (ll—co)s(x 1)’

we have

—i sin x
2 [ . & 1—cosx
1] (1—1smx 1) =1,
+cos x

sin? y
WPll+ —2 | =1
b |1+ (o] =

|b|2 [1 — 2cos y + cos® y + sin? X] _1
(1 —cosx)? ’

b = (1 — cos x)?
21— cosy]’

1
b = S(1 = cos ),

1
b= 5(1 —cosx) = sing.

Therefore, we obtain
—icos X

= 2

in X
SlIl2

Let the unit vector
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(A.49)

(A.50)

(A.51)

(A.52)

(A.53)
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-0

= A

Figure A.3 The angle x, measured relative to the z-axis, denotes the orientation of spin
of one of the particles may make.

n = (—siny, 0, cos ). (A.54)
So that
h o1 O o3 0
S‘n=—-|— sin x + cos x|, (A.55)
2
0 01 0 03

we approximate S - n, therefore, above is written as

—osiny + o3 cos x 0
S.n~| ’ . (A.56)

0 —0sin Y + 03 Cos Y

To specify the two spinors &, for the pour-spinor is written as

0 1/2
p+m £
= ) A.57
u(p) ( 5 ) o (A.57)
pO+m
Therefore
—0psinx + o3 cosy 0 ¢ 13
! ’ _ . (A58)
0 —oysinx +ozcosy | \ 7€ g

pO+m



0 1/2
where <p 2+ m) be canceled out.
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m
We have
[—oq siny + g3 cos x| € = &, (A.59)
[—oq siny + g3 cos x| € = &, (A.60)
where — be canceled out.
p'+m
a
Leté& = , where a, b are the real number, and we chose Eq. A.59, given by
b
01 1 0 a a
— sin x + Cos X
10 0 —1 b b
cosy —siny||[a a
(A.61)
—siny —cosy /[ \b b
we obtain
acosx — bsiny = a, (A.62)
—asiny — bcosx = b, (A.63)
we chose Eq. A.63, so that, we get
asiny
b= — . A.64
1+ cosx ( )
Therefore
a 1
&= ' =a ' (A.65)
asin x sin x
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To normalized the two-spinor, £7¢ = 1, given

h=adl (1 —X) , (A.66)

- 1+cos x

we have

1
|al® (1 sin X ) =1,

" 14cos X siny
- 1+cosx

.2
9 sin” y

1+ —— | =1

a [ (1+COSX)2] 7

[1 + 2cos x + cos? y + sin? X]

|CL|2 =1,
(14 cosx)?

af? = (1 + cos x)?

214 cos x|’

1
\a]Q = 5(1 + cos x),

1
a= 5(1—0—008){) :cosg. (A.67)
Therefore, we obtain
cos §
€= . (A.68)
—sin &

2
For two spinor of correlation particles, in Chapter VI, by substituting x — x’ — 7, we
have
sin XEI
¢ = . (A.69)

!
X
COS 5

Let the unit vector

n = (sin x, 0, cos x). (A.70)
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BV

9
)

Figure A.4 The angle x, measured relative to the z-axis, denotes the orientation of spin
of one of the particles may make.

So that

h o 0 o3 0
S:n=— ! sin y + ’ cos x|, (A.71)

2 0 oy 0 o3

we approximate S - n, therefore, above is written as

018X + 03 COS X 0
S.n~ | ’ . (A72)
0 o1sin’y + 03 cosy
Therefore
o1sinx + o3 cos x 0 13 13
= , (A.73)
0 o1sinx +ozcosx | \ i€ &
0 1/2
where (p + m) be canceled out.
2m
We have
[0 siny + 03 cos x| £ = &, (A.74)

[0 siny + 03 cos x| £ = &, (A.75)



269

where — L be canceled out.
p'+m
a
Leté = , where a, b are the real number, and we chose Eq. A.75, given by
b
01 1 0 a a
sin y + cos X
10 0 —1 b b
cosy siny a a
(A.76)
siny —cosx/\b b
we obtain
acosy + bsiny = a, (A.77)
asiny —bcosy = b, (A.78)
we chose Eq. A.78, so that, we get
aisin y
= —>" A.79
1+ cosy ( )
Therefore
a 1
&= ‘ =a . (A.80)
asin x sin x
1+cosx 1+cos x
To normalized the two-spinor, (7€ = 1, given
T — 4T sin
§'=a (1 ﬁ) (A.81)
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we have

1
|CL‘2 1 sin =1
14+cosx siny ’
14cosx
. 2 A
9 sin® y
14— =—| =1
a l * (14 cosx)? | ’
|a|2 [1 + 2cos x + cos? y + sin® X] _1
(1+ cosx)? ’
af? = (1 + cos x)?
21+ cos x|’
5 1
la|* = 5(1 + cos ),
1 X
a = 5(1+Cosx) = cos 3. (A.82)
Therefore, we obtain
cos §
&= ) (A.83)
sin X

2

For two spinor of correlation particles, in Chapter V, by choosing the unit vector

n' = (—siny/, 0, cos x'). (A.84)
So that
h o 0 o3 0
S-n'=—-|— sin Y’ + cosx'| , (A.85)
2
0 o 0 o3

we approximate S - n’, therefore, above is written as

—oysiny + ozcos )’ 0
S-n' ~ : (A.86)
0 —oy sin ' + o3 cos }’/
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Therefore
—oysin ' + o3 cos }/ 0 & &
! ’ _ . (A87)
0 —oysiny + o3cos pg’f;ng’ pg’ﬁlg’
0 1/2
where <p + m) be canceled out.
2m
We have
[—oysiny’ + ozcos )| =¢ (A.88)
[—oypsiny’ + ozcos )| =¢ (A.89)
where 5 L be canceled out.
p'+m
a/
Let ¢ = , where a’, b’ are the real number, and we chose Eq. A.89, given
b/
by
01 1 0 a a
- siny’ + cosy’ =
10 0 -1 b b
cosy’ —siny |[d a
= , (A.90)
—siny —cosy |\ ¥V v
we obtain
a' cosy' + UV siny =d, (A.91)

—a'siny' — b cosy' =1, (A.92)
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we chose Eq. A.92, so that, we get

oo s (A.93)
1+ cosy’
Therefore
a 1
¢ = —d . (A.94)
. la’ sin x’ —= sin x/
~+cos x’ ~+cos x’
To normalized the two-spinor, £'T¢’ = 1, given
f/T —at (1 __siny/ ) (A.95)
14cosx’ |’ :
we have
1
|a/[? (1 —_sinx’ > =1,
14+cos x’/ sinx’
" 14cosy’
2 )
2 s X
1+ ————| =1
' [ (1—|—cosx’)2} '
o] [1 + 2cosy + cos? x’ + sin? X’} _
(14 cos x')? ’
] = (1+ cosx’)?
21+ cos x|’
1
@ = 21+ cos ),
1 X
a = 5(1 + cos X') = cos X (A.96)
Therefore, we obtain
cos X?/
¢ = : (A.97)

. /
—sin X



APPENDIX B
VACUUM-TO-VACUUM TRANSITION AMPLITUDE

IN QED

B.1 Vacuum-to-Vacuum Transition Amplitude

The Lagrangian density in QED is defined by

1 1 — — _
L= PP Fpt o | By~ G % — g

+ ey At + g + T + JHA,, (B.1)
where e is charge,
1, 1) are the matter fields,
n, 1, J* are external sources,

and A* is the vector potential.

The fields equations are formally
B aﬂ
Y T e, | +mo| Y =1, (B.2)

— 0
@b |:7M (Tﬂ + €0Au) - m0:| = -1, (B3)
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and in Feynman gauge, we have

o — (gw _ akvaj) (cobrath + J,) - (B4)
The momentum canonical are
7(A%) = 0, (B.5)
m(AY) = -0 (0'F” — 9°F") = 7', (B.6)
m(¢) = iy, (B.7)
[A%(2), 7 (2)] = 168 (x - ), (B.3)

where a,b = 1,2 and 2° = 2.

B.2 Dynamical Principle I and I1

Dynamical principle 1

L ' (d)5L ()

d{at|ad't’y =i <at a’t’> . (B.9)

Dynamical principle II gives the relation for

d
3% (aT; NQ(z)|a'T'; ), T <a°<T,
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where we may write

(a3 A|Q(@)]a'T’; Ay = > (aT; A|bt; A) (bt; A|Q(z)|b't; A) (b't; M|d/'T"; A)
b,b!

(B.10)

=Y {i (ar | [ @

bt; A> (rest)

+ (aT’; Albt; A) (bt; A|Q(2)[b'E; A)

aT' )\>

d
+ (aT; Nbt; \) — (bt; M|Q(z)|b't; N) ('t; N|a'T; )\)}

:l:i<b’t; A /Ti(dzv)Q'(:E)

ON

)
—i— {aT" T’
= (T A|Q(@)|a'T"; A)

= <aT; A aT'; )\>

—I-Z(aT; A bt; A>%Sbt; AMQ(x)|V't; N) (b't; N d'T; A) (B.11)

-
by P4

b'0; >\>

| @h@eew £ [ @ew)

o
where Q = <b0; A ’WQ(O’X)

Definition (Time Order Product)
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B.3 The Solution

Find the solution of vacuum-to-vacuum transition amplitude (0 |0_)
0 -
(i), (0410-) = [ (@) (0. |(B1"4,), [0-)

<—i>(% 010 = | (@) (0, [o()l0-)

Dy Va. gy 04100 = (@) (00 @atent).Jo-)
(D575 Dy gy 04100 = | 60) 04| Gt A,)|0-).

(B.12)

The functional derivative in Eq. (B.12) is defined with the independent fields and their

conjugate momentum field. Hence

0 0 0
). = i —i —i H(—i _ B.1
(04]0_), =exp [16/(dx)( 1)&]#( 1)8%@)7 ( 1)37_75(36) (0410-),, (B.13)
where
(04]0-), = expinSinexp %J“Dg”Jl,
7S = [ (do)(de')i(a)S. o~ ' )n(a)
N (dp) ip(z—z') <_/yp+m)
S(w =) _/(27r)4e p?+m? —ie’
for D (q) = ———— |50 — L] 4 g G(¢?) is the ph i
or DiY (q) = pr— g +¢*q”G(q?) is the photon propagator in any gauge.
, €o
Special )= _ 0
pecial case G(q°) 2 =15

1 & = 1 (Feynman gauge)

2 & = 0 (Landau gauge)



3 & = 3 (Yennie gauge)

So we get (04 ]0_), up to €? in Eq. (B.13)as

(04]0-), = exp [ap + ear + €°ar + €’az + .. ] .

Find ag, A1, A2

(02102 _,

We obtain

g =1 / (d)(dz"Y(2) S (z, 2 Y()

de

d
T (0+10-)

.". wWe obtain a; as

=%

X exp B /(dx)(dx')J“(w)D’é”(x,x')Jy(x’) :

+ % / (dw)(da) J*(x) Dg (2, 2") ], (2')

= (0410-),

d
(0,]0_) = [ay + 2eas + .. .]explag + ea; + e*ay + .. ]

= [ay + 2eas +...] (0, |0_)

= a1 {04]0-) | _y = a1 (04 ]0-),

e=0
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(B.14)

(B.15)

(B.16)

(B.17)

(B.18)



from (0.10-) = explie [ (de) (=) 2-0594(—1) s (i) 5] 0210,
Choose

(0, 0_) = € (0, |0_),
where

d .
(04107 =i (0, J0.),

=4 (0410-)q

e=0

d
— (04 1]0=
([

We can rewrite Eq. (B.18) as

i

(0- 1003,

A(0410-),

a; =

(0 10_), = expli / (de) (da" () S (2, 2 Yn(e)]

X exp B / (da)(da!) J*(2) D (2, 2/ T ()

A04102) = [ (o)) 5= (D (s

X exp inS,n exp %J“Dgfﬂ]y.
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(B.19)

(B.20)

(B.21)

(B.22)

(B.23)
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We can write JDJ = J*D,,J" = J*D{ J,

. ) iJDJ . ) i o
e = g e 5 [ @0 Daat217(0)
= 52" [ 5264 - 2)Daaly,2)7°(2)
+ 082 = 2)J°(y) Das(y, 2)]
= 52" [@)Duse. 1) + [ (@) 00 Daly.
5 iJDJ , iJDJ
e = | [@Duten ] B.24
and
(—i)%eﬁw‘] = D] e2 . (B.25)

For the n and 7 sources, we have

()57 = () exp i [ (@)@ 00003
_ e { @@t - 05,0, z>n<z>}
<—i>%@)emm _ [ [as. . y>n<y>] (B.26)
£ 0 B Leiﬁ&rn: i 0 el M5+1 B xr
(g g™ = (g [0 [ o)

= | fanres. e flame)s. o) ems
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— ie!m { / (dy)y* Sy (x,y)5* (y — fﬁ)}
= | fannes. )] faoms,en]om
— e+ [y S, (z, )] (B.27)

For S, (z,x) = 0 (Fermion loop), we can rewrite Eq. (B.27) as

()5 o™ = | [ (@S 0 o) 75
(B.28)
From Eq. (B.24) and Eq. (B.28), we obtain
0,103 = [ [ @)@sma)S. (028, (e, )n(o)
X /(dx)(da:’)J“(a:)DW(x,:c')J”(a:’)] (0410_), (B.29)
We can rewrite a; as
on =i [ @)(()S (2018 (o )ty
X /(dx)(dx')J“(a:)DW(a:, ') JV (2) (B.30)

For ¢ in first order, we obtain up to ¢

(0, |0_) = explag + ea; + e*ay + .. ]

d
- (0, |0_) = explag + ea; + €*ay + .. ]
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2

Figure B.1 Part of process of photon production.

d2
32 (0410 | =2a1 (04 [0-) +[ar + 2eas + ... (04 ]0-)
e=0

d_2 (0,10-) = (2a2 + a}) (04 10-)g

2
de e=0

1 d?
2 2—_ - _
%+ 0= oy, de (010

e=0

1, 1 1 &
a2:__a1+

2 20 0,4 10 .

e=0

{04 0-) = eied (0+10-)p; A= /(d$)(_i> on(z) (=) o7(x) <_i)5ju(x)

o2 (0+10-)| = —(A)2(050-), (B.32)
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-~

Find (A)?

5 = | [ @Dtz w] 2™ (B.33)
. ) ) 1) iJDJ
R A
— (0Dl + x [ (@A) Dasly/2) Dol ) ()2
(B.34)
Set
Yiy) = (—i L m(_j Leiﬁ&n
P =5 )
= { / (dy') (A=) S+ (y's y)v" S (y, 2 )n(") | €757, (B.35)
and [...] = [[(dy)(d2)1(y)S+(y, y)7" S+ (y, 2 )n(2')], so we obtain
(057 © ) = (e ™+ () s

- U (dy”)5+($=y”)n(y”)} .. ]S +n

iS4 (o) | [ @978 | 75
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(D57 " ) = | [ @)@/ 01751 0. /()
x Sy (w,y" n(y")| o5
—iSy(z,y) { / (d2")y" Sy (y, 2 )n(2) | 5. (B.36)
We define
(1) = ()55 () 5 @ ) 837

J

O (z,y) = (—1i) )

<| fms. @] }
(o) { { s an(g)} }
[ s st

" V <dy">5+(xay”)n(y”)] R

=0

—_—N—
—1 { / (dy")(d2 )y )" S+ (W', y)v" Sy (v, Z’)U(Z/)} Sy (x, x) e
+ { / (dy")(d2" )" S+ (v, )" S+ (v, Z’)]
X {/(dy”)(dz”)ﬁ(z”)SAz",x)SJr(:I:,y”)n(y”)] IS+

—yHSy (l', y)v”S+(y, x)eiﬁswi
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=154 (o0) | [ @A 1S, 1S ()] 7
O"(z,y) = —i { / (dy" )W )" S+ (s )7 S+ (y, m)}
X { / (dy”)5+(x,y”)n(y”)} e+
| [ @@ s. s, .2
| [ @rm@mens. @ oo ¢
— Sy (2, )7 S (y, x)e 5

S, (2,y) { @@ . S z’>n<z'>}

(B.38)

where

7”(—1)Leiﬁ5+77 (B.39)

We obtain

O(r,y) = { - { / (dy ) (dy" )y )" S+ (v, w7 S+ (Y, ©) Dy (2, y) S (2, 4" (y")
=i @@ 150 D)
| [@ramens. @ oS )

- DS o) | [ (@008 01500
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| [ @@ S S )
X J*(2") Doy (', &) Dy, 2") J7 (")
—1i { / (dy')(dy")(dy™)(d=")(d2")(d2" )y )" S (y', )" S+ (y, ') ()
x (") S5 (2", ) S (, 5" (")
X J*(y") Day(y", 2) Dus(y, 2") J7 (")
+ iy" S (z, y)v" S (y, ) Dy (2, )
~ { / (dy')(d2")J*(Y) Doy, 2)7* S (2, )" S (y, 2) Dy, 2') J” (Z/)]
=048 (o) | [ @A @ S 025 )
X J*(Y")Dap(y", 2) Doy, 2").J° (z”)] } (0410_), (B.40)

o (A)2(04]02), = [(dz)(dy) © (z,y)
Let

1
021000,

1

(A\)2 <O+ |O—>0 = <O+|0—>0

® =

/ (o) dy) © (x,y) (B4

. © = [+HII+HII+IV+V+VI+VID

Consider for any process from ©

= / (do)(dy)(dy')(dy") ()" S (Y 97" S+ (y, ) Dy (2, ) S (2, 4" I (y")]
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Dy
- .SSJWQ? s
il ‘ “' O ‘
RN n
Y Y T Y’

Figure B.2 Electron self energy.
I=—i / (da)(dy)(dy")(dy")(d=")(d=") My )y S+ (', )7 S+ (y, 2 ()] Dy ()

x [(z") 54 (2", 2) S (@, y")n(y")]

Figure B.3 Electron and a positron scattering processes.

m=— / (dz) (dy)(dy') (A=) (Do (2, y)7" S (2, )]

x [[(y') S+ (v, )7 St (y, 2" )n(2")]
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Dy
S ‘Sﬁ\ﬂ%? Sy
7 - -f}—o -
gia S Ul
Ul Yy T y//

Figure B.4 Electron and a positron scattering processes.
IV =i / (da)(dy)(dy")(dy")(dz")(d2") [(y") 7" S+ (', y)v" St (y, 2) Sy (2, y" )n(y")]

X [JQ(Z,)DOW(Z,: ) Dy (y, Z”)Jﬂ(zﬁ)]

«

~

Af_’l
>g

Figure B.5 Processes ¢y — et7.

V= / (dz)(dy)(dy")(dy")(dy™)(dz")(dz")(d="") [ﬁ(y’)v“&(y’,y)v”&(y,Z’)n(Z’)

x 7(2") 54 (2", )54 (2, 5" )n(y")

x Jo‘(y"')Dw(y"',:B)D,,g(y, Z///>Jﬂ(zm):|
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Or
V= / (dz)(dy)(dy")(dy")(dy™)(dz")(dz")(d="") {ﬁ(y’)v“&(x,y)S+(y’7w)7”

<S4 | 70 Do) Danl #1071

Disconnected Diagram

Figure B.6 Disconnected diagram.

vi=-i / (de)(dy)(dy') (dy")(d=') (d=") [my')w&(z, Y)S+ (s 2" Ss (9, # ()

|70 D ) Dusl 71|

vit=- / (dr)(dy) (dy') (dy”)(d=") (d=") [mywam, Y)S: (4, 207" S (y, 2 n()

< [ Dl ) Dot 7



Sy

Figure B.7 A scattering process.

That is

s

Figure B.8 Photon’s self energy and a Bubble.

I=1II

IV = VI
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©=2I+11+2IV +V + VII

From Eq. (B.31)

1, 1 1 -

S p— 7\ LY ( TV
1, 1 1.1

a3 =—=a>—1— I —IV— =V — VI
2 2 2 2

We have
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(B.42)

(B.43)

(B.44)

ar =i / (de)(de’) (dy) (d2) {mym (9, 207" S (2, 2)(2) Dy 2, ) I ()

K

V]

<

Figure B.9 Photon production scattering part.

2
ap

= —V “Cancel disconnected part”

1 1
as = —I— §II o \ §VII

where

A= 1= / (de)(dy) (d2) (A=) |77 S (2, 907" S (1, 2)) Dy (2, 9) S (2, Z0()
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]

Figure B.10 Photon’s self energy diagram.

B =311 = 5 (@) @)y )= )0 7007500 S )

X Dy (2, y)[0(2") 51 (2", 2) 54 (2, 4" )n(y")]

< 2

< 4

Figure B.11 Photon’s self energy and a vacuum graph.

C=-IV=i / (dz)(dy)(dy')(dy")(d=2")(d2") [y )V S (W', y)v" S (y, 2) Sy (2, y" )n(y")

X [J*(2") Day(#', 2) Dys(y, 2") 7 (2")]

< D

< 4

Figure B.12 A scattering process.
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D= —%VH = —% / (dx)(dy) {7"&(%y)v”&(y,x)Duu(x’y)
+ 5 [0 @) ) Dl 17"S1 (o,

X S4(y, %) Dys(y, 2)J°(2)]

S

0

Figure B.13 A scattering process.



APPENDIX C
VACUUM-TO-VACUUM TRANSITION AMPLITUDE

IN SCALAR ELECTRODYNAMICS

The vacuum-to-vacuum transition amplitude is derived to the leading order in
scalar electrodynamics. Due to its complicated structure, it has never appeared in the

literature to the best of my knowledge.

C.1 Vacuum-to-Vacuum Transition Amplitude

We start from the Lagrangian in Scalar Electrodynamics
L= L+ LN+ 4, (C.1)
where

Fy = — (610,06 +0"60,0') — Zmo(61 + 66,

AM —}lF"”F

ns
L = elp! - plAN — A, Ao,
1

and e is charge, J* are external source and A" is the vector potential.
To compute the vacuum-to-vacuum transition amplitude, we use the functional

techniques, then interaction term in the Lagrangian is become the functional derivative
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operator. By replacing ¢, ¢, A*and A, with the functional derivative operator

A .
L8 T(x)

Therefore, we obtain the interaction Lagrangian as:

5 9, b 5
o Y
' BK (2) 1 10KT(x)i8J,(z)
, 8 5 5 5

T K (2) 16K (2) 16, (x) i8J7(z)”

C.2 Expression of The Vacuum-to-Vacuum Transition
Amplitude in Scalar Electrodynamics

The vacuum-to-vacuum transition amplitude in term of the functional derivative

operator, we write as

exp / (de) {e Lé[j(az) (%iéki(az)) iéji(:c) - (%16; (:v)> iéKé*(l’) i&fi(fﬁ)

5 0 d d 5

(C.2)
where

(0410_), = expiK A, K exp %JﬂDgf’Jy,
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K'ALK = / (d2)(de') KT (2) Ay (2 — 2) K (),

d ip(z—a')
A+<:C—CE/):/ (p) €

(2m)t p?2 +m? —ie’

We expand the vacuum-to-vacuum transition amplitude ({0 |0_)_) into a power

series according to
(0410_-), = expi [ao + eay + €%aq + eaz + .. ] ) (C.3)
The first one, we find ag by setting e = 0. Therefore, Eq. (C.3) is
(04 10-) |, =€ =(04]0-),

— expl [ (o)A ) K (2) A4 o = ) K (')

X exp B / (de)(de!)J, (2) DI (2, ') o ()| (C4)
We obtain

ag = /(dx)(dx’)KT(x)A+(x — 2K (')
—|—%/(d:c)(d:c’)Ju(x)Dg”(x,a:’)Jl,(:c’). (C.5)

The second one, we find a; by using the first derivative (0, |0_) with e and then give

e = 0. We have
d : 2
- (04]0_) =if[a; + 2eay + .. .]explag + ea; + e“as + .. |

=ila; + 2eay +...] (04|0-),



296

d . :
= (04 ]0-) | =iay (04]0-) | _, =ia1 (04 ]0_),, (C.6)

therefore, we obtain a; as

—-i d
= ——F—(04|0= . C.7
“ = o0, D
To convenient in our computation of a;, we rewrite Eq. (C.2) as
(04 ]0_) = eltA=<*Bl (0 |0_), , (C.8)

where

A= [z () wm ~ (Tore) womonm

_ 5 8 8 B
b= / ) K (@) 6K () 17, (a) 872

The derivative of Eq. (C.8) with respect to ¢, then set e = 0, given

d s D ieA—e B
3 (0410-) = i(A = 2eB)e 4 (0, [0_),,

d -
— (04 ]0_ =1A{0,1]0_),. (C.9
de< +102) - iA (0 | >o

Finally, we obtain a; in term of the functional derivative operator, given

1

A {0,]0_),, C.10
<O+‘07>0 < +| >0 ( )

a; =
where

(010, = expli [ (d)(de') K (0) 44 o, K ()
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X exp B / (dx)(dﬁ’)Ju(x)Dg”(a:,:L“’)Jl,(x’)} SR

Next step, we calculate A (04]0_), in Eq. (C.10). We have

A0, 10), = / (dz) {ﬁ (%iéKéT(a:)) iéJi(fc)

au 5 5 b iIKTALK _iJDJ/2
— | = ! ! . A2
( i iéK(:z:)) i5K7(2) iéJu(a:)} ¢ ¢ (€12)

Here we note that JDJ = J*D,,J" = J,D¢’J,. Then we calculate A0, | 0_), with

step by step. We start from

iaji(g;)eimm = % exp [% /(dy)(dz)J‘”‘(y)Daﬁ(y, z)Jﬂ(z)}
= %eiJDJ/2 /(dy)(dZ) [5354(31 _ m)Daﬁ<y, Z)Jﬁ(z)

+ 300 (2 = 2)J° (1) Das(v. 2)|

= 562 [(@2)Dast, 1) + [ (@) Dty )

0 iJDJ/2 / iJDJ
A — D v i /2 .
657m(2)° (dy) Do (,y) " (y) | €777, (C.13)
by briefly
o iJDJ/2 iJDJ
—e =[D,,J"] e’ P7/2, )
e = (D) 1

For the derivative of (0 |0_), with respect to K and K source, consider only e 4+K

in (04]0_),, we write as

iéKi(x)eiK*Am - iaK(ST(x) exp {1/(dy)(dZ)KT(y)A+(y, 2)K(2)
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—ea | @@ty - A K] €19

Because of A (0, |0_), has two term that it express as

J @ Ka_é%f()) @wﬁm) e

N (?ié[é:p)) i Ki(x) % Jj(x)] (0410-).,

then we separately consider above term. We have

(?idlg(m» 15Jj(x> (0+10-)0 = V (dy)(d) [%8‘354@ - x)} A+ly 2K
< [ @)D ) ] (04100,

Then we operate above term with , we obtain

)
10K ()

e @A 0 ) )| 19580 - )| Dyt ) ()| 0410

= =i [ @)@ A9 = ) | 1050~ )| Do)
x I8 ()| (04102,
/ 1 4 ! !
[ [@0@0)(@2) A, K ) 058 — ) Dyt
< [@)AK )AL )8 = )] (0410,

therefore, the first term of Eq. (C.12) is written as

/(dx)ng(x) (?51{(5*(9;)) Wj@) (0 ]0-),
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- { - | [ @) ezt - ). (0) Dy )50
=i () () (o)) @) KT () 055" = ) A+ 0 ) Dy, )

X AL (y, z)K(zw(x')] } (0410_), . (C.16)
By using the property of d,,(f(x)d*(x — y)), given

Ou(f()0"(x = y)) = f(2)(0u0"(x — ) + (Ouf (2))8" (z — v),

where in this case, let 9, (f(z)d*(z — y)) = 0. Hence we rewrite Eq. (C.16) as
= {/(dx')(dx)(dy)54(y = 2)[0, A1 (y, 2) Dys(, ")) 7 (')
+i/(dx')(dy')(dﬂf)(dy)(dZ)KT(y’)54(y = 2)[0; AL (Y, ) Dyp(, )]

X Ay, z)K(z)Jﬂ<x’>} (0410-),

= {/(dw')(dﬂf)(dy)54(y —2)[0; A4y, 2)| Dys (w0, ') 7 (')

+ [ @) )8 (s~ 2) A4 (3. )0 Dyl 2T )
1 [ () () () (@2) K () G5 A 0)) 0 2) K (2) Dy, ) ()

+1i /(dw’)(dy')(dﬂﬂ)(dZ)K*(y’)m(y’, 1) A (2, 2) K (2)[05 Dyp(, )] T (2')

} (0410-),,
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therefore, we obtain the explicit term of Eq. (C.16) as
= { / (da")(d2)[05 Ay (y, @) ]y—s Dyus (w, ") T ()
+ /(dx’)(dx)A+(:z:,a:)[aijw(x,x’)]Jﬁ(:z:’)
+1i / (da')(dy')(dz)(d2) KT () [05 A+ (y', 2)] A (2, 2) K (2) Dy, ') TP ()
+1i / (da")(dy')(da)(d2) Ky ) Ay (Y, ) As (w, 2) K (2)[05 Dy (, 1)) T (2')

} (0,102), .

And then we calculate the second term of Eq. (C.12), start with

ST = i o [ K 04, 0K ()

= o3| [(a) (200"~ ) A, . (2)

) ) ) / /
i(sKT(x) i(s(]#(x) <0+ |O—>0 = /(dx )(dz)A+(x, Z)K(Z)Duﬁ(xa T )Jﬁ(l’ ) <0+ ‘ 0_>0 .
(C.17)
Th Eq. (C.17) with _aﬁ btai
en we operate Eq. (C.17) wit ( i iéK(x))’ we obtain

g, 0 B) 5
(T i5K(x)) 10K (x)i6.J,(x) (0 ’07>o

aﬁ 5 / / /
= | [ @Dl ) @) Ao K ) 02100

= { —i / (da')(dz) A (x, 2) E@;’jd“(z — a:)] Dy, a')J% (a)
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+ / (da')(d2)(dy)(d2") Ay (, 2) K (2) Dyus (v, ') 7 (') KT (/)

<40 (,) | {050~ )] } (010.),.

Using property in equation below Eq. (C.16), we have

o 5 5
/(dx) (TiéK(m)) BRI (@) 07, () 1 0-do
_ { [ (@)@ (@25~ 2058 (2Dt )
1 [ (@)@ @)@ KA (0, 2) Dy, )

<K' (y) Ay 2)0' (2 — JC)JB(OC’)} (04+10-),

therefore, the second term of Eq. (C.12) is written as

/ (dz) (?5}?(@) iéKéT(m) iéJf(x) (0+10-),
- { [ @)@0 A4 (0,2 s Dyl ') ()
+ [ (@0)(@e) A (0, 2) 05 Dol )
i [ (0) (@) @)K )AL 20 o K ()
x Dz, ) J" (2"

i / (da) (') (dy') (A=) K () A (', 2) A (2, 2) K (2)

x [0%Dyg(x, a')]J” (x’)} (0410-),. (C.18)
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We can rewrite Eq. (C.12) as

/(d@LM?(x) (8_1” 15;*(;(;)) ian@) - <?15z§(;p)) icSKi(x) wjf(x)}m* 10-)o
- { [ (@)@ )3 A (g2 o Do) )
—l—/(dx’)(dx)AAx,a:)[@ﬁDuﬁ(az,x’)}Jﬂ(x')
i@ o)A K00 A4 0 9] A (02 K (2) Dyl )
1@y o) (@)K ) A4 0) A VK )05 Dy ) )
- [ () (@07 s 0.9 Dol ) ()
—/(dw)(dx’)AAx,x)[@lfDug(x,:U’)Jﬁ(x’)
— i [ () (@)K ) A 0) 05 A (0, DK () Dyl ! )
—i [ (@) (@)Y K () A+ 0) A ) )05 Dy ) )
} (04 10_), - (C.19)
From the condition in Eq. (C.10), we write a; as
or =+ [ (o)A O A+ (2o Dy ') ()
- [ (@) (@a)0; A+ (0.9 Dyslar ) ()

+i/(dx)(dx')(dy’)(dZ)KT(y’)[aﬁm(y’,w)]A+(ﬂf>z)K(z)Duﬁ(%x')Jﬁ(af’)
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—1i / (da)(da’)(dy ) (A=) KT (y ) Ay (', 2) [0 A (w0, 2)1 K (2) Dy (, 2') T ().

(C.20)

Next step, we will calculate as. So that we differential (0. |0_) with respect to

e, up to second order ¢2. Giving

(0,|0_) = expilag + ea; + e*ag + .. ]

d . .
—(0,]0_) =i[a; + 2eay + ...]expilao + ea; + e*ay + .. ]

de
d2
iz (0.]0)| = 2iay (04 |0_) — [a1 + 2eas +...]2 (0, ]0_)
e=0
d? 9
EPS) (0410-) | = (2iaz — ay) (04]0-),
e=0
1 d?
2iay — a] = ——————— (0, |0_
1a2 ay <0+ |O,>O de? < +’ > 0
i, 1 i d?
=——a] — ———— - (04|0_ C.21
as 20/1 9 <O+ |0_>0 d€2 < +| > 6207 ( )
and we give (04 |0_) = cileA—e?B] (04]0_),. Similarly above term, we have
d I 51 ifeA—e2B
= (0410-) = i[A - 2¢Ble (0410),
d? s n 5121 i[eA—e2B]
5 (0,10.) = [-2iB — [A - 2B])e (0410),
d? P N
T2 (0410-) = —2[iB + Q(A) ] (0410-),- (C22)
We rewrite Eq. (C.21) as
1, 1 =~ 1,
=10
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-~

Find (4)? (0,]0_),

= Janian LM?@ @w«i(y)) ek (%ﬁ@)) e ian@J

* [iélg (x) <?15K5T(x)> icSJf(:c) a (?iafg(x)) iéKéT(x) iéjf(x)] (0+10-)o -

From Eq. (C.20), we set
() = [ (@A D) yme Dyl )
- [ (@) (@a)0; s (0.9 Dol ) ()
+1 [ (0) (@) ) (@)K W) A0 ) A 2K (2) Dl

- i/(dw)(dx')(dy’)(dZ)KT(y’)m(y’,x)[aﬁﬂ+($,Z)]K(Z)Dw(%ﬂf’)u’ﬁ(ﬂf’)-

(C.24)
Then we operate Eq. (C.24) with B J(S W)’ given by
O 0 (2) (0410 )] = | o @ () [{04 10} + ©(a)| - (04 ]0.)
i6.J,(y) HiE=lo i6.7,(y) H1E=lo i0.J,(y) © )
(C.25)
We define
)
O (z,y) = m[@”(w) (04+10-)), (C.26)
rewrite it as
)
() = m{ [ @)@ 384 0))y Dyl ()

- / (d)(de)[07 Ay (2, 2)] o Dys(r, ') I ()
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+1i /(dfv)(dm/)(dy’)(dZ)K "W ALY, )] A (2, 2) K (2) Dys (v, ') T (a)

—i /(dxxdx')<dy'><dz>KT<y'>A+<y', D)0 Ay (2, 2)JK (2) Dy, 2')J (')

5
i0.J,(y)

H0.100+ 04(0) [ 02103

and we have

e 01020 | = | @)Dt 0,10,

So that
(.9 = { ~1 [ ()@ OF A+ (0 D)l ys Dyl 528 )
+i / (dz)(da")[0E Ay (%, 2)) = Dys(w, )81 6% (2" — )
+ [ @) @) K (05 A 0B (o 2K )
X Dug(x,x/)éfé‘l(x’ —9)
- [ (o) @) @) @) A 0 00 A o ) )
x D,s(z,2)075 (' — y)
} 04100y + 0() |77 (0210, . a7
We define

oM (x,y) = { B i/(dx)[aﬁA+(y,7$)}y’wDW(x’w
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+i / (d2)[07 Ay (2, )]s Dy (2, 9)
+ / (d) (dy)(d=) KN ()02 A (4, )| A (2, 2) K (2) Dy (2, 9)

- / (da)(dy)(d2) K (y) AL (Y, )05 Ay (2, 2)] K (2) Dy (2, )

b 02100, + 020 |2 041000 (€28)

We have

15;? (y) (%i&[{i(y)) O (2,y)
- [1517? () (?i(SKi(y)) iéjf(y) oF (93)] (0410-),

+|(Fomm) wiw @ @] [ @100

Jawame 0] () 00

@) [ (Famrg) 0100
+lw (Fwm) @ @) i 0100
(o)« @] [ o0

! _w?(y) o @||(Toma) wim © 100

oY J
T ( i 15KT )1(5Jl,(y) <O+|O>O} '
(C.29)
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To convenient, let

5 (oY & (g ) =
PR {) (TiéKT(y)> O (z,y) = (L1) + (1.2) + (1.3) + (1.4)
+ (L5) + (L.6) + (1.7) + (1.8).

To express Eq. (C.29), we start from

L <0+ ‘ 0,>0 = L exp |:i/(dy//)(dZ/)KT(’y”)AJr(’y//, Z)K(Z/>] eiJDJ/2

10K (y) 10K (y)
_ eiKTA+K [/(dy/')(dz/)54(y'/ N y)A_,_(y”,Z/)K(Z/)] el/DJ/2

= {/(dy”)(dz’)&(y” —y)AL(y", z’)K(z')} (0410_),. (C.30)

Then we find each term in Eq. (C.29)

(11) Lﬁf - (3_ - (y))i Mf = m} (0410_), .

we have

5
i0.J,(y)

o @)= { =1 [@rA. Dy—iDlz)
+1 [ (A0)05A 4 (2. 2))ms Dyl )
+ [ (@) @) K )08 () A4 o 2)K () Dy,1)
— [ @)@ K )AL ) 0D (02K ) Dy .0)

b0 1020, +0) [ (0,10,
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)
then operate above term with m, we obtain
) o
o
BKT(y) 107,(y) )

—{ =1 [ (@)@ @5 ~ IOEA ) A, 2 K () Dyl )
+i [ ([A0)(dy) @250~ )840 2) 0 A, 2K () Dy, | 0410}y

and then

o 5t

<Ti5K*(y)) 67,(5) )

= =i [ (@) | Lot - )| 10280, 01440 DK Dyl
#1 [ (@i | Lot )| At 00540 KDyt

Then operate above term with

BEG) we obtain ((I.1))

[15; (v) (215;*(3/)) i5Jf(y) o (x)] (0+10-Jo
_ { - / (dz)(dy’) {%54(@/ _ y)] 7 AL (Y, )] Ay (2,y) Dy (2, )

+ [t | Es ) - )| At 005 A e D)} 02100,

(C.31)

And

) | (Yo wnw @) [ 0100]
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We have

6 7 2 2
e 0100 = | [ @K 6407 )] 0210,

therefore, we obtain ((1.2))

Y ) ) by 5
(¥ w5 @ @) [k ©104)
. ! /! alg 4 ! /
= {1 [n@aaar) [Eo - 0] a4
X K(2) Dy (z, ) KT (y") AL (", )
+1 [ @) | Zo - )] acrolorae )
5 K(2) Dy, ) KT (y") Ay (", y)} (04 10_), . (C.32)

And

19 (g @) | (Famg ) o-00]

We have

56
R () 07, () (0 ={

— i [ (@)@ KT )05 A 2184 (5,) Do (5.9

41 [ (@) (@)K W) Ay D)0 A2, Dyl )} (041000,
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and
(% s 01020 = [ @@ | Loty - )] auw ) 0,10,

Therefore, we obtain ((1.3))

e < @ | (Far) 0 100)

= { —i / (dz)(dy’) (dy")(d2") KT ()05 A4 (v, 2)] A (2, y) Dy (2, )
X {%54(1/’ — y)} ALy, 2K ()

+1i / (da)(dy')(dy")(d=) K1 (Y ) Ay, 2)[05 As (2, 9)] Dy (0, y)

X [%54(1/' . y)} Ay, z’)K(z')} (0410_),. (C.33)
And
5[0 §
1 [ ) [y (T ) 0100
We have
i(gj(j(y) OF (z) = { - i/(df)[aﬁAJr(ylﬁ)]y’xDW(%y)

i / (A2)[0 Ay (2, )]s Dy (2, 9)
n / (d)(dy)(d2) K ()92 A (4, )| A (2, 2) K (2) Dy (2, 9)

- [ (@)@ @)K @) A 20 A o, K (2) D)} (041020
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and

oo (Lo ) 0100 = { =1 [ [ Lot - ) aut)
+ @) | o -] auxE)

X K (") A", 9) } (04102,

Therefore, we obtain ((1.4))

) sy (Famr ) 010
= {= [ 08, Ny=Dunten) |50 )| A21070)
i [ (@A 0y Dot ) | F8 )
< AL KK A" )

Y

8l/ /i 1
5 (y" — y)] Ay, y)

[ @@ 04w Dot ) | %

+i / (d)(d2) (dy") (dy")[02 A4 (2, 2))sms Dy (, y) {?6‘*(?/’ - y)]
x Ay (y", 2K (KN (y") AL (y" y)

- i/(dl’)(dz)(dy')(dy")KT(y’)[ﬁﬁAAy', )| Ay (x, 2) K (2)

X D (7,y) [%54(?/’ — y)] Ay, y)

+ / (da)(d=)(dy)(d=")(dy")(dy") KT (4 )05 A ()] A (2, 2) K (2)
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Y

< D) |20k = )| Al KK A )
+i / (dar)(d2)(dy ) (dy" ) KT (y ) Ay (y, 2) [0 A (, 2)] K (2)
X Dy (,y) %5‘*(3/’ - y)} Ay, y)
- / (dz)(dz)(dy)(dy")(dy") KT () AL (¢, 2)[05 Ay (2, 2)] K (2) Dy (2, )

oY
<o = | A R0 00102, €39

And

o (%6 N\ i [0
1) sy (Frmrn ) > )] [ 0100

We have
(% i )@ @ = [naaaar) | Lo - | [ga.0/.0)

< A0, K () Dy, 4 ()

/ / ag 4 / / X
- [ a) | Lot - )] Ao o8, 2] K
X Dug(:v,x/)Jﬂ(:v’),

and

Y

i (L)@ 0 =i [ @) | Lot - )

X [aiA-‘r(y/a ZU):| A+(ZL‘, y)Duﬁ(ﬂf, x/)‘]ﬁ(‘r/)
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+i / (dz)(dz")(dy') [%5“(@/ — y)} Ay x) [0p A4 (2, y)] Dyup(, 2') I (2).

Therefore, we obtain ((1.5))

e (o) @) [ 10

- { —i / (dz)(da’)(dz")(dy) {%54(1/ — y)] (07 AL (Y, 2)] Ay (2, y)

Dy, /(@) Do) (0"
+1 [ @@ @) | Lot )| Ao [ora w0

% Dus(z,2') T (") Dyaly, x”)JO‘(x”)} (0410_), . (C.35)

And

(1.6) [(?ﬁ) ol (:c)} LM?@) iéjf(y) <0+|0—>o}

We have

8}5 0 b)) — 2 (d2) (da / % 401 x !
(% i) @ @) = [aniaaarya) | Loty | [ora..0)
< A (2, 2) K () Dy, 4 ()
/ / azgj 401 ! b
- [ | Lty - )| a,0.0) 4.2,

x K(2)D,5(x,2")J%(2").
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Therefore, we obtain ((1.6))

(Famm) @) [sarmng O

Y

= { o) @) | Loty - )| 054
< KN AL (0 9) A, 2V (2) Dyl /)17 () Duay, )72

- [t @) (Lot - ) Ao

x K'(y")Au(y",y) [05A1 (2, 2)] K(2)Dyp(, ') T (2) Dya(y, ) T (2")

} (0,10_), . (C.36)
And
5, oy 5 5
1) (707 @) [ (Fow g ©010n].
We have
0 m _ / / / x /
7o @ (@) = [ (@)@ @) (054 )

x Ay (z, y)Dug(x,x’)Jﬁ(x')
- [ (@)@ @)K () Al ) (074 2,)] Dol (@)

Therefore, we obtain ((1.7))

[Wg (y) o (x)] K?Wfi(y)) i5Jf(y) (0:10-)o

—{ [ @) (@) (@)@ @) (8440 2)] v
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< | Za 0 = )| A0 B D )0 Dun ) )
- / (do)(da’)(dy')(d")(dz")(dy") KT (y) Ay (', 2) [05 A4 (2, )]

811//4// "ol ! N 78( ! AN AW

< [ Ea = )] Al ANyl ) ) Do)

} (0410_), . (C.37)

So that, we rewrite Eq. (C.22) as

5 (o 4 O s
() T 00
/ ag 40,1 z /
= {= [ | Loy - n] ra. 1A e Do)
+ [ | Lo/ )| At 0054 o)D)
. / ag 40 1 /
- fann @) | Fat - | a0 1A @ K @Dt
x / (dy") K" (y") A (y",y)
+i [ i) |Fotr )] A oA K Dyl
< [ @i )
— i [ (@) @) A K N0 0 9] A ) D)

< | %ot - ] a2

i / (d) (dy)(dy") (A=) KT () Ao (s ) G2 A (2, )] Dy (2, 9)
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< | %ot - ] a2
" / a}// Lyswl] "
- [ @@ EEA DDt ) | E80 - )] Asts0)
. / " n / alzi 4 "
i [ @)@ @A 2y D) | L )
< AL KK " A" )

oY

“M(y" — y)} Ay y)

+ /(dw)(dy//)[ﬁﬁAJr(x, 2))a=e Dy (7, 9) [T
1 [ ()@ @ O A o2 Dynle) | Z80 )

X ALy VKK (5") A (")

—i [ () @) )@ K @O )] A, 2K )
X Dy (2, y) [?54(1/’ - y)} AW(TRT)
+ [ (@) (d2) () @)y VKT WOEA )], 2)K ()
ay 4 ! ! !/ / " "
< D) | L0'" = )| Al KK A )
41 [ (0)(@2) @) (A VKA )0 A K ()
X Dy (2, y) {%54(1// - y)} A" y)
- [ @)@ @) Ay @y ) A 007 A o ) )

ay ! ! !/ / " "
< D) | 0%" = )| Al KK A
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~i fnae@ @) | Lo - )] B4 0] Aute)
X D, 2")JP(2")Dyo(y, ") J* (z")
#1 [ @@ ) | Loty )| Ao lora w0
< Dyl 2') 1) Du .2 2"
+ [ @ @) | Lot )| oranw.a)
< KN() Ay 1) A (2, 2) K () Dy, ) 1) Dl ) 0
! " " / 8}// 401 !
- [t @) (Lot - )| Ao
< K(0) A0 ) (0704 (2. 2)] K (2) Dyl 2)7" (@) Dualy.2") 1)
+ [ @) @) @) @K W) 954, 0/,0) A )
854,, "ol / N 78( AN T
< | B = )| A KDy )@ Dl ) 0"

- / (dor)(da’)(dy')(d") (da")(dy") KT (y ) A (', 2) [0 A (2, )]

< [ B0 )| Al AR END il ) ) Dunl ) ")

i

} (041000 +©%2) L(Hg(y) (?Wfi(y)) i5Jf(y) (01000 (39

Then we have

5[V 6 5
/<dy)i5K(’y) (Ti5KT(y))i5Jy(y) ) 0+10-do
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= { —i / (de)(dy)(dy")o* (y' — )05 AL (Y, 2)] [08 Ay (2, y) Dy ()]

+1 [ (o)) (@30~ A+ 0)0 08+ 0,1) Dynl.)]

+ [ (@) A)@) @0 ~ 9)G A DA DK KT
x O [AL(Y", y) Dy (,y)]

= [ @) )y @8 — )AL ) O A KK )
x O [AL(Y",y) Dy (2, )]

+ [ () 9) @) (@)K ()07 A 02102 (A ,1) Dy ,)]
X By — ALy 2K ()

~ [ () () @) (@)K () Ay )92 [105A- 0. 9)) Dy )]
< 8y — ALy 2K ()

— i (@) @A 0))y=e (Do) A )] 85" — )

+ [ () (@9) @) Ay )"0 A 2)—a (Do) B4 (")
x 5y — ) Ay, 2K (2K (y")

i [ (@)@ )0 A (0,20 D) A )] 5~ )

— [ () (A) @) Ay OE A 5,2 (D) Aoy )

% (54(y// . y)A+(y", Z,)K(Z/>KT(yW)
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+ /(dﬂf)(dy)(dz)(dy')(dy'/)KT(y/) [0, Ay, )] As (2, 2) K (2)
% 0} [Dy (2, ) A (y", )] 6 (Y — y)
+i /(dx)(dy)(dz)(dy')(dzl)(dy")(dy’")KT(y') [0, A4 (Y, 2)] Ay (2, 2) K (2)
< 0 (y" = y) A (y", 2V K () K (y") 0L [Dyw (2, 9) A (v, )]
~ [ () () @) @) ) K ) A ) 05 A (o2 (2
< 0 (y" = )0 [Dyu (2, 9) As (v, y)]
- i/(dﬂﬁ)(dy)(dz)(dy’)(dy”)(dy/’/)KT(y/)AAy', )0 A (2, 2)]| K (2)
x 3y —y) Ay, 2V K (K (") 08 [Dy(x,9) Ay (v, y)]
+ / (dz)(dy)(da")(dy') (dz")0* (' — ) [05 AL (Y, x)] 0% [Dyaly, ") Ay (z,y)]
x Dy, ) P (') J* (")
~ [ () (d9) (@)@} @5~ 9) A0 )2 [Duly ) 054+ (0. 0)]
x Dyg(z,2')J% (2 J* (")
+i / (d)(dy)(dz)(dz")(dz") (dy")(dy" ) (v — ) [85 A4 (¥, )]
x KNy") Ay (x, 2) K (2) Dy, ") JP (2')0Y [ Doy, ") A (v, y)] J* (")
—1i / (dz)(dy)(dz)(da")(dz")(dy")(dy)d* (v — y) A4 (¥, x)

x K'(y") [05A+ (2, 2)] K(2)Dyp(,2")J% ()0} [Dualy, a") As(y", )] I (")
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Ti / (de) (dy) (da') (dy') (=) (da") (dy") K () 02 A (o' )]
X 54y — 9L [As(2.9) Dyaly, 2")] As(y' K () Dy, ) I (') T (")
—i / (de)(dy) (da')(dy') (A=) (da") (dy" K () A (o )8 (4 — ) Ay, 2)

x K (') Dys(w,2)J% ()0} [[05 A (2, y)] Dualy, 2")] J*(z")

} 021090+ 9400 575 (Y s 010 (€3

Simplify above term as

5[ 6 5o,
Jongicgy (Y Jama & @ 010

{1 [ (@)@ B2+ 5,2)) 02+ (0,)) Dyl )

~i [ (@) 05 A (0] A (.9) 2Dy )

+i / (da)(dy) A (5, 2) [O0E A (2, )] Dy ()

i / (da)(dy) A (y. 2)[OE A (,4)] [0 D, )

+ [ () (@9) @2) @ VK W) A )0 A . 0] A K () 02Dy . 9)
+ [ () ) @) @ VR ) BEAL )] 05 A+ 1,218 (2,2) K (2) Dy )
- / (dz)(dy)(dy")(d=2) KT (y") [08A 4 (v", 9)] Ay (y, 2)[05 Ay (2, 2)| K (2) Dy (, )

- / (de)(dy)(dy")(d=) KT (y") As (v, y) A (y, 2) [0 A (w, 2)] K (2) [0) Dy (, )]
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+ / (dar)(dy) (dy)(d=") KT (4 )05 A4 ()] [05 A ()] A (y, 2') K () Dy ()
+ / (dz)(dy)(dy")(dz") KT ()05 AL (Y, )] Ay (2, y) A (y, 2 ) K (2) [04 Dy (2, )]
- / (dx)(dy)(dy)(d2 ) KT (y) Ay (', ) [0Y05 A v (2, y)] Ay (y, 2") K (2') Dy (2, y)
- / (dz)(dy)(dy')(d=") KT (y) Ay, )[05 Ay (2, )] Ay (y, 2') K (2') [0Y Dy (2, y)]
—1 / (dz)(dy) (05 A4 (¢ 2)]y =2 Dy (2, 9) [04 AL (4" )]y
~i [ () @OEA D)y (02D ,)] A 3.0
+ / (do)(dy)(d=')(dy ") [0 AL (Y, )]y = [0 Dy (2, )] KT (y") Ay (v )

x Ay (y, ) K (%)
+ / (de)(dy)(d=")(dy") ;AL (y', )]y e D (2, y) KT (y") 05 AL (", )]

x Ap(y, ) K(2)
+1 [ (o)) FA . 2))ms Dy 9)) A1)
+i / (dz)(dy)[0; A (2, )]s Dy (2, y) (00 A (V" )],
- / (dz)(dy)(d2")(dy") 8 A+ (2, 2)]e=s (04 Dy (2, )] K (y") A (4", )

x Ay, 2") K(2)
- / (dz)(dy)(d=")(dy")[0; A+ (2, 2)]o=e Dy (. y) [OVK (y") A (4", )]

x Ay (y, 2" K(&)
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+ [ () (d9) (@) @) K@) D) A4 2K () Dy ,)
x [0 A (y", )],y
+ [ () () A2) A K ()0 A ) Ao, 2K (2) 02D ,)] A 0.0
+1 [ (do)(dy) (@) () (@) "V () O A (0 ) A 2) K ()
x KT (y") A (y",9) Ay (y, ) K (2') [02 Dy (, )]
1 [ (o) ) (d2) (@) (@) (") K ()0 A ()] A, 2)K ()
x K (y") 08 A (y", 9)] Ay (y, 2) K (2') Dy (2, y)
— [ () A2) A K() A4 0 (03 A 0 2K ) B2 D)) A0
~ [ () (9) @2) @V W) A 0) G5 A, 2K () Dy ,1)
< [OAL ),
~i [ (o) )@@ (@K W) A ) A . K ()
X K1(y") (0244 (4", ) As (9 ) K () Dy, y)
=i [ (o)) (4 ()@ K () A4 0 007 A DK ()
x KT (y") AL (y",9) Ay (y, 2 VK (2') [04 Dy, )]
+ [ @)@y (04 . )] 1A, (2.)] Dyslo ')

X Dya(y, x/l)Ja (I//>
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+ [ (@) ) @) [958 (5,0)] A4 (0 9) Dy ) 1)
X [0 Dualy, 2] J°(")
= [ @) @184 ) [3584 5,)] Dyl 2) ()
X [0 Dyl ") J°(&")
— [ (@) Ae) (@") A (9.3) 010341 5. 9)] Dy ) I
% Dyaly a")J(a")
i [ () (d9)@2) @) @) Ay KT () 1004, 0 )] [958 () A (.2)
X K(2)Dys(w. /) I (') Doy, ") J° (")
1[0y (2) (@) (@) @y VR A 0 9) (054 0. 0)] A2
% K (2) Dy, ') (@) [04Dya(y,2")] J° ()
—i [ () (d9) @) @) ) (A KT A4 0 9) Ao ) [0 8 2]
% K (2) Dy, ') (@) [04 Dy, 2")] J° ()
— i [ () ) ) (e Ay V) 0L 0 0)) Al ) [37 84 )]
X K(2)Dys(w. ) I (') Dya(y, ") J° (")
1 [ () () (o) ()@ (Aa"V KT () 034, 4 )]

x (00 A4 (2,9)] Dua(y, 2")As(y, 2 ) K (') Dys(w, 2) J% (') J* (")
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+1 [ (o) dy) ) (@) (@) eV 0) [5.A4(0 )]
X A (@,9) [02Daly, )] Ay (y, 2K (2) Dy, )P () (")
=i [ (o) @) (') @) (0" K () Ao ) [0205 8 (.0
x Ay (y, 2 )K(2')Dyug(w,2')J%(2') Dy (y, &) J* (")
—i [ (o) @) (')l (0 (0 K () Ao (0 ) 044 5. 9)

x Ay (y, 2')K (') Dys(w,a') ] (2') [0 Dyaly, ")) J*(a")

}«MO)O Fen) Lﬂg(y) (iiﬂ(i(y)) iéJf(y) (0100 (€40

Find second term in Eq. (C.29), We have

5 6w,
(Tiﬂf(y))iﬂﬁ(y)@ (=:9)

N [(?i(ﬂ?(y)) 15K(5T(y) iéjf(y) of (x)] (04 10-)q

e @ @) |(Farg) 00

| (Yo = )| [ 0100

e @ @] | (Forg ) wrw ©10%)

| = ) i 010

i @ @) | (Tar ) 010
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| (Forw)® @ e mnm © 0]

+ o) [($i5; (y)) i5K6T(y) i5Jf(y) 0 ’0>°} - (©4b

To convenient, let

5 [0y 4 o
10K (y) <Ti(5m<y>>@ (#,y) = (IL.1) + (I1.2) + (I1.3) + (I1.4)

+ (IL5) + (IL6) + (IL7) + (IL8).

Then we find each term

o 5 5 5
) (%o ) smering © @) 010,

We have

P
i6.7,(y)

o @)= { -1 [ @A DDtz )
) (CRICE e e
+ [ @)@ K WAL 018, (7, 2K ) Dy .0)

- / (d2) () (A=) K () A (o, )07 A (1, 2)) K (2) Dy ()

1)
6., (y)

H01000+ 04(0) [ 5 02103

)
then operate it with m we obtain

5 5
10K (y)i6J,(y)

o @) = { =1 [ (@007 A+ (1. 0)As (0,2 K () Dynf,1)
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+1 [ (@) (A2 A4 (5,0) B A+ (2. K () Dy, 9) } (0202,

Therefore, we obtain ((II.1))

[(?i(ﬂg(y)) iaKi(y) i(')'Jf(y) o (95)] (0410-)g

~{- [n@eza. ol | Lot - )| Duley
+ [ (@004 0)55 A4 0,2 | L' = )| Dk} 0 102),. €2

And

02 [ © @) |(Frw) 0010

We have

(?%) (0, ]0), = [ / (Ay") () KT (y") Ay (o, ) {%5‘*(% - y)” (0410-),-

Therefore, we obtain ((I1.2))

s W) (T 0 100)

—{ =1 [ (@)@ @) @0 A- (0.9 A 2.V () Dyo,1)

<RI A40" ) | Lot )
+1 [ (@) @)@y A4 (0, 2) 05 A, 2K () Dy )

x Ky AL (", 7)) [%54(,2’ . y)} } (040_), - (C.43)
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And

) | (Ve 7w ) [y 0104

We have

% 0 0 Flx)=14 —i x)(dz NKT(y)[0® x
(% st )i @ @ = { 1 [ @@ @)K )53, o)

x A, (x,2) [?54(2 - y)} Dy (z,y)
+i / (da)(d2)(dy) K (y) AL (y, 2) [0 As (a, 2)
X {?54(2 — y)} Dp,l/('ruy)} (0410-)g,

and

iéKéT(y) (040-) = / (d2") Ay (y, 2)K(2') (0410-), .

Therefore, we obtain ((I1.3))

(G @] i 010
= {1 @)@ KA. 0)as ) | Foi - )
x Ay, 2V K (2) D, (2, y)
1 [ @@ @) @) K0 A0 2058 2] | o'~ )

X A4y, 2V () Dy, ) 0110}y (C44)
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And

(L4) [iéJf(y) . (x)} K%Wg (y)>i5K5T(y) (010-)o] -

We have

o @)= { =1 [ @A Dly=Dlev)

+1 [ (A)05A 4 (2. 2))ms Dyl )

+ [ (@) () @) K )08 () Ao, 20K () Dy,1)

~ [ (@)@ A0 ) 0 A (0, 2K () D) } 040,

and

(% o0 )i 01000 = { =1 [ @)as ) | o =)
[ @@ @A DR A ) | Zat = )]

b (04102),.

Therefore, we obtain ((11.4))

@ @) (P e ©10%)
— { - / (da)(dz")[05 A (Y, 2)]y—a Dy (2, y) A (y, 2) [?6‘*(2/ - y)}

—i / (dz)(d2')(d=")(dy") [0 Ar(y, )]y = KT (") As (v, 2") Ay, ) K ()



+

+

+

_|_

And
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X {?54(2’ - y)] D (z,y)

[ @008 e Dol ) A0 | F( =)
. / " IINT A toom mo_n ag 40 1
[ @@ @ @A K A ) [ Lt )
X A-i-(ya ZI)K(Z/)DMV(xv y)
| [ (0)(d2) @) @KW A )], 2)K ()
< Dl A0 | Lot - )
[ (@) @a) @) @) 004 K )
/ / T, M " _n a}// 40 1
< Dyl ) Aol VKGRI A4, ) | Eot( — )]
[ (@)@ @) @ K )AL DA K )
< Dl A0 | Lot - )
[ @)@ @) @) " K ) A D5 A )

X Dl ) A VKK ) 84007, | Lot )| } 0210,

(C.45)

1) |(F e e @ i ©10h)
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We have

J

ST @ @ = [0 (9541 (0.2)] A0, K (Do) )

— /(dx)(dz)(dx/)A+(y,x) [GﬁAJr(:U,z)} K(Z)Dug(x,x/)(]ﬁ(x/),

and

% 9 0 Fix) = —i x)(dz’ z%4z—
(i) e @ 0 = ftanaanias) | Lo )

% (0244 (5.)] Ay, 2) Do, )T

+1 [ n@a)ae) | o' )| vty 0) 05840 2) Dyate )0

Therefore, we obtain ((I1.5))

Carcen )i @ @) [ 00
= {1 [uanianara:) {a_(u _ y>} 04, (y,2)] As (2, 2)
« Dyl a') () Do) (0"
+1 [ n)a) @ )@s) | 2ot - )] A ) [B7440,2)]

X Dy, @) (@) Dy 2"} I (@) } (040 ). (C.46)

And

(IL6) LéKi(y) o (1’)} K%iﬂg (y)) 152(9) 0 |O_>0] |
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We have

J

ST @ @ = [0 (9541 (0.2)] A0, K (Do) )

= [ (@0)(d2) @)A1 (5,) (0344 0, 9] K () Dy ).

Therefore, we obtain ((I1.6))

J " % Y )
@ @ |(Foww) g O 10
- {/ (dz)(d2)(da’)(d2')(da")(dy") [T5 A (v, 2)] KT (y") AL (", )

X [?(54(% — y)} Ay (2, 2)K(2)D,p(w, ) J (2') Doy, ") J*(2”)
- /(dl‘)(dz)(dxl)(dﬂ?")(dy")(dz')ﬂ+(y', ) KN (y")AL(y",2)

i

< | Eo = )] 028410 2)) KDyl )0 Dul) 1)

} (0410-) - (C.47)
And
) |(Fare) ) [ 010
We have
i © 0 = [ @)K ) [0 )]

< Au(e.2) | Lo = )| Dusle )70
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- [ @RI AL . 0) oA o)) | ot - )]
x Dys(z,2')JP ().

Therefore, we obtain ((I1.7))

a9y 9 p 5 )
KTiéK (y>>® <x)] [idKT(y) i6.J,(y) (0+10-)
— { [ @) a2 @) K1) (32,0 4. 0,2

[0 = )| Al R ENDl ) ) Dun ) ")
- [ (@@ @) @)K )AL ) 5845, 2)]

x {%%z - y>] Ay, ) () Dy 0, ) TP () Dy, ) T ()

} (0410_), . (C.48)

So that, we obtain

Y ) 5 5 o
(% ) w0 & @ 010

- {- [ | Zstc -] B o1ac 0 D ulen
+ [ | Late - )] st 201 AL e, Dyl
—i [(anazyae) [ 5 - ) 1008 (1) 84 0. K Donto)

x / (@)K (AL, 2)
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+1 [ (do)a)(e) [8—5( - y>] Ay, )[04+ (2, 2K (2) Dy, 9)
< [@nri)an.)

~i [ (o)) @) (@)K W0 Ao ) A4 2, 2)K () Do)

< | %ot - ] acm)

T / (d)(d2) (dy) (A=) K (1) Ay (g, 2)[05 A4 (2, D) K (2) Dy (,9)

< | %ot -] acme)

Y

- [N DD | = )] As10,)

. / 7 " X / al:g 4 7
i [ @)@ @A Dy D) | L - )
x Ay, 2V K (KN (y")Ar(y", ")
+ (@@ s Do) | £ = )] 40 2)
1 [ (@0 @G- o ema Dpln) | £ = )]
< Al KK )AL (")
—1 (@@ @)@ WN0A L D18 K )

< Dyl | Z6 )] 40029

+ / (do)(dz)(dy')(d")(de")(dy") KT () [0, A+ (¢, )] A (w, 2) K (2)
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< D) | 08" = )| Al KK AL )
1 [ (@)@ @) DK AW A, )
X Dy (2, ) {%54(2’ - y)} A(y, ¥
~ [ () (@) @) @)y K @) A ) Ao ) 2
ay 4 " / / " " /1

< D) |1 = )| Al KK WAL

: / " azg// 4 z
i / (da)(da') (da")(dz) [T(S (= - y)] 022 (y,2)] Az, 2)
< Dyl 41 Doy, 2" 7%
+1 [ (@)@ | Lot - )| Auty.a) 44 (0,2
Dyl /10" Daly. ) (2")
+ [ @)@ ) | Lo - )] (3.0
< VAL )8 (0,2 K () Dy )0 Do )07

/ ! " !/ aIZ/J 4 /

- [t @)@ | L - ) ace)
< B VB ) [T (2, 2)] K(2) Dy )2 Do )7 0”)
+ [ (@)@ )@@ K ) [054,.) 44 0.2

. {a—u - y>] A (9, YK (2) Dys(r, )P () Doy, ) J° (2"
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- / (do)(dz)(da’)(dy')(d2")(d2") KT (/) Ay, ) [0 A (2, 2)]

[0 = )| vt KDl Dl )1

} OO+ ©F [Wg (v) <$i5f<i(y)> iéJf(y) 0100 ] - (€49

Then we have

[T e @ @010

{1 [ @) )0 — 1) A4 (.20 [0 8+ ()] Dy .0)]

+i [ (00)(@9) @219 — DIOEA (w2102 B+ () D)

+ [0 — )4 A DR K

< 3 (1950 (0, ) Dy )]

= [@nan @) @) @8 oA e IR R A 2)
X 0 [Ap(y, z) Dy (2, )]

+ [[(0)(d9) (@2)(dy) (A K (IO A+ (0 108 (440 2) Dy )

x 64z — ) K () Ay (x, 2)

— [ @)@ K ) A )22 (A0 Dyl )

x 0%z = y)[0p Ay (2, 2)| K (¥)
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~i [ () (A @) B A+ 2))y 02 [Dl,) Ay )8~ )

+ [ () (@9) (@2) 0" Ay O A 0 )]y a0 Dyl ) A 3. 2)

< 01— K (K (") Ay, ")

+1 [ (o)A (@107 A+ (2,9 Do, ) (0,2 8 = )

~ [ (@)@ ANy O A, 2)ems B (D) A,

< 0 — YK (K (") Ay, ")

+ [ () (A2) Ay @) 5 A+ )} (2,2 )

X 0% [Dy (2, y) Ay (y, 2)] 64 (2" — )

41 [ (d0)(@9) (02) (@) (0 A=)y K (IO Av 0 0 A (o 2) K ()
x 042" = y) K () KT (y") Ay (", 2")0Y [Dy (2, ) Ay (y, 2')]

— [ (@) (dg) (@) @) (@)K ) A ) 05 A (o2 (2

X §4(2" = )0 [Dyu (2, y) Ay (y, 2)]

—i [ () ()@)€ ) Ay VK@) A ()03 A 2K ()

X 84" — YK (K (") Ay, )02 (D ) A 3, ')

+ [/ (@) (@) (@) (@) (a6 ) A0 210 [Donlya”) (054410, 2)]]

x Dyp(x,2)J%(a") T (2")
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— [ (@) (dn) @) @216z = ) [958+ (2.2)] 0 [ Duala”) A4 3. 2)]
x Dz, 2)JP (2)J*(2")

+1 [ (d0)(d9) (@) (@) () Ay (@)6( = ) A, )

% K (") A (2, 2)K(2) Dusl, ') 17 ()02 [Doalysa”) [024+ (9, )] ] J°(0”)
—i [ (o) @) ) (') (da") Ay (AN = ) A, )

% K'(y") (0241 (2, 2)] K(2) Dy, ') ()0 [Dyaly 2") A (3,2)] J7(a")
+1 [ (o)) () (de') Ay )(d2) (@) K o) 0744 0] Ae .2

X 54 = Y)Y A+ (4, 2) Dualy, ")) K () Dy, /) I () J° (")

—i [ () () () (e ()@ (da"V KT () Ae 0 ) [0 8, 2)]

x 8*(z = y) K () Dys(w, ') J7 ()0 [A (y, ) Dy, 2")] (")

} 0100+ |(F 5 )i 010 (€0

Simplify above term as

9y 90 ) o i
Jen(Tin) s = © 010

—{ [ @) A (2.9) [000;4.(0.)] Do)
n / (d2) (dy) Ay (1, 9) [0 A (. 2)] [ Dy (2, )]

— [ @)@z A, )] 028 (:0)] Dyl
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— [ (@) A2 )18 (.02 (D)

+ [[(@0)(@0) @) Ay A ) A VK KT )

< [Q0EA (5,2)] Dyl y)

+ [[(0)(@9) @) Ay A ) A VKK )

< [02 A4 (y, )] [ Dy (. )]

— [ )@2) 358, (K (K 6D )

x [0§A4(y, z)] Dy (,y)

- [ (@) )@ @A o K DK )AL 0)

X Ai(y, x) [0y Dy (2, y)]

+ [ (@) (@) (@) @)K WO A )] 0284 (2] Dyl0)
< K() A4 ()

+ / (da)(dy) (dy') (A=) KT ()05 AL (', )] A (y, 2") [04 Dy (2, )]
< K() A4 (o)

~ [ (@)@ (@K W) A 3) 0284 . 2) Dyl )

< [2 A, (o, )] ()

- / (dar)(dy)(dy) (A VKN (y) Ay, 2) As(y. 2') (00 Dy (2, y)]
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< [0 A4 (@)K ()

—i [ @)@ OEA DDl ) LA 0.2,

~i [ (@) @) OEA )y LDl )] Ary)

+ [[(@0)(@0)(02) Ay Av (0 2)ye D ,3) (0144 3. 2)
< KK (") A" y)

+ [ (@) A2) A A O A0y 02Dl )] A0 2)
< KK (5" A" y)

+1 [ (A) A4+ (0 2))ema Do) 0284 ..o,

+1 [ (o)A A+ 0. 2))ms Dy 1)) A1)

~ [ (@)@ Ay )0 A )]s D) 02D 3.
< KK (") A" y)

- [ (@)@ dy0; Ar .9 02D . )] A, 2)
< KK (5" A" y)

+ [[(de)(@9) (@2) Ay (@)K )10 A+ (0 ) A o, K 2
X Dy (z,y) [0§ A+ (y, 2)],_,

+ / (da)(dy)(d2)(dy ) KT () [0, A+ (¢, )] A (w, 2) K (2)
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X [0 Dy (2, y)] At (y, )

+1 [ (o)) (A2)(dy ) (4 (A" K () 0D ) A K (2
% K(K (") A (", ) Dl ) 024 (3, 2)]

+1 [ (do)(dy) (@) () (@) @V () DA )] A (o 2)K ()
x K(Z)K'(y") AL (y",y) [0 Dy (2, )] Ay (y, =)

- [ () @) (@) (@)K () Au (0 207 A, K ()

X Dy, ) [0§ A+ (y, 7).,

- [ (@)@ @)K ) A )0 A (0, K )

X [0Y Dy (,9)] At (v, y)

~i [ (0)(@0) d2) (4@ )y K () A4 0. 005 A K ()
% K()K (5" AL (4", ) Dl ) 024 (3, 2)]

~i [ (o) dy) (@)@ (@) Ay K ) Ay D)0 A4, K ()
< K()K (") A (y",y) [0 D)) A (3, )

+ [[(d0)(@9) (@) A o, ) Dol ) [958 (5,

x Dyg(z, ') Jo(2) J* (")

+ / (dz)(dy)(da’)(da") Ay (2, y) [0} Dualy, 2")] 05 A (y, )]



341

x Dg(z,2')J° (2") J*(2")

— [ (@) (dg) @) de") (074 o) 01Du )] A1 3. )

x Ds(z, )P (2)J*(2")

- [ (@) (dn) @) de") (044 (2.)] Dualy. ) 014+ (3. )

x D,g(x,2")J (2))J*(z")

+1 [ (o)) () (o) (4 (@) A ()

x KM(y") Ay (2, 2) K (2)Dyug(x, 2')J° () Dyaly, 2") (0505 Ay (y, x)] J*(2")
+1 [ (do)(dy) (d) (d')(da") Ay ) Ao )

< K" A (2, 2) K () D, 2') 7 (@) (02 Doy, )] [0 A (9, 2)] S (")
~i [ () @) d2) (') (da") () B )

< ") [0 A4 (2, 2)] K(2) Dy, ) () [ Doy, 2”)] As(3,2) 1 (0”)
~i [ (o) (dy)d) (e (d) @) A )

< K" [0 A4 (2. 2)] K(2) Dy, ) (o) [0 (g, )] Doy, ") (")
+1 [ (do)(dy) (@) () (4 0V () (0344 0. )] Al,)

% Ay, #) 02Dy, ) K () Dy, /)P () ()

+1 [ (o)) (@) ()@ AV () 0744 0 )] A ,0)
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< [0 AL (g, )] K () Dyal,a') I (@) Dualy, ) (")
~i [ (o) dy) @) @) (@) eV KN W) A ) [05 A (,3)]
% K()Dya(,2')J7(a") [02 04 (g, 2)] Dyaly, )7 (a")
~i [ () @) (@) (@) @) (") K ) A 2) [0 84 .0)]

X K(Z/>Duﬂ<x7 fE,)Jﬂ(:U/)AJr(% z/) [0YDya(y, fEH)] Ja(mﬁ)

} 021040+ 9400 55 (Y sy 010 (30

J J J J (
16K (y) 10K (y)i6J, (x)i6J,(x)

Find 04+1]0_),, we start from

1 1

idji(x)eiJD‘] _ {/(dy)Dﬂﬁ(%y)Jﬁ(y)} 02’7’
ide(;U) idji(x)e%JD‘] _ i(”i(x) {/(dy)pw(%y”g(y)} e%JDJ

— i [/(dy)Duﬂ(% ¥)8,6"(y — x)}
+ [/(dy)Duﬁ(fL“,y)} U(dy’)Dya(x,y/)J”(y')}

— —iD, (x, ) + / (dy)(dy") Dys(x, ) J°(y) Dol y') I (4,

(C.52)

or

iajf<x>e§JDJ = Dl o)+ / (dy)(dz") Dys(,y) () Do, ') J° ().

(C.53)
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And

SR = i o [ 0K )4, 0K ()

= ot [ ) (20" — ) A, . K )

= ¢HTAK / (d2) AL (x, z)K(z)] .

Then operate above term with , we have

10K (x)

5 5
0K () 0K (x)

KA — / (d2)Ay (2, 2)K(2)
+ l42) (@)@ A4 0 KK )AL )64 )
S / (d2)A, (2, 2)K(2)
+ [N E WA DA K E). (€54

Finally, we obtain

) 3 J J
10K (y) 10K T(y)i0J,(x) idJ,(x)

(04102, = = [ (@0)(d) A, 2) K (2) Dy . 2)
~i [ (0)@2) @)K )AL 1) A K () D2

—i [ (0)(@0) (0 (d') Ay (.2 ) Dy 9)°(9) Do) ()

+ [ () () (d2) (o) (A ) K@) A4 (1 2) A 0 2) K (2) Dy, ) ()

X Dyo(x,2")J*(2). (C.55)
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We have

Bt (AY1(0,10-),. (56

-~

Then we find (A)? (04 ]0_),

= fwniay La;?(y) @ijm) ik (a_ w?(w) T iafj@)]

: LM? (x) (?Mi(x)) i5Jj(:c) a (?5[5@)) 15K5T(x) 15Ji(x)] (0+10-)q-

Every term in above term, we have calculated it in Eq. (C.40) and Eq. (C.55). So that,

we have

(A)* (04 ]0-),

—{ =1 [ (@)@ BA 5.2 02D+ (0,)) Dynl.)

~i [ (@) @)I0; A . 2] A+ (2,9 (0L Dy,

+i [ ()@ A (.2 (2074 (0. 9)] Dyl )

41 [ (A0)(d) A (0, 2) 07 A4 (2,0)] 02D

+ [ () (@9) (@) Ay VKWV AL )0 A 0] A, 20K () 02Dy )
+ [ @)A1, 0)) A (500144 (2, 2)K () D)
— [ @) ) @)K ) A ) Al )0 A ) () Dy .0)
— [ @) Ay @ K() A 0" 0) A 0 )03 A 0 2))E 2) B2 Dy )

+ / (da)(dy) (dy ) (d) K (5 )05 A4 (', 2)] (00 AL (2, 9)] As(y, ) K (') Dy (2, )
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+ / (dz)(dy)(dy")(dz) KT ()05 AL (Y, )] Ay (2, 9) Ay (y, 2) K (2) [0Y Dy (2, )]
- [ (@) (@) @) @K )AL ) [0 84 (0,0)] Acy, £V () Dyl )
~ [ () (@) @) @K @) A DA ) A+ 0, K () 02D,
— i [ (@)D )y Do) LA )
~i [ (@00 A 2= 02Dl 0) A1 310
+ [ () (@0) @) Ay O Ae (0 0)ys LD )] K () Au 4”0
X Ay, 2K (2)
+ / (dz)(dy)(d2")(dy") 05 A v (¢, )]y e Dy (2, ) KT (y") [0 AL (4" )]
X Ay, 2K (2)
+i / () (Ay) [0 A (2, 2)] o [0 Dy (2, 9)] As (5, 9)
+1fld) @07 A o2 Do) LA )
~ [ ()@ @) Ay IO Ax o2 ems LD, )] K ") A", 0)
X Ay(y, 2K (2)
— [ (@) A9) @) Ay 0F Av .2 Dy 9) [T () A1 0" 0]
X Ay, 2K ()

+ /(dw)(dy)(dZ)(dy’)K "W0RAL Y, 2)] AL (2, 2) K (2) Dy (2, 9) [0 A (8", )]y
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+ [/ () (9) (@) Ay VKT WO A4 0 ) A 2K (2) 02D .9)) A 3:.)
+1 [ (d0)(d9) (@) @) (0 Ay VK W) EA )], 2) K (K (0
X A (" 1) A4 (5, VK () 101Dy, )
+1 [ (do)(dy) (@) () (@) @V () O A (0 ) A 2) K ()
x KM(y") 00 A (y", 9)] Ay (y, ) K (2') Dy (2, )
- [ (@)@ (@) @) K () A4 (0 00 A+ (0, 2K ) 02D ) A0,1)
~ [ () (@9) @2) @)K @) A 0) 55 A, 2K ) D)
< (04 ),
—i [ (@) (d9) @2) @) (VK ) A )05 A K ()T
< (028 (5", 1)) Ay, 2K () Dy, 9)
—i [ (de)(dy) (@) ()" K () A4 0 005 A o K (K )
x A (y" y)Av(y, 2 ) K () [0Y Dy (, )]
+ [ () (dy) (e (@) (054 (0,2)] 0284 5,)] Dyl ()
X Dya(y,x")J*(2")
+ [ (@) Ae) @) 52 (5,0)] A (o 9) Dy ) ()

X [0y Dyaly, x")] J* (*T//>
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- [ (@)@ (@) (@) A (9,9) [37 A (,)] Dyali.a') (e
< (02D, )] J(a")

- [ () (9) @) e") A 0. ) [205 8. 0,)] Dol )7
X Dyq(y, ") J*(2")

1 [ () (d9) @2) (@) () Ay KT () 0044 0 ) [05 8+ ()] A 2)
X K(2)D5(a,2')1° (@) Dy, J° (")

+1 [ (d0)(dy) (0 (@) (e () K ) A1) 0344 3] A, 2)K ()
x Dys(a, /) I (") [0 Dyaly,a")] (0"

~i [ (o)) (d) (') (da") Ay VK ) A" ) A 9. 2) [05 A, 2)]
x K (2) D, 2')17 (@) [02 Dy, ")) I (")

—i [ (d0)(dy) (@) (@) (e ") K ) LA 0" ) Do) 0344 0. 2)]
X K (2)Dy5(2,2')1° (@) Dy, 2 J° (")

+i / (dz)(dy)(da’)(dy')(d=")(dz") KT () [05 A4 (v, )] [04 A4 (2, y)] Doaly, 2")
x Ay, 2K () Dyl )P () (0"

+1 [ (o) o) (') () (@) (0" K o) 0520 )] B (0,0 01 Do)

x Ay (y, 2)K () Dyg(x, 2').J7 (2') ] (2")
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~i [ (o) ) 4y )@ eV ) A ) [O205 A (.9)] Al )
% K () Dys(, ) (&) Doy, ) (")
~i [ (do)(dy) (') (02 (A K () A4 0 )07 A o) A2 )
% Dys(a, /)T () [0 Dyaly,a”)] (")
41 [(A0)(d) A, (o) 02054+ (0.2)] Dynl)
41 [ (@) d) Ao ) 074+ 3. )] (01D,
~i [ (o) @[04+ ()] 024+ (9. 2)) Dy (.9
—i [ (@) 05 A (o) A 3 )02 (D)
- / (dz)(dy)(d2)(dy") KT (y") ALy, y) [0805 AL (y, x)] Ay (x, 2) K (2) Dy (2, y)
~ (@)@ @)@ K (") A4 (0" 90 A+ (0] A 20K () 2D ()
+ [ () (@) @) @K )840 10) 014+ 0. 2)] 03 A+ (2K (2) Dy .9
+ [ (@) ) Ay)@KT()A 0" 0) A )03 A4 0 2))E ) P2 Dy )
- [ (@)@ () @) K () DA 0] A .9) 24 (0. )] K () Do)
- / (dz)(dy)(dy")(dz") KT ()05 AL (v, )] Ay (2, y) Ay (y, 2 ) K (2) [04 Dy (2, )]

+ / (da)(dy) (dy')(d=") KT (4 ) A (', 2) [0 A+ (2, 9)] (00 A4 (y, )] K (2) Dy ()
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+ / (dz)(dy)(dy")(d2)V KT (y) Ay (', 2)[05 Ay (2, )] Ay (y, 2) K (2) [0Y Dy (2, )]

41 [ (@) )08 )y s Dyl ) (0244 0.

+i / (A2)(d)[02 A (', )]y —s [02 Dy (1, 9)] A (31, 9)

- / (da)(dy)(d2)(dy") O A s (f, 2)]y = KT (y") AL (Y y) (0541 (y, 2')] K ()
X Dy (,y)

- /(dx)(dy)(dz)(dz”)(dy”’)[8§A+(y’, 2)y=K (") AL (", y) Ay (y, 2 ) K (2)
X [0} Dy (2, )]

~i [ (o)A A+ 0. 2))ems Don9) 0284 (..o,

—i [ (@) @)D, 2)ms (02D :)] Ar 1)

+ /(dx)(dy)(dz’)(dy’”) (05 A (2, 2)] = KT (y") AL (¥, ) [0V A (y, 2)] K(2)
X Dy (1, y)

+ /(d$)(dy)(d2/)(d?/"') 05 A (2, 2)] o= KT (") AL (v, 9) Ay (y, 2 K (2)
X [0y Dy ()]

- /(dﬂﬂ)(dy)(dz)(dy')(dZ/)KT(y’)[aﬁ4+(y'>37)M+(1'7 2)K(2)
X Dy (z,y) (00 AL (y, )],

- / (do)(dy)(d2) (dy ) KT () [0 A+ ()] A (w0, 2) K (2) [0 Dy (2, )] Ak (31, )
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—i [ (o)) () () (@) Ay KT () 05 A+ ), 2) K (2)K )
X A (") (024 (9, 2)] K () Dy, y)
~i [ () () (@) @) (0 Ay VK@) OEA )], 2) K () (0
x Ay (y", ) Ay (y, 2') K (2) [0 Dy (2, y)]
+ o) ()@ K () Ay )03 A1 (2. 2)K (2) Dy (.9
x [0) A+ (y, ).,
+ (@) )@ ) A4 (0 0) G5 A o 2K ) Dl ) A 09
+1 [ (0)(d9) (@2) (@) ) Ay VKT W) A () 03 A K (K0
X A (" 5) 1014 (3, ) K () Dy, 9)
41 [ (d0)(dy) (42 (@) ) Ay KT () A 0 )05 A4 o, K (2)K )
X A" ) A4 (5, )K () (01D, )]
~ [ ()@ (@) da") A (2.9) [2L07 84 (2] Dil") 7 (0")
x Dys(z,2)J" (')
~ [ (@) (de) (@") A .9) 0744 (3 )] 02 Dua(2”)] ()
x Dys(x, ') JP (')

+ / (dz)(dy)(da’)(da") [0p A (2, y)] Ai(y. z) [0) Dualy, 2")] J*(")
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x D,g(x, o) J% (")

+ / (dz)(dy)(da’)(da") [05 A (2, 9)] (00 A+ (y, )] Dualy, a") T (2")
x Dys(z,2)J" (')

—1i / (dz)(dy)(dz)(d2")(dz")(dy") KT (") A (y". y) [0 As (y, 2)] A, 2)
x K (2)Dys(w, 2") 7 (2') Dyaly, ") (a")

—i / (de)(dy)(d2)(da’)(da")(dy" ) K (y") A+ (y", y) [05 Ay, 2)] Ay (z, 2) K (2)
x Dyg(x,2")J(a") [0 Dyaly, 2")] J*(2")

+1i / (dar)(dy)(dz)(da’)(dz")(dy" ) KT (y") As (", y) As(y, @) [0 A (2, 2)] K(2)
X Dy, 2')J% (@) [0 Dyaly, «")] J* (")

+i / (dz)(dy)(dz)(da) (dz")(dy") KT (") A (y", y) [08 A (y, 2)] [07 A (, 2)]
x K (2)Dys(w,2")J7(2') Dyaly, ") (a")

—i / (da)(dy)(da)(dy)(d=")(da") KT () (05 A4 (v, 2)] Ay (2, 9) Ay (y, 2" K(2)
X [0/ Dyaly. a")] Dys(w, a') (') J* (2")

—i / (dx)(dy)(da’)(dy)(d=")(dz") KT () [05 A4 (v, )] Az, y) [0 AL (y, 2)]
x K(2')Dyg(,a") % (a") Dy, ") J*(2")

+1i / (da)(dy)(da")(dy')(d2")(da") K (y) AL (Y, @) [0 A+ ()] (00 A+ (y, 2')]
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< K()Dya(2, )77 () Dual ") (")
41 [ (o) dy) (@) (02 (0 K ) A4 (') [958 )] Ay 2K )

x Dys(w,a')J7(2') [0} Dyaly, a")] J*(2")

} (04 0_) + @ (x) L(H?(y) (%5;1@)) iéJf(y) <0+|0_>°}

-0 [ (i g 0100 €D

Simplify above term
(A)%(04]0-),
—{ -2 [ @o@)I0; A (.0 244 2, 9)] Dyl )
421 [ (o)) A4 (9. 2) [958 (0,3)] Dyl )
+ [ @) @)y K0 DA ] 054 0], (7, 2D ) Dy (.0)
— [ (@)@ @) @ KT LA ) A0 A o 2K ) D)
+ [ K W0 A )] A ,)] Ay K () Dyl
- [ (@)@ @K )AL 0) (00074 o) Asls2)K () Dyl,0)
— i @O Dy Do) LA )

i[O A o 2D 9) DA ),
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= [ (@) @) (@) F A .2 ma Do ) () A )
x Ay (y, 2K (Y)

+ [ (@0)(@0) @) @)K )0 A4 (0 2] A . )K () Dy,1)
< [OAL ),

+1 [ (do)(dy) (@) () (@) @V ) DA ) A (o, 2)K ()
x KM (y") [08 A (y", )] A (y, 2) K (') Dy (2, )

- [ (@) @) (4 (@)K () A4 3. D)0 A4 2, DK () Dy ,)

x [00A (Y )],y

=i [ (o)) () ()" K () Ay )03 A o )K (2)
x KM(y") [00 AL (y", )] Ay, 2V K (') Dy (2, )

+2 [ (o) dy)(de')(da") [358+(y,0)] 0244 5,0)] Dyl )
% Dyaly,a")J%(a")

~2 [ (d0)(dy) (@) (da") A () 020 A1 (5. 9)] Dy, )77
% Dyaly,a") (")

41 [ (do)(dy) (@) (de') (e () K ) LA 0" ) [55 8+ (,)]

x Ay (w,2)K(2)Dys(w, ') 7 (2) Dy (y, ) J* (")
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— 2 (o)) (d2) (e (0 )y VKT () 02440 ) A (.2

x [0F AL (z,2)] K(2)Dys(w,2") ] (2') Dya(y, ") J* (")
+1 [ (o) @) (o)) eV () [0 440 )]

< [0+ (@.9)) Doaly, ") Au (g, 2K () Dyal, ') 17 (/) I ()
+1 [ (o) dy) (') 02 (0 K o) 0540 )]

X A (29) [02Dyaly, )] Ay, 2K () Dyl /)T () (")
~i [ (o) dy) ') @) (@) eV KT W) A1 ) [0205 A (,)]

x Ay (y, 2" )VK(2)D,p(, 2') P (2") Dyo(y, ") J* (")
+1 [ (o)A A o,y) 0207440 2)] Dynl)
—i @) A- )] LA (5,2)] Dy (.0)
— [ (@) An)@) @E)A ) [0 A 1 5,0)] Ar (K ) Dyl,1)
+ [ ()N KT ) A0 0) 0284 0. 0) (0344, K (2) Do)
~ [ (@) @) @K WO A4 (0 D) A .9) 2D 5, 2)) K () Dyf,1)
+ / (dz)(dy)(dy ) (d=") KT (y") A (', 2) 05 A (2, )] [0V A4 (y, )] K (2') Dy (2, y)
41 [0 A Dy Dl ) UA (0],

—i / (d2) () 02 A (2, 2)]oma Dy (2,4 (104 (3, 2.,
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+ /(dx)(dy)(dzl)(dy'")[aﬁﬂﬂﬁa o= K'Y AL (Y, 9) 08 A (y, )] K (2)
X Dy (,y)
- /(dfﬂ)(dy)(dz)(dy')(dz')KT(y')[3ﬁA+(3/,w)]AJr(IaZ)K(Z)
X Dy (2,y) (05 A+ (y, )]y
— [ (@)@ @) K W)OEA L )] A, (22K ()
X [0y Dy (x,y)] A (y, )
- i/(dx)(dy)(dz)(dy')(dz/)(dy"')KT(y')[aﬁAJr(y’? )| Ay (z, 2) K (2)
x K'y") A (y",y) [0 A+ (y, )] K (2') Dy (2, )
- i/(di)(dy)(dz)(dy')(dzl)(dy"')KT(?J')[a,fANy', )| Ay (z,2)K(2)
x K'(y") A (y" y)Ar(y. 2)K(2) (04 Dy (,)]
+/(de)(dy)(dz)(dy')KT(y')A+(y',x)[aﬁﬂ+(%Z)]K(Z)
X Dy (z,y) [0) A+ (y, 7).,
+/(dl‘)(dy)(dZ)(dy’)KT(y’)AJr(y'?x)[affAJr(ﬂ?aZ)]K(Z)
X [0y Dy (z, )] A (y,y)
+ i/(div)(dy)(dz)(dzl)(dy')(dy"')KT(y')AJr(y’; )0, Ay (z, 2)| K (2)

x K'(y" AL (y",y) 04 A4 (y, 2)] K (2') Dy (2, y)
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—1i / (dz)(dy)(dz)(da")(de")(dy") K" (y") A+ (y",y) [080% A (y, o))
X Ay (z,2)K(2)Dys(a, ') J7(2") Dya(y, ") J* (2")

+i / (dz)(dy)(dz)(da")(de")(dy") KT (y") A (v, y) [04 A4 (y, )]
x [0 AL (x,2)] K(2)Dyg(x,a')J(2') Dyaly, ") J* (")

~i [ () @) (@)@ @) (") K ) 58, )] A l)
x Ay (y, 2")K(2) [0YDyaly, x")] Dysla, ) % (2') J* ()

+1i / (dz)(dy)(dz')(dy')(d=")(de") KT (y ) A (v, 2) [0 Ay (2, y)]

x (00 A (y, )] K() Dyp(, ') J7(2) Dy, ") T (2)

} 0+10-)o + &%) Lﬂg(y) (?Wfi(y)) i5Jf(y) 0 |O_>°]

-0 e (T 010 (€59

Finally, we obtain ay, simplify term of a,. Each term in as are separated with the

properties of vary process in Scalar Electrodynamics. Let

ay=P1+P2+P3+P4+P5
+P6+P.7+P.8+P.94P.10

+P.11 (C.59)

where P.i,7 =1,2,3,4,...,11 denote processes in Scalar Electrodynamics
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The process P.1

/ (de)(d2) A, (z, 2) K (2) Dy (2, 7) (C.60)

,,,,,,, DE—

Figure C.1 Diagram corresponding to the process P.1.

The process P.2

{ [ (@0 dy) K )AL 0080, 2K () D) (€61

S« I

Figure C.2 Diagram corresponding to the process P.2.

The process P.3

i/(dx)(dy)(dz)(dx')A+(:I:,z)K(z)Dug(x,y)Jﬁ(y)Dm(:v,a:/)Jo‘(x/) (C.62)

Figure C.3 Diagram corresponding to the process P.3.
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The process P.4

- / (dz)(dy)(dz)(da’)(dy") KT (y) ALy, 2) As (2, 2) K (2) Dys(,y) I (y)

X Dyo(z,2")J*(2) (C.63)

Figure C.4 A seagull diagram in scalar electrodynamics.

The process P.5
+ [ () (@9) B8+ (5,2)) P2 (0,)) Dyl )
- [ ()@ A- 0. ) [255A+ 0,)] Dyla)
-5 [ (@A) (0207445 2)] Donl)

+3 [A@OA @) 04 w2 D) (€6

The process P.6

s / (de)(dy) (d=) (dy") K (") [ AL (", ) [0 A (9, 2) A4 (2, 2) K (2) Dy (2, 9)
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Figure C.5 Diagram corresponding to the process P.5.
- /<dx><dy><dy"><dz>w<y">[azA+<y",y>1A+<y,x>[azA+<x,z>w<z>DW<:c,y)
s / (d) (dy) (dy') (A=) I (505 A (o, )[04 A (2, 9)] A (3, #) K () Dy (1, 9)
~5 [0 )@@ K () Ay ) 0107 A+ (0. 9)] A+ 1,2 K () Dpol,0)
~ / (de)(dy) (d2)(dy") K (y") A (', 9) [0405 A+ (3, 0)] A+ (2, 2) K (2) Dy ()
+ / (dz)(dy)(dy") (A2) KT (5" ) A (o, ) [0 A (y, D) [05 A (1, 2) K (2) Dy (2, )
- / (dz)(dy) (dy ) (A=) KT (4 LA (o, )AL (2, ) [0L AL (9, 2K (2) Dy (2, )

5 @@ @) @K W) A, 2157 A 0 K Do)

(C.65)

[~

Figure C.6 spin 0 particle’s self energy diagram in scalar electrodynamics.

The process P.7
1 / "
+ 5 /(dl’) (dy)[aﬁAﬁ- (y 7I)]y’:xDuu(xa ?/) [83A+(y ,y)]y//:y

- 5 [ A AIOEAL 0. 2)) e Do) B84 ),
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-5 [ @A Dy Dl ) LA,

1 /
+5 [@@O;AL .9 Do) DAy (C6)
///’\\\ ///’\\\
| AVAVAVAR) )
N / \ P

Figure C.7 Diagram corresponding to the process P.7.

The process P.8

- % / (dz)(dy)(d2")(dy") [0 A (2, )]sz Dy (2, y) KT (y") [0 A4 (" y)]
X Ay (y, 2K ()

s / (d) (dy) (d2)(dy ) K () [OEA (Y )] Ay (2, 2) K (2) Dy (. )
< [OUA (" 9)] oy

- / (d) () (d2)(dy ) K (o) A (), )05 A (2, 2)] K (2) Dy (2, )
x (00 AL (Y, )],y

+s / () (dy) (A=) (dy")[OE A (. 2)) e KT (4" A (5" ) 0L A (3. )
X K(2')D(x,y)

- / (de)(dy)(d=)(dy)(d=) KN () [F5 A+ (o, 2)] A (2, 2) K (2)

X DHV<I7 y) [83A+(y, Z,)]z’:y
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- / (do)(dy)(d2)(dy) K (1) [0 A4 (¢, 2)] A (2, 2) K (2)
X (09D (z,y)] Ay (y,y)

n 5 / (dz) (dy)(d2) Ay ) K () Ay (yf, 2) [0 A (2, 2)] K (2)
x Dy (2,) [0V A4 (y, 2],

+%/(da:)(dy)(dz)(dy/)KT(y/)A+(y/ax)[aiA+<x’Z)]K<z)

X (04D, (z,y)] Ay (y,y) (C.67)
\\\ ///’\\\
/;f\/\/\/u\ /)
// N e’

Figure C.8 Diagram corresponding to the process P.8.

The process P.9

-3 / (dz)(dy)(d2)(dy') (d=") (dy" VKT (W)OEA L (o, 0)] A (, 2) K (2)
< K (") (04 (4" )] Ay (3, #) K () Dy )

+5 [ (@0 @)@y K () A4 0 00 A K ()
x K (y") [0V AL (y", y)] Ay, 2') K (2) Dy (2, y)

+5 [ (@0 @)y )42 @K ) A ) Ao, ) K ()
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x K1 (y") AL (", y) [04A (9, 2')) K () Dy (2, y)

o / (dz)(dy) (=) (dy) (A=) (dy") KT ()07 A (o, 2)| A (2, 2) K (2)
X KT (y") AL (y", 9) Ay (y, ") K (2) [0Y Dy, y))

-2 / (dr)(dy) (d=) (A=) (dy ) (dy") KT (1) Ay (o 2) 05 A ()] K (2)

x KT (y")AL(y",y) [04 A1 (y, 2 )] K (') Dy (,y) (C.68)

Figure C.9 A scattering diagram in scalar electrodynamics.

The process P.10

i [ () () (@) (0" 072+ (0,0)] 0284 (5.)] Dyl )P
% Dyaly 2")J(a")

— i [ () () (@) (@) A, (0.9) (02074, 5. 9)] Dy ) 1)

X Dyo(y, ") J*(z") (C.69)
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//’\\\
E”\/V\/Xﬁ\/\ AN

—-—

Figure C.10 Photon self energy diagram in scalar electrodynamics.

The process P.11

- % / (dz)(dy)(dz)(da’)(dz")(dy") KT (y") (00 A+ (y", )] [05 A+ (y, )]
x A (2, 2)K(2)Dyp(x, 2')J° (2') Dyaly, a) J* ()

-2 / (do)(dy)(dz)(da’) (da") (dy") KT (") [BLAL (", )] Ay (y, ) [F5 A (2, 2)]
x K (2)Dys(w,2")J7(2') Dyaly, ") (a")

- % / (d)(dy)(da’) (dy')(d=')(d2") KT (o) [02 A4 (v, 2)] [04A4 (2, 9)] Dyaly, ")
x Ay (y, VK (2)Dyy(x, ) J° (') T (2")

_ % / (dz)(dy)(da’)(dy)(d=")(da") K1 () [05 A4 (', 2)] As (2, y) [0Y Dyaly, )]
x Ay (y, VK (2)Dyys(x, )T (') T (2"

+ % / (dz)(dy)(da')(dy')(d2')(d2") K () A (', 2) [OL05 A (2, 9)] A (y, )
x K (2')Dyp(, 2')J7(2") Dya(y, ") J* (2")

o / (do) (dy) (d2)(da’) (da") (dy" KT (5" A (" ) [090E A ()]
X Ay (2, 2) K (2)Dys(a, ") J7(2") Dy (y, ) J* (2")

- % / (dz)(dy)(dz)(da’)(da")(dy" ) K (y") A (", y) (00 A4 (y, 2)] [0 Ay (0, 2)]
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x K(2)Dys(w, 2')J% (') Dua(y, ") I (a")
+ % / (da)(dy)(da")(dy')(d=)(da") KT (y) [0; Ay )] As(,y)
X Ay (y, 2 VK (2) [0YDyaly, &) Dyg(, )% (') J* (2"
- % / (dar)(dy)(da’)(dy')(d2) (da") KT () Ay (', 2) [0 A ()] (00 A1 (y, )]

x K(2)D,s(z,2')J5 (2" ) Dya(y, ") J* (") (C.70)

G v S

Figure C.11 Scattering diagrams in scalar electrodynamics.



APPENDIX D
COMPUTATIONS RELEVANT TO e ¢ — e e

SCATTERING

D.1 Polarizations Correlations: Initially Unpolarized
Particles

The amplitude of process e”e~ — e~ e~ may be written as

A o TP ulp)u(pa)yuulpe) _ Tpy) " u(py)u(p)y,u(pe)
(P, —p1)? (py — p1)?
a(ph)y u(p)u(ps)y ulpa) | a(ph)y? ulpr)a(ph)y’ u(ps)

= +
(P} — p1)? (P} — p1)?

L @) wlp)u(p) ulpe)  a@ph)yulp)ulpy)y ulps) (D.1)
(ph — p1)>? (P —p1)?

For the process e e~ — e~ e, in the c.m., with initially unpolarized spins, with mo-

menta p; = ym(3(0,1,0) = —p,, we take for the momenta of the final electrons

p’y = ymp(1,0,0) = —ps, (D.2)

and for the four-spinors

1/2 s 2
u(ph) = (p O;m) Tl a- s/ (D3)
m 5 Wy sin y1/2

pO+m
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(o) — (po + m) 1/2 & ¢, = —icos xa/2 D4
2 2m . O"p,1 5 ’ sin /2
p0+m 2 X2
0 1/2 —j
_ +m » icosx1/2
a(p) = ( g g5 ), &= (D.5)
2m rr sin x1/2
0 1/2 —i 2
v (P tm ; A B icos s/
U(p2) - ( m > <€2 +€2p0+71n ) 52 - “in X2/2 ) (D6)
where
—icos x1/2
& = (D.7)
sin x4 /2
—icos xa/2
& = (D.8)
sin x2/2
&= (i cosx1/2 sin X1/2) (D.9)
5% = (i cos x2/2 sin X2/2> . (D.10)

A straightforward but tedious computation of the corresponding probability of occur-

rence with initially unpolarized electrons, (D.1) leads to

Prob oc [@(p) )y (—p1 + m)y u(p))] [@(ph)y.(—yp2 + m)yeu(ps)]
— [@(P)" (=yp1 +m)y7u(py)] [@(ps) . (—vp2 + m)you(p))]
— [@(py)y" (=yp1 4+ m)y7u(p))] [@(ph) . (—vp2 + m)you(ph)]

+ [@(p) " (=1 +m)y u(py)] [@(ph) v (—yp2 +m)yeupy)] - (D.11)
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By using program Mathematica 5 to calculate probability of this process, we obtain

(» = |p))

1
Prob m {5m2 — 15m2p2 + 31m2p4 + 3}76 + 8m2p4 COS(Xl + X2)

+ [—5m6 — 25m*p? + m?p* — 3p6} cos(x1 — Xa2) + 16mp°p* cos(x1 + x2)

— dmp® [ — 3m®* + 6m?p* — 15p* [3m4 + 14m?p?* — pﬂ cos(x1 — Xz)}

+ (°)? [3m* + 30m*p® + 31p* [-3m* — 30m*p* + p*| cos(x1 — x2)]
+8(p°)*p* cos(x1 + x2)

+ (p°)*8m [ — 3m® + 9p* + [m® + p*] cos(x1 — x2)]

+ (p°)* [3[m® + 11p°] [-3m* + Tp*] cos(x1 — x2)]

+ [=12m(p")° = 5(p")°] [ = 1 + cos(x1 — x2)] } . (D.12)

We define momenta of two initial electrons in term of speed (() as

mp

P = \/%ﬁﬁ (D.13b)

So that, we simplify Eq. D.12 in term of speed ((3)

Prob oc A(8) [1+ 26 + 68" [-1 — 287 + 38| cos(x1 — x2) + B* cos(x1 + x2)] ,
(D.14)
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where

am? =2 (1= /1= ) + 3 (24 V1- 7]

A(B) = — . (D.15)

[1 _ ﬁ2]5/2 ( /1 — ﬁ2>2

from cos20 = 1 — 2sin®f = 2cos?# — 1, and we can neglect A(f3) because it disap-
pear after the probability is normalized. After simplification and of collecting Eq. D.12
reduces to

Prob o (1 — 8%)(1 + 36?) sin’ (%) 1 B cos? (@) +45%. (D.16)



APPENDIX E
BELL’S THEOREM AND ENTANGLED STATES;

THE C-H INEQUALITY

E.1 Bell’s Theorem

The formulation of Bell’s theorem started much later after Einstein, Podolsky
and Rosen formulated the EPR paradox, in 1935, to argue that quantum mechanics is
not complete as it is, in particular, at best probabilistic. They argue that the prediction
of the measurement in quantum mechanics is inconsistent, and the theory should have
some variables to make it complete. As a result, they suggested that variables, so-called
“hidden variables” may be necessary for a more complete theory. We will describe a
simplified version of EPR paradox. Consider two particles each with spin 1/2 emerging
from some source moving in opposite directions with total spin O—the singlet. From the
measurement of spin of one of the particles, call it particle 1, and found, say, to be along
n, one may conclude instantaneously, because of the correlation implied by the total
spin O-state

1

) = E (jn), [-m), — [-m), [n),) (E.1)

that the component of spin of the other particle, call it particle 2, is along —n without
ever disturbing this latter particle. With no such disturbance, one may invoke locality, as
ano-action at a distance, to infer that the value of the component of spin found indirectly
for particle 2 must have existed prior to a measurement done on particle 1. Since n was
arbitrary, one may also infer that all the components of spin of particle 2 were known
to begin with. That is, all the components of spin of a particle are definite in clear

contradiction with quantum mechanics of the non-commutativity of spins [S;, S;] =
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ihe€;jx Sk, and the underlying theory of the latter is incomplete.

The above led to the belief that perhaps quantum mechanics is a limiting case of
a more complete local theory which, involves, so-called, hidden variables. Such theories
are referred to as Local Hidden Variables (LHV) theories.

In 1964, and in subsequent years, John Bell has put such theories to a test. Sev-
eral tests have been also proposed in the literature by various authors. We refer to all
such tests as Bell-like tests. We will discuss one originating from the work of Clauser,
Horne, Shimoney and Holt (CHSH) [Clauser and Shimoney, 1978].

To the above end, and in view of applications to a system of two particles, as
described below Eq. (E.1), and other similar processes, we consider the following in the
light of LHV theories.

Let A denote collectively the random variables expected to be relevant to the
system under study with corresponding probability density or probability mass function

dp(A) normalized as

/ dp(\) =1 (E.2)
A

summed over the set /A of all values that A may take on.

One is interested in determining coincidence and single counts obtained in the
measurements of the spins of the particles, after emerging from the process in question,
making angles, say, Y1, y2 with some given directions.

Suppose that the system is in a state specified by A\. We may introduce the

following probabilities of counts:

plxi, x2; AL, plxa, = AL pl—sxes Al (E.3)

correspondingly, respectively, to coincidence counts when measurements are made on
both particles’ spins, to a count when a measurement is made on only one particle (call
it particle 1), and, finally, to a count when a measurement is made on particle 2 only.

In such a framework, one makes the key assumption that if the system is in any
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given state specified by A, the probability count obtained from measurements performed
on one particle is independent of the probability count corresponding to the other parti-
cle after they have emerged from the process. This is a key point. That is, the probability

counts are necessarily factorable,

Plxa, X2; Al = plx1, = Alp[—, x2: Al (E4)

for all A\ in A, implying their independence, with all determined in the same state .
Now we use the fact that for any four numbers 0 < x1, 22, 2, 25 < 1, we have

the following elementary inequality

—1 < w9 — 112 + 2w + 2ial, — 2] — 29 <0 (E.5)

as established in Eq. (E.3).

Accordingly upon setting

r1 = plx1, —; Al
Lo = p[—, x2; A
(E.6)
o = plxi, = Al
wy = pl= X5 A

for four angles, x1, X2, X}, X5 and using the fact that probabilities, as in Eq. (E.3),
necessarily must fall in the range [0, 1], we have from Eq. (E.5) upon multiplying the

latter by dp(\) and summing (integrating) over \:

—1 < plx1, x2) — plxa, Xo] + pIX4s Xo] + pIX. Xa) — XS, =] — pl—, x2] <O (E7)
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where
plxi, xa] = /Adp(k)p[xl, —; Alp[—, x2; Al

= /Adp(A)p[xh X2; Al (E.8)

etc., where we have used, in particular, the factorization assumption in Eq. (E.5).

The inequality in Eq. (E.7) 1s expressed in terms of probability counts which may
be determined experimentally putting LHV theories to a test. p[x1, x2| denotes the joint
probability count for measurements of both spins, while p[x1, —|, p[—, 2] correspond
to probability counts with measurements of only one of the spins.

In the bulk of this thesis, the probabilities computed from quantum theory cor-
responding to p[x1, X2], p[x1, —|, P[—, x2] Will be denoted, respectively, by P[x1, 2],
Plx1,—], P|—, x2] with a capital “P”.

In order to obtain a violation of the inequality in Eq. (E.7) experimentally, it is
sufficient to choose any four angles 1, X2, X}, X5 that do the job since, according to the
LHYV reasoning, Eq. (E.7) must be true for all angles. Experiments show violation of the
inequalities and are consistent with the quantum mechanical predictions. Experiments
of optical nature have been performed and a classic one involving two photons with
measurements made on photon polarization correlations is one due to Aspect ef. al.

[Aspect, Dalibard and Roger, 1982].

E.2 Entangled States

Consider two sets of independent vectors |a;), |5;),

(ailag) = by, (BilBy) = 0y (E.9)



373

then for any vector

) = cilas) |5:) (E.10)

such that at least two of the coefficients ¢; are non-zero, cannot be rewritten as a product

) = [tb1) |¢)2) (E.11)

where
) =) ai|ov) (E.12)
[a) = > bi|B:) (E.13)

To show this, suppose, without any loss of generality that ¢; # 0 and ¢y # 0.
Upon multiplying Eq. (E.10), in turn, by (a4 | (51|, (az| (52| and using Eq. (E.3) we
obtain

C1 = albl, Cy = agbg. (E14)
On the other hand by multiplying Eq. (E.10) in turn by (a4 | (52|, (a2| (51| and

using (E.3) we obtain
0= albg, 0= a2b1 (ElS)

which upon comparison with Eq. (E.14) leads to the contradiction that at least one of
c1, Co 18 Zero.
Definition: A state as defined in Eq. (E.10), with at least two of the coefficients

¢; non-zero is called an entangled state.

E.3 The Clauser-Horne (C-H) Inequality

i ur nu < a1, 20,2, 0, <1,
Consider four numbers 0 < x1, o, 2}, x5, < 1, and set

U = 11279 — 2105 + 229 + 2} 0, — 2] — 2. (E.16)
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We first derive the upper bound U < 0.

For 21 > 2/, we may rewrite
1

U= (x1— Dag+ 2y (xe — 1) + x5 (2] — 1)

<0 (E.17)

since every term is non-positive.

For x; < x|, we may rewrite

U =x1(xg — 25) + (2] — 1)zg — 2 (1 — 25)

< xy(2o — 2h) + (2] — Dag — 21 (1 — 25)

= 2129 + (2] — V)xg — 1y

=x1(xe — 1) + (2} — 1)y 0. (E.18)

We now derive the lower bound —1 < U.

For x| > x4,

U+1=(1-2))(1—x) + z129 + 25(2) — 21)

=0 (E.19)

since every term is non-negative.

/
For z; > 7,

U+1=(1-21)(1—22) — (21 — 21)(2h — 22) + 222

> (z1 — 2)(1 — 22) — (21 — 27) (2 — ) + 2] 22
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= (z; — o)) (1 — 24) + 2z = 0. (E.20)

All told, we have
-1<UKDO. (E.21)



APPENDIX F

THE ROTATION MATRIX

For a general orientation of any vector r, we may rotate it, say, clockwise (c.w.)

about vector n (see in figure F.1)

-
=

-——p

(a) (b)

Figure F.1 (a) The figure shows the vector r rotated clockwise (c.w.) by an angle ¢

about a vector n. (b) The figure depicts the n-r plane, with @ = & denoting

EY
a unit vector in the direction of a.

By using the geometric properties, we have
a=r—Db
=r — |r|cosfn

a=r—(r-n)n, (E.1)
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therefore, we get (from figure F.1(b))

Ir|sinfa =r — (r-n)n. (F.2)

Let

c=nxr=|r|sinféc. (E.3)

From figures F.2(a) and F.2(b), we obtain

a = || sinfa’

a' = cos ¢pa — sin ¢p¢

(a) (b)

Figure F.2 (a) The figure depicts n X r in the direction of c (b) The figure depicts

a’ = cos ¢a — sin ¢c.

a' = |r'|sinfa’

= |r| sin §(cos ¢pa — sin ¢¢)

a' = |r|sin 6 cos ¢pa — |r|sin O sin ¢é, (F4)

giving

r —-r=—a —a

= |r| sin @ cos ¢a — |r|sin @ sin ¢¢ — |r| sin fa

a' = |r|sinf(cosd — 1)a — |r|sin O sin G¢. (F.5)



From Eqgs. (F.2) and (F.3), we can rewrite Eq. (E.5) as

r'—r=(r—(r-n)n)(cos¢ — 1) —sinp(n x r)

r=r—sing(nxr)+ (r— (r-n)n)(cosp — 1).

Use the properties of the tensor with

1 even permutation
€ = 0 (two or more)

—1 odd permutation
giving

(7,/)1' — ri _ Eijknjrk singb + (Ti o (rknk)nin)(cosqﬁ . 1)

= §ikrk — dikpirksin ¢ + (5%r% — (r*n¥)nin)(cos ¢ — 1)

(r') = [6’% — €%nd sin ¢ + (6% — nFn'n)(cos ¢ — 1)] k.
In the rotated form, we may write
(r') = R™*r*.
So that, we obtain for the rotation matrix the expression

R* = 5tk _ ¢iikpi sin ¢ + (5”€ - nknin)(cos ¢ —1).
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(F.6)

FE7)

(E.8)

(F.9)

(F.10)



APPENDIX G
NUMERICAL RESULTS FOR THE STATISTIC S
CORRESPONDING TO SPECIFIC ANGLES OF

MEASUREMENTS

Table G.1 Angles used in calculating S < —1 in QED (Spin half) in Process 1

B [ xi|x2|xs|xa|S<-1 Bolxi | xe|xs|xa|S5<-1
000 0 [23|45]67 | -1.207 016 | 0 [23[45]67 | -1.139
001 | 0 [23 45|67 | -1.207 017 | 0 |23 |45|67 | -1.131
002 | 0 |23 |45]|67 | -1.206 018 | 0 |23|45|67| -1.123
003 0 |23 /45|67 | -1.204 019 0 |23 45|67 | -1.114
0.04 | 0 |23|45|67| -1.202 020 0 | 23|45|67| -1.105
0.05| 0 |23 |45]|67| -1.200 021 0 |23|45]|67| -1.096
006 | 0 |23 |45|67 | -1.196 022 0 |23|45]|67| -1.086
007 | 0 |23 45|67 | -1.193 023 0 |23|45]|67| -1.076
008 | 0 | 23|45 |67 | -1.189 024 | 0 |23|45|67| -1.066
009| 0 |23 |45| 67| -1.185 025] 0 | 2345|677 | -1.056
010 0 [ 23|45 |67 | -1.180 026 0 | 2345 |67 | -1.046
011 | 0 [23|45|67| -1.174 027 | 0 |23|45|67| -1.035
012 0 [23|45|67| -1.168 028 | 0 |23]45|67| -1.025
0.13| 0 |23 /45|67 | -1.161 029 | 0 |23|45|67| -1.014
0.14| 0 |23 45|67 | -1.154 030 | 0 | 23|45/|67| -1.003
015 0 | 23|45 | 67| -1.147




Table G.2 Angles used in calculating S > 0 in QED (Spin half) in Process 1

B xi|x2| x3 [ xa|S>0 B lxi|x2| x3 | xa|S>0
0.00| 0 [ 6713523 0.207 016 | 0 | 67 | 135 [ 23| 0.139
001 | 0 | 67| 13523 0.207 017 | 0 | 67 | 135 |23 | 0.131
002 | 0 | 6713523 0.206 018 | 0 | 67 | 135 |23 | 0.123
0.03| 0 | 67| 135 |23 | 0.204 019 0 |67 | 13523 ] 0.114
004 | 0 | 67| 135|231 0.202 0201] 0 | 67| 135|231 0.105
0.05| 0 [ 6713523 0.200 021 0 | 6713523 | 0.096
006 | 0 | 6713523 0.196 022 0 | 6713523 | 0.086
0.07 | 0 |67 |135|23]| 0.193 023 | 0 | 67| 135|23 | 0.076
008 | 0 | 67| 135 |23 | 0.189 0241 0 | 67| 135 |23 | 0.066
0.09| 0 | 67| 135| 23| 0.185 025] 0 | 6713523 | 0.056
0.10 | 0 [ 67| 135 |23 | 0.180 026 | 0 | 67| 135 |23 | 0.046
011 0 [ 67 |135|23|0.174 027 | 0 | 6713523 | 0.035
0.12| 0 | 67 | 135 |23 | 0.168 028 | 0 | 6713523 0.025
0.13| 0 | 67| 135|233 0.161 029 | 0 | 67| 135|233 0.014
0.14 | 0 | 67| 135 |23 | 0.154 030 0 | 67| 135 |23 | 0.003
0.15] 0 | 67| 135 |23 | 0.147
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Table G.3 Angles used in calculating S > 0 in Scalar Electrodynamics (Spin 0) in

Process 1

B | xi|x2|x3|Xxa|S5>0 B olxi|x2|x3|xa|S5>0
000 | 0 [ 234567 0.207 0.16 | 0 [ 234567 0.139
0.01| 0 |23|45|67|0.207 0.17 | 0 | 23|45]| 67| 0.131
0.02| 0 |23|45|67| 0.206 0.18 | 0 | 23|45|67| 0.123
003 ] 0 | 23]45]|67 | 0.204 019 0 |23 145|167 0.114
004 ] 0 | 23145 |67 0.202 020 0 | 23|45 |67 0.105
0.05| 0 | 23|45 |67 0.200 021 | 0 | 23|45|67 ]| 0.096
0.06| 0 |23|45|67| 0.196 022 | 0 |23|45]| 67| 0.086
007 | 0 |23|45|67|0.193 023 | 0 |23|45]|67]| 0.076
008 0 | 23]145|67 | 0.189 0241 0 | 23145 |67 | 0.066
009 0 | 23 ]45| 67| 0.185 0251 0 | 2314567 0.056
0.10| 0 | 23|45 |67 0.180 026 | 0 | 23|45 |67 | 0.046
0.11| 0 | 23]45|67 | 0.174 027 | 0 | 23|45|67 ] 0.035
0.12| 0 | 23|45 |67 | 0.168 028 | 0 |23|45]| 67| 0.025
0.13| 0 | 23|45 |67 0.161 029 | 0 |23|45|67 ]| 0.014
0141 0 | 23145 |67 | 0.154 030 0 | 23|45 |67 0.003
0.15| 0 | 23|45 |67 | 0.147
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Table G.4 Angles used in calculating S < —1 in Scalar Electrodynamics (Spin 0) in

Process 1

Bolxi | x2| xs | xa|S<-1 Bolxi|x2| xs | xa|S<-1
000 O | 67135 |23 | -1.207 016 | O | 67 | 135 |23 | -1.139
001 ] O | 6713523 | -1.207 017 0 | 67 | 135 |23 | -1.131
002 0 | 67| 135|23| -1.206 0.18| 0 | 67| 13523 | -1.123
0.03| 0 | 6713523 | -1.204 0.19| 0 | 67| 13523 | -1.114
004 | 0 | 67| 13523 | -1.202 020 | 0 | 67| 13523 | -1.105
005] 0 | 67| 135]23| -1.200 021 ] 0 | 67| 135|23 | -1.096
006 | 0 | 67135 |23 | -1.196 0221 0 | 67 ]135|23| -1.086
0.07| 0 | 67| 135 |23 | -1.193 023 0 | 67| 135|23| -1.076
008 | 0 | 67| 135 |23 | -1.189 024 | 0 | 67| 13523 | -1.066
009 | 0 | 67| 13523 | -1.185 025| 0 | 67| 13523 | -1.056
010 O | 67| 135 |23 | -1.180 026 0 | 67| 135|23 | -1.046
011 0 | 67| 135|23 | -1.174 0271 0 | 6713523 | -1.035
012 0 | 67 | 135 |23 | -1.168 028 | 0 | 67| 13523 | -1.025
0.13] 0 | 67| 135 |23 | -1.161 029 0 | 67| 135|23| -1.014
0.14 | 0 | 67| 135 |23 | -1.154 030 | 0 | 67| 135 |23 | -1.003
0.15] 0 | 67| 135 |23 | -1.147

Table G.5 Angles used in calculating S > 0 for Spin half and Spin 0 in Process 2

B Ilxi|x2| x3 |xa|] S>0 B [ xi|x2| x3 |xa|S5S>0
000 - [ - | - [ - [unviable 016 | 0 | 67| 135 [ 23| 0.150
001 ] 0 | 67|135]23| 0207 017 | 0 | 67| 135 |23 | 0.143
002 0 |67 |135[23| 0.206 0.18 | 0 | 67 | 135 |23 | 0.136
003] 0 |67 |135]23 | 0.205 019 0 | 67| 135 |23 0.128
004 | 0 |67 |135]23 | 0.203 0201] 0 | 67| 135|231 0.120
005] 0 |67 |135]23| 0201 021 0 | 67| 135]23|0.112
006 0 | 67 |135]23| 0.199 022 0 | 6713523 0.104
007| 0 |67 |135|23| 0.196 023 | 0 | 67| 135 |23 | 0.095
008 0 | 6713523 | 0.192 0241 0 | 67| 135 |23 | 0.087
009| 0 |67 |135]23| 0.188 025 0 | 67| 135 |23 | 0.078
010 0 |67 | 135[23 | 0.184 026 | 0 | 67| 135 |23 | 0.068
011 0 |67 |135]23| 0.179 027 | 0 | 67| 135 |23 | 0.059
012 0 |67 | 135[23 | 0.174 028 | 0 | 67| 135|23 | 0.049
013 ] 0 | 67| 135]23 | 0.169 029 0 | 6713523 0.039
014 0 | 67| 13523 | 0.163 030] 0 | 6713523 0.029
015] 0 |67 | 135[23 | 0.156
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Table G.6 Angles used in calculating S < —1 for Spin half and Spin 0 in Process 2

B lxi|xe|xs|xa|S<-1 Bolxi|xe|xs|xa|S<-1
000 - [ - | - | - [ unviable 016 0 [23[45[67 ] -1.150
001 0 |23 |45|67| -1.207 0171 0 |23 |45| 67| -1.143
002 0 |23|45|67| -1.206 0.18| 0 |23 /45|67 | -1.136
003 0 |23|45|67| -1.205 0.19| 0 | 23|45 |67 | -1.128
004 | 0 |23/45|67| -1.203 020 0 |23|45|67| -1.120
0.05| 0 |23|45|67| -1.201 021 0 |23|45|67| -1.112
006 | 0 |23 (45|67 | -1.199 0221 0 |23 (45|67 | -1.104
007 | 0 |23 45|67 | -1.196 023 0 |[23(45| 67| -1.095
008 0 |23|45|67| -1.192 024 | 0 |23|45|67| -1.087
009 | 0 |23|45|67| -1.188 025, 0 |23|45|67| -1.078
0.10| 0 |23 45|67 | -1.184 026 0 |23 |45|67| -1.068
0.11 0 |23|45|67| -1.179 027 | 0 |23 45|67 | -1.059
012 0 |23 |45|67| -1.174 028 0 |23 (45|67 | -1.049
0.13| 0 |23 |45 |67 | -1.169 029 | 0 |23|45|67| -1.039
0.14| 0 |23 45|67 | -1.163 030 | 0 |23|45|67| -1.029
0.15| 0 | 23|45 |67 | -1.156




APPENDIX H

STRING THEORY ASPECTS USED IN THIS WORK

H.1 Introduction

We here consider some basic properties of relativistic strings needed in Chap-
ter VI of this work. String theory is ambitious in that it promises to unify conventional
particle theory with Einstein’s theory of gravity. We will not, however, go into much
details and deal with some general aspects only and we will eventually be dealing with
those detail used in this work as studied in §H.2 and §H.3. In the following two sections
we determine the electromagnetic current associated with a particular charged string,

and the energy-momentum tensor associated with a Neutral Nambu string.

H.2 The Charged String

The dynamics of the string is described as follows. The trajectory of the string
is described by a vector function R(o,t), where o is the parameter along the string.
The equations of motion for the closed string is taken to be (see, eg. Kibble and Turok,

1982; Manoukian, 1991 and Sakellariadou, 1990)

R-R'=0 (H.1)
where

R = dR/dt (H.2)

R’ = 0R/0o (H.3)
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with the constraints equations

R- R =0 (H.4)
R +R?=1 (H.5)
R(o + (27n/m),t) = R(o, 1) (H.6)

where dots and primes stand for derivatives with respect to ¢ and o, respectively, and m,
so far, is an arbitrary mass scale.

The general solution of Eq. (H.1) is

R:%m@—w+3w+0] (H.7)

where A, B satisfy, in particular, the normalization conditions that we obtain
A?=B?*=1 (H.8)

we consider a solution of the form (Manoukian, 1991)

1
R = —(cosmo, sinmo, 0) sinmt (H.9)
m

describing a radially oscillating circular string. The general expression for the electro-
magnetic current of the string is given by (Kibble and Turok, 1982; Albrecht and Turok,

1989; Manoukian, 1991; Sakellariadou, 1990)

2w /m .
J::QﬁE doR&*(r — R(o, 1)) (H.10a)
2 Jo
27 /m
o= 9m dod®(r — R(o, 1)) (H.10b)
21 Jo

where () denotes the total charge of string, R° = ¢, and r lies in the plane of string.
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Because of the symmetry of the problem, we find it convenient to work in cylindrical

coordinates. Thus, r = (r cosf, rsin 0, z) and

| sin mit|

& (r —R(o,t)) = %(5(7“ — ) (5(9 —mo — g{l — sgn(sinmt)}> d(2).

(H.11)

Therefore, the explicit evaluation of J* read as: when we have
R = (cos mo, sinmo, 0) cos mt.

For ;n = 1, we read J! as

2w /m
Jt = C;_m do cosmo cosmt §*(r — R(0,1)).
T Jo

By using property in Eq. H.11, we rewrite J! as:

r m

2w /m 1 1
= Q_m/d(f cos mao cos mit— 5<T - s >5(0 ST E{l — sgn(sin mt>}>5(2)
2m Jo 2

- Q T _ 1 | sin mt|
= 5, 08 (9 — 5{1 — sgn(sin mt)}) cos mt;é(r - 0(2)

1 :
_Q cos  sgn(sinmt) cos mt—é(r _ lsin mt]) d(2). (H.12)
2m r m

For ;1 = 2, we read J? as

27 /m
J? = C;_m do sinmo cosmt 6*(r — R(o, t)).
T Jo

Similarly, by using property in Eq. H.11, we rewrite J as:

2w /m .

m 1 sin mt

= Q— do sinmo cosmt— 5<r— g
27 J, r m

)(5(6 —mo — g{l — sgn(sin mt)})é(z)

_Q sin (9 - g{l — sgn(sin mt)}) cos mtlé <r _ Isin mt|> d(z)

27 T m
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1 :
= Q sin 0 sgn(sin mt) cos mt—¢ (r - M) d(2). (H.13)
2m r m

Finally, ;1 = 0, we read J° as

27 /m
Jo = @m do 6%(r — R(o, 1))
2m Jo

_Qm 2m/m | sin mit| s ,
= o . da;é P (5(9 —mo — 5{1 — sgn(smmt)}) d(z)
Slr — | sin mt|
JO = QQM 5(z). (H.14)
7T r

So that, we obtain

Q (5(7” . |sir71nmt|)
J= 2—(005 0,sin @, 0)75(2) cos mt sgn(sin mt) (H.15a)
T
slr — | sin mt|
JO = QM 5(2) (H.15b)
2m r

in cylindrical coordinates where r now lies in the plane of the string. Using the period-

icity of J* in time we may write:

o N d2p > dq ; .
s = 30 e [ [ g (H.16)
N=—00 -
where
m T/m ) 0o ) )
B*(p,N) = By dt e‘Nmt/dzr/ dze PTe T JH(r, 2, 1) (H.17)
7T —/m —00

Upon writing

p = p(cos ¢, sin ¢, 0) (H.18)
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p-r=prcos(¢ —¢), d*r=rdrd¢’ (H.19)

using the expansion (Table of Integral):
exp[ipcos(¢ — @)l = Y ()" exp [in(¢/ — ¢)] Ju(p) (H.20)

n=—oo

the integrals (Table of Integral):

T N _
/7r N Jyr (alsin T|) AT = 27 cos <Tﬁ) JMQ N (g) ‘]MTJFN <g) (H.21)

/W sin(NT')Jy (asinT) dT = msin (%) JMQN <g> JM;N <g> (H.22)

—Tr

or,

T N —
/ N sgn(sin T)Jay (a] sin T]) dT = 27risin( ﬂ) JM-N (4) Turen (%)

- 2 2 2 2 2
(H.23)
the property,
00 ) 21 y
Z (—i)"e™ 1, (p) / d¢'e ™™ (cos ¢, sin ¢/, 0)
n=—oo 0
= (—1i)27(cos ¢, sin ¢, 0)J1(p) (H.24)
and the elementary recurrence relation
2v
Jl,_l(Z) + Jy+1 (Z) = 7(]1,(2) (HZS)

we obtain the following expressions for B*:

B°(p, N) = Q(—1)V/? cos <¥) T (%) (H.26)
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B(p,N) = %N(—l)]\[/2 cos (%) (cos ¢, sin ¢, O)J]QV/2 (%) (H.27)

and J,(z) is the Bessel function of order n.
The equations Eq. (H.16), Eq. (H.18), Eq. (H.25) and Eq. (H.26) may be written

in a more convenient form as:

Ji(r, 2,t) = / 5;1)’2 /_ Z g—z / (12—}:) eP itz i P) (H.28)

JH(P) = J"(P" p) =2 i §(P° —mN)B"(p,N) (H.29)
N=—oo

P = (P",p.q), (H.30)

B'(p, N) = an T3, (%) , (H.31)

B(p,N) = ”;—inBO(p, N), (H.32)

ay = Q(—1)M?%cos (%) , (H.33)

We note that there is no ¢ dependence in Eq. (H.29), Egs. (H.31)-(H.33).

H.3 The Neutral String

The general expression for the energy-momentum tensor of the string is given
by (Kibble and Turok, 1982; Albrecht and Turok, 1989; Sakellariadou, 1990 and

Manoukian, 1997)

m2 2w /m

™ = —
2 Jo

do (0, R*O,R” — 0,R"0,R") §*(r — R(0,1)). (H.34)
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More explicitly, it is given by

e = [ [k [ S G s

™’ p,q) = T"(p’,p) = 2 i (p" —mN)B"(p, N) (H.36)
N=—oco

B®(p,N) = AnJ5 (2), (H.37)
BY(p,N) = ﬁN JN/Q( r); a=1,2, (H.38)
B%(p, N) = By Ano® + By Ex’> o bJN/Q( ) a=1,2, (H.39)
B"(p,N) =0, (H.40)
Av =1 [Ji (@) + T (1) = 27 4 (2) T4 (0)] (H41)

Ey = Jy (@) ]y (2), (H.42)

By = m(—=1)"2cos <%> . (H.43)

One readily verifies the conservation laws 0,J* = 0, 9,T"" = 0 directly by
checking that
puB" =0, p,B" =0 (H.44)

where

p- =mN = —pg (H.45)

is the total energy of the mono-energetic pair of the oppositely charged scalar particles

each of mass m.
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