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สวนมีอาบิทราจเราจึงเสนอแบบจําลองตลาดโดยประมาณแบบแบลค-โชลเศษสวน  เราพิสูจนวา  
แบบจําลองแบลค-โชลเศษสวนโดยประมาณของเราไมมี อาบิทราจ ขณะที่ผลเฉลยของแบบจําลอง
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จําลอง Vasicek, Ho-Lee, และ Hull-White เราไดหาผลเฉลยโดยประมาณของแบบจําลองเหลานี้ 
และพิสูจนวา ผลเฉลยโดยประมาณนี้ ลูเขาสูผลเฉลยเดิมของแตละแบบจําลอง 
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Chapter I

Preliminaries on Fractional Stochastics

In this chapter, besides the literature review, we discuss the mathematical back-

ground and tools ranging from stochastic calculus, properties of fractional Brown-

ian motion to a new approach to fractional stochastic calculus.

1.1 Introduction

Since the celebrated papers by Black and Scholes (1973) and Merton (1973) the

idea of using Brownian motion for modelling prices of risky assets (share prices of

stock, stock indices such as the Dow Jones, Nikkei or DAX, foreign exchange rates,

interest rates, etc.) has been generally accepted. In the classical Black-Scholes

pricing model the randomness of the log-returns of financial indices is modelled by

Brownian motion. In fact, in the early studies the systems were usually modelled

by Brownian motion which implies that the events are independent and identically

distributed. Physically, this means that the events must not influence one another

and they must all be equally likely to occur.

However, in many problems related to mathematical finance and other

fields the processes under study seem empirically to exhibit self-similarity property

and the long-range dependence property (the latter property is absent in Brownian

motion). In fact, this history is dated back to the year 1951 when H. E. Hurst

studied the long term water flow characteristics of the Nile River (based on more

than 800 years of data). He noted that the water level of the Nile obeyed a
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self similar pattern with a long range dependence. Moreover, in recent studies,

Leland et al. (1994) showed that, in communication networks, real inputs exhibit

long range dependence. It is also reported, for example by Decreusefond et al.

(1999) and Beran (1994), that the random processes arising from hydrological

and economic time series exhibit long range dependence and self similarity. It is

also shown by Alvarez-Ramirez et al. (2002) that rescaled range Hurst analysis

provides evidence that the crude oil market is a persistent process with long-range

memory effects (see also Shiryaev, 1999).

Definition 1.1. Let H ∈ (0, 1) be a constant. The fractional Brownian motion

with Hurst parameter H is a Gaussian process (W H
t )t≥0 = (W H

t (ω)), t ≥ 0, ω ∈ Ω,

satisfying

EW H
t = 0 for all t ≥ 0

and the covariance function

R(s, t) := E[W H
s W H

t ] =
1

2

(
t2H + s2H − |t − s|2H

)
; s, t ≥ 0.

Here E denotes the expectation with respect to the probability law P for (W H
t )t≥0,

where (Ω,F) is a measurable space.

If H = 1
2

then W H
t coincide with the classical Brownian motion, denoted

by Wt. If H > 1
2

then W H
t is persistent, in the sense that

ρ(n) := E[W H
1 (W H

n+1 − W H
n )] > 0 for all n = 1, 2, 3, ...

and
∞∑

k=0

ρ(k) = ∞

If H < 1
2

then W H
t is anti-persistent, in the sense that

ρ(n) < 0 for all n = 1, 2, 3, ...
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In this case
∞∑

k=0

|ρ(k)| < ∞.

Another important property of fractional Brownian motion is self-similarity, i.e.,

for H ∈ (0, 1) and α > 0 the law of (W H
αt)t≥0 is the same as the law of (αHW H

t )t≥0.

In order to be able to apply fractional Brownian motion to study the mar-

ket situations we need a stochastic calculus for fractional Brownian motion. Since

for H 6= 1
2

the fBm BH
t is neither a semimartingale (Theorem 1.2) nor a Markov

process (Theorem 1.3) then the well developed stochastic calculus is not appli-

cable. In particular, for H > 1
2
, it is a long memory process (see page 14). In

other words, the behavior of a real process after a given time t does not only

depend on the situation at t but also of the whole history of the process up to

time t. This significant property makes fractional Brownian motion a natural

candidate as a model of noise in mathematical finance (see, e.g., Rogers, 1997)

and in communication networks (Leland et al., 1994).

Many authors tried to understand what a stochastic integral of the form

∫ T

0

f(t, ω)dW H
t

should mean. The most common constructions of such a stochastic integral are

the following.

I The pathwise or forward integral

The integral is denoted by

∫ T

0

φ(t, ω)d−W H
t .

If the integrand φ(t, ω) is caglad (left-continuous with right sided limits)

then this integral can be defined by Riemann sums, as follows:
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Let 0 = t0 < t1 < ... < tN = T be a partition of [0, T ]. Put 4tk =

tk+1 − tk and define

∫ T

0

φ(t, ω)d−W H
t := lim

4tk→0

N−1∑

k=0

φ(tk)
(
W H

tk+1
− W H

tk

)
, (1)

if the limit exists in probability.

Note that with this definition the integration takes place with respect

to t for each fixed “path” ω ∈ Ω. Therefore, this integral is often called

pathwise integral. Using a classical integration theory due to Young (i.e.,

the Riemann-Stieltjes integral
∫

fdg exists if f(t) is a function of bounded

p-variation (for its definition see Section A.2 in Appendices) and g(t) is a

function of bounded q-variation for p, q > 0 and 1
p

+ 1
q

> 1) one can prove

that the pathwise integral (1) exists if the p-variation of t 7→ φ(t, ω) is finite

for all p > 1
1−H

. Since t 7→ W H
t has finite q-variation iff q ≥ 1

H
, we see that

if H < 1
2

then this theory does not even include integrals like

∫ T

0

W H
s d−W H

s .

For this reason one often assumes that H > 1
2

when dealing with forward

integrals with respect to W H
t . In general

E

∫ T

0

W H
s d−W H

s 6= 0,

even if the forward integral belongs to L1(Ω,F , P ).

For H > 1
2

the forward integral obeys Stratonovich type of integration

rules. For example, if f ∈ C1(R) and

Xt :=

∫ t

0

φ(s, ω)d−W H
s exists for all t ≥ 0

then

f(Xt) = f(0) +

∫ t

0

f ′(Xs)d
−Xs, (2)
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where

d−Xs = φ(s, ω)d−W H
s .

For this reason the forward integral is also sometimes called integral of

Stratonovich type with respect to fractional Brownian motion. In fact, this

is the Newton-Leibnitz’s rule of integration.

As special case of (2) we note that

∫ T

0

W H
s d−W H

s =
1

2

(
W H

T

)2
for H >

1

2
.

Moreover, a slight extension of (2) gives that the unique solution Xt of the

fractional forward stochastic differential equation

d−Xt = α(t, ω)Xtdt + β(t, ω)Xtd
−W H

t ; X0 = x > 0 (3)

is

Xt = x exp

(∫ t

0

α(s, ω)ds +

∫ t

0

β(s, ω)d−W H
s

)

for H > 1
2
, provided that the integrals on the right hand side exist.

II The Skorohod (Wick-Ito) integral

This integral is denoted by

∫ T

0

φ(t, ω)δW H
t .

It is defined in terms of Riemann sums, as follows:

∫ T

0

φ(t, ω)δW H
t = lim

4tk→0

N−1∑

k=0

φ(tk) �
(
W H

tk+1
− W H

tk

)
, (4)

where � denotes the Wick product (see Definition A.6 in Appendices). The

difference between this integral and the forward integral is the use of the

Wick product instead of the ordinary product in the Riemann sums (4) and

(1), respectively.
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The Skorohod integral behaves in many ways like the Ito integral of

classical Brownian motion. For example, we have

E

∫ T

0

φ(t, ω)δW H
t = 0

if the integral belongs to L2(Ω,F , P ). Moreover, if f ∈ C2(R) then we have

the following Ito type formula

f(W H
t ) = f(0) +

∫ t

0

f ′(W H
s )δW H

t + H

∫ t

0

∫ t

0

f ′′(W H
s )s2Hds, (5)

valid for all H ∈ (0, 1), provided that the left hand side and the last term

on the right hand side both belong to L2(Ω,F , P ).

Note that as special case of (5) we get

∫ T

0

W H
s δW H

s =
1

2

(
W H

T

)2 − 1

2
T 2H for H ∈ (0, 1). (6)

The Wick-Skorohod-Ito analogue of (3) is the equation

δXt = α(t, ω)Xtdt + β(t, ω)XtδW
H
t ; X0 = x > 0. (7)

Assume that α(t, ω) = a and β(t, ω) = b are constant. Then by a slight

extension of the Ito formula (5) one obtains that the unique solution of (7)

is

Xt = x exp

(
βW H

t + αt − 1

2
β2t2H

)
; H ∈ (0, 1). (8)

Note that if H = 1
2

then the formulas (6) and (8 ) reduce to the formulas

obtained by the Ito formula for the classical Brownian motion.

After the pathwise theory for fractional Brownian motion was developed

(see, e.g., Lin, 1995 and Decreusefond et al., 1998&1999) it was proved that the

market mathematical model driven by fractional Brownian motion could have

arbitrage (Cheridito, 2003, Rogers, 1997, Sottinen, 2001 and Sottinen&Valkeila,
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2001&2003). However after the development of the Skorohod integral based on the

Wick product (e.g., Duncan et al., 2000 and Hu&Oksendal, 2003) it was proved

(Hu&Oksendal, 2003) that the corresponding Ito type fractional Black-Scholes

market has no arbitrage. Unfortunately, this integral does not allow economi-

cal interpretation. Worse still, these two types of definition (the pathwise and

Skorohod integrals) are difficult for numerics.

In 2002, Thao tried to solve this problem. He proposed another definition

of fractional stochastic integral motivated by a formulae of integration by parts

and an approximate approach to fractional Brownian motion.

• Suppose first that f(t, ω) is a stochastic process of finite variation on [0, t].

The fractional stochastic integral of f(t, ω) is defined as

∫ t

0

f(s, ω)dBs = f(t, ω)Bt(ω) −
∫ t

0

Bs(ω)df(s, ω)− [f, B]t (9)

provided that the integral on the right hand side exists in the Riemann-

Stieltjes sense for almost all ω. In (9), [f, B]t is the quadratic variation of

ft and Bt where the fractional process Bt is defined as

Bt =

∫ t

0

(t − s)H− 1

2 dWs

and W = (Wt,FW
t )t≥0 is standard Brownian motion on (Ω,F , P ) with its

natural filtration (FW
t )t≥0. See Section 1.7.2 for the reason why the process

Bt is used instead of the fractional Brownian motion W H
t .

But in this preliminary definition the integrand f(t, ω) must be of finite

variation, which is a restrictive requirement. Thao (2002) has proposed a def-

inition of the integral for any stochastic as the L2-limit of Iε
t =

∫ t

0
f(s, ω)dBε

s

provided it exists, where Bε
t is an L2-approximation of Bt and is a semimartin-

gale, when ε → 0. This idea is motivated by the fact that for the integral of a
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process having finite variation defined above, it is proved that
∫ t

0
f(s, ω)dBs =

L2 − lim
∫ t

0
f(s, ω)dBε

s.

The purpose of this thesis is using the definition proposed by Thao (2002)

to study some fractional models in finance: a fractional Vasicek model, a frac-

tional Ho-Lee model, and a fractional Hull-White model, using a new approximate

approach (Chapters III, IV, V). Moreover, the arbitrage problem for fractional

Black-Scholes pricing model is also investigated. It is found that the approximate

model is arbitrage-free so that one can give arbitrage-free prices with long memory

(Chapter II). Finally, the sample paths of IBM stock prices simulated by classical

Black-Scholes model and by fractional Black-Scholes model are illustrated against

the empirical data (Chapter VI). All of basic terms and definitions can be found

in Appendices.

1.2 Long Memory and Short Memory

A stochastic process, in general, is characterized by two quantities, namely, the

probability density and the correlation function. The probability density describes

the random nature of the fluctuations while the correlation function describes how

a fluctuation at a given time influences subsequent fluctuations. If the correlation

between two observations that are far apart decreases fairly slowly and is summed

up to infinity then this is interpreted as a long memory. In fact, if X = (Xt)t≥0 is

a stochastic process on (Ω,F , P ) and ρ(k) = E[X1(Xk+1 − Xk)] and if

∞∑

k=0

ρ(k) = ∞

then the process X is said to have long memory or long-range dependence or strong

aftereffect. This means that the process today may influence the process at some

time in the future. In other words, the process at long time before may influence
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the process today.

On the other hand, if the correlation between two observations that are far

apart decreases fast enough so that they are summed up to a finite number then

it is interpreted as a short memory or short-range dependence. For example, since

the Brownian motion W = (Wt)t≤0 has independent increments (see for definition

in Section A.2) so that E[W1(Wk+1 − Wk)] = 0, for all k ≥ 1 and, hence,

∞∑

k=0

E[W1(Wk+1 − Wk)] < ∞.

Therefore, Brownian motion, as well as the processes of martingale property and

Markov type, have short memory.

In Sections 1.3 - 1.6, we review all definitions and tools for the further

uses.

1.3 Fractional Brownian Motion (fBm)

Recall here that a stochastic process X = (Xt)t≥0 is H-self-similar with parameter

H > 0 if

(Xat)t≥0
d
=
(
aHXt

)
t≥0

for all a > 0, where
d
= means equality in distributions.

Suppose that Y = (Yt)t≥0 is a self-similar process with parameter H. Then

Yt
d
= tHY1 for t > 0

and hence

V ar(Yt) = V ar(tHY1) = t2HV ar(Y1).

In the following, we consider the values of H ∈ (0, 1), and in particular Y0 =

0 with probability 1. Assume further that Yt has zero mean, is normalized
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so that V ar(Y1) = 1, and stationary increments, i.e., the random n-vectors

(Yt1 , Yt2, ..., Ytn) and (Yt1+h, Yt2+h, ..., Ytn+h), h > 0 are identically distributed. Hence

Corollary 1.1. Let (Yt)t≥0 be real-valued H-self-similar with stationary incre-

ments and suppose that V ar(Y1) = 1. Then, for s < t,

R(t, s) := Cov(Yt, Ys) =
1

2

(
t2H + s2H − (t − s)2H

)
. (10)

Proof. By self similarity and stationary of the increments,

E(Yt − Ys)
2 = E(Yt−s − Y0)

2 = EY 2
t−s = (t − s)2H .

On the other hand,

E(Yt − Ys)
2 = EY 2

t − 2EYtYs + EY 2
s

(t − s)2H = t2H − 2Cov(Yt, Ys) + s2H ,

hence,

R(t, s) =
1

2

(
t2H + s2H − (t − s)2H

)
. �

Theorem 1.1. A fractional Brownian motion (W H
t )t≥0 is H-self-similar with sta-

tionary increments. When H ∈ (0, 1), it has a stochastic integral representation:

1

CH

∫

R

[(
(t − s)+)H− 1

2 −
(
(−s)+)H− 1

2

]
dWs, t ≥ 0 (11)

where H ∈ (0, 1), f+ = max{f, 0} and

CH =

(∫ ∞

0

[
(1 + s)H− 1

2 − sH− 1

2

]2
ds +

1

2H

) 1

2

.

If H = 1, W 1
t = tW 1

1 almost surely. Fractional Brownian motion is unique in the

sense that the class of all fractional Brownian motions coincides with that of all

Gaussian selfsimilar processes with stationary increments.



11

Proof.[Embrechts et al., 2002] Assume that V ar(W H
1 ) = 1.

(i) Self-similarity: We have that, for a > 0,

E
(
W H

at W
H
as

)
=

1

2

[
(at)2H + (as)2H − a2H |t − s|2H

]

= a2H 1

2

[
t2H + s2H − |t − s|2H

]

= a2HE(W H
t W H

s )

= E
[(

aHW H
t

) (
aHW H

s

)]
.

Since all processes here are Gaussian, this equality in covariance implies that

(
W H

at

) d
= (aHW H

t ).

(ii) For the case H = 1, first note that because of (10), E (W 1
t W 1

s ) = st.

Then,

E
(
W 1

t − tW 1
1

)2
= E(W 1

t )2 − 2tE
(
W 1

t W 1
1

)
+ t2E(W 1

1 )2

= t2 − 2t
1

2

(
t2 + 1 − (t − 1)2)+ t2

= 0,

so that W 1
t = tW 1

1 almost surely.

(iii) Fractional Brownian motion: Let the integral (11) be denoted by

Yt. The expression (11) is a zero mean Gaussian process with covariance function

(10). To see this, let us first consider the process

Xt =

∫

R

[(
(t − s)+)H− 1

2 −
(
(−s)+)H− 1

2

]
dWs, t ≥ 0.

Clearly, by Ito isometry property we have, EXt = 0 and
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V ar(Xt) = E(Xt)
2

= E

(∫

R

[(
(t − s)+)H− 1

2 −
(
(−s)+)H− 1

2

]
dWs

)2

=

∫

R

[(
(t − s)+)H− 1

2 −
(
(−s)+)H− 1

2

]2
ds

=

∫ 0

−∞

[
(t − s)H− 1

2 − (−s)H− 1

2

]2
ds +

∫ t

0

(t − s)2H−1
ds, t ≥ 0

=

∫ ∞

0

[
(t + u)H− 1

2 − uH− 1

2

]2
du +

t2H

2H
, t ≥ 0

= t2H−1

∫ ∞

0

[
(t + u)H− 1

2 − uH− 1

2

tH− 1

2

]2

du +
t2H

2H
, t ≥ 0

= t2H

∫ ∞

0

[(
1 +

u

t

)H− 1

2 −
(u

t

)H− 1

2

]2

d
(u

t

)
+

t2H

2H
, t ≥ 0

= C2
Ht2H , t ≥ 0.

Similarly, for any s < t

E (Xt − Xs)
2 = E

[∫

R

[(
(t − u)+)H− 1

2 −
(
(s − u)+

)H− 1

2

]2
dWu

]

and by change of variables (v = u − s), one obtains

E (Xt − Xs)
2 =

∫

R

[(
(t − s − v)+)H− 1

2 −
(
(−v)+)H− 1

2

]2
dv

= C2
H(t − s)2H .

It follows that for all t ≥ s ∈ R,

Cov(Xt, Xs) =
1

2
[V ar(Xt) + V ar(Xs) − V ar(Xt − Xs)]

=
1

2
[V ar(Xt) + V ar(Xs) − V ar(Xt−s)]

=
1

2

[
C2

Ht2H + C2
Hs2H − C2

H(t − s)2H
]

=
C2

H

2

[
t2H + s2H − (t − s)2H

]
.
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Moreover,

Cov(Yt, Ys) = Cov(C−1
H Xt, C

−1
H Xs)

= C−2
H Cov(Xt, Xs)

=
1

2

[
t2H + s2H − (t − s)2H

]
.

Therefore, W H
t for 0 < H < 1 is a fractional Brownian motion.

(iv) Stationary increments: It is enough to consider only covariances.

We have

E
(
W H

t+h − W H
h

) (
W H

s+h − W H
h

)
= E

[
W H

t+hW
H
s+h − W H

t+hW
H
h − W H

h W H
s+h +

(
W H

h

)2]

=
1

2

[
(t + h)2H + (s + h)2H − |t − s|2H

]

−1

2

[
(t + h)2H + h2H − t2H

]

−1

2

[
h2H + (s + h)2H − s2H

]
+ h2H

=
1

2

[
t2H + s2H − (t − s)2H

]

= E(W H
t W H

s )

concluding that
(
W H

t+h − W H
h

) d
= (W H

t ).

(v) For the uniqueness, first note that once a process (Yt)t≥0 is H-self-

similar and has stationary increments, then by Corollary 1.1, it has the same

covariance function as in (10). Since (Yt)t≥0 is zero mean Gaussian, it is the same

as (W H
t ) in law. �

Another basic property of fBm, W H
t on (Ω,F , P ), is long-range dependence.

In fact, for n ≥ 1,



14

ρ(n) = E[W H
1 (W H

n+1 − W H
n )]

= EW H
1 W H

n+1 − EW H
1 W H

n

=
1

2

(
12H + (n + 1)2H − n2H

)
− 1

2

(
12H + n2H − (n − 1)2H

)

=
1

2

(
(n + 1)2H − 2n2H + (n − 1)2H

)

=
1

2
n2Hg(n−1),

where g(x) = (1+x)2H − 2+ (1−x)2H . If 0 < H < 1 and H 6= 1
2
, then the Taylor

expansion of g(x) about the origin gives

g(x) = 2H(2H − 1)x2 + o(x4).

Therefore,

ρ(n) =
1

2
n2Hg(n−1) =

1

2
n2H

[
2H(2H − 1)n−2 + o(n−4)

]

and as n tends to infinity,

ρ(n) = H(2H − 1)n2H−2. (12)

Moreover, for 1
2

< H < 1 the correlation decay to zero so slowly that

∞∑

n=1

ρ(n) = ∞.

Hence, for 1
2

< H < 1, fBm W H
t has long-range dependence. For H = 1

2
it can

easily be seen, by (10), that the observations are uncorrelated. In fact, the fBm

with Hurst index H is a semimartingale if and only if H = 1
2

(Roger, 1997).

Finally, for 0 < H < 1
2
, we have 2 − 2H > 1 and hence

∞∑

n=0

ρ(n) = H(2H − 1)
∞∑

n=0

1

n2−2H
< ∞.

Therefore in this case, the process exhibits short-range dependence.
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1.4 The Need to Study Fractional Brownian Motions

Almost all statistical analysis of economic and financial systems begins by as-

suming that the dynamics are primarily random. Models considered earlier in

Mathematical finance assume that the price of an asset should follow a martin-

gale property in which each price change is unaffected by its predecessor.

Stochastic differential equations driven by Brownian motion are tradition-

ally used to model the dynamic of stock prices. It is well known that Brownian

motion is a typical semimartingale with short-range dependence: when H = 1
2
,

the autocorrelation ρ(n) of (12) is zero for all n, hence
∑∞

n=1ρ(n) < ∞. However,

in recent years it has become increasingly obvious that long-range dependence

phenomena are widespread in financial data. The dependence structure of the fi-

nancial data have been studied using the so-called Hurst index (Hurst parameter)

H. In the uncorrelated case one should have H = 1
2
. If H < 1

2
the time series is

antipersistent. This means that whenever the price has been up, it is more likely

that it will be down in the close future. Conversely, if H > 1
2

one has persistence

with positive correlations. This means that all price flunctuations are correlated

with all future price flunctuations. Persistence implies that if the price has been

up or down then the chances are that it will continue to up or down in the future,

respectively.

Many studies indicated Hurst indices H > 1
2
. For example, for the monthly

S&P500 index (from January, 1963 through December 1989) the estimated Hurst

index is H = 0.78 (see Shiryaev, 1999, p. 377 and the reference therein). In

2002, Alvarez-Ramirez et al. studied the daily records of international crude oil

prices and found that the rescaled range Hurst analysis provideds evidence that

the crude oil market is a persistent process with long memory effect. In fact, they

found that the Hurst indices are all above 1
2

with different time scales.
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1.5 A Fractional Brownian Motion Is Not A Semimartin-

gale

Definition 1.2 (Martingale). Let a family M = (Mt)t≥0, on (Ω,F), of σ-

algebras Mt ⊂ F such that

0 ≤ s < t =⇒ Ms ⊂ Mt

(i.e. M is a filtration) be given. A stochastic process (Mt)t≥0 on (Ω,F , P ) adapted

(for its definition see Section A.1) to the filtration M = (Mt)t≥0 is called a

martingale (with respect to filtration (Mt)t≥0 and the measure P ) if for any t, Mt

is integrable, i.e., E |Mt| < ∞ and for any t and s with 0 ≤ s ≤ t ≤ T,

E(Mt|Ms) = Ms a.s.

One can see that Brownian motion W = (Wt)t≥0 is a martingale with re-

spect to the σ−algebras FW
t generated by Ws, s ≤ t. Since Wt−Ws is independent

of FW
t , s < t , we have

E
(
Wt − Ws|FW

s

)
= E (Wt − Ws) = 0

and since Wt is adapted to FW
t then E(Wt|FW

t ) = Wt. Therefore,

E
(
Wt|FW

s

)
= E

(
Wt − Ws + Ws|FW

s

)

= E
(
Wt − Ws|FW

s

)
+ E

(
Ws|FW

s

)

= Ws.

A stochastic process S = (St)t≥0 is called a semimartingale if it can be

represented as sums

St = S0 + Mt + At, (13)



17

where A = (At)t≥0 is a process of bounded variation and M = (Mt)t≥0 is a (local)

martingale both defined on some filtered probability space

(Ω,F , (Ft)t≥0, P )

satisfying the usual conditions, i.e., the σ−algebras F is P -complete and Ft, t ≥ 0

must contain all the sets in F of P -probability zero, and be right continuous

(Ft = Ft+, t ≥ 0). Since a standard Brownian motion, W , is a martingale one can

see from (13) that with At = 0 and Mt = Wt, for t ≥ 0, the standard Brownian

motion is a semimartingale.

We will see in the following theorems that the fractional Brownian mo-

tion X = (Xt)t≥0 with Hurst parameter H ∈ (0, 1) is neither a semimartingale

(Theorem 1.2) nor a Markov process (Theorem 1.3).

Theorem 1.2. (Rogers, 1997) The fBm, is a semimartingale only if H = 1
2
.

Proof. Let X = (Xt)t≥0 be a fractional Brownian motion with self-similar

parameter H ∈ (0, 1). We know that when H = 1
2

fractional Brownian motion is

in fact a standard Brownian motion and hence a semimartingale.

Now fix the parameter H and consider for p > 0 fixed

Yn,p :=
2n∑

j=1

∣∣Xj2−n − X(j−1)2−n

∣∣p (2n)pH−1
. (14)

From self-similarity property we obtain that (14) has (for each n) the same law

as

2n∑

j=1

∣∣2−nHXj − 2−nHXj−1

∣∣p (2n)pH−1 =
2n∑

j=1

|Xj − Xj−1|p 2−npH (2n)pH−1

= 2−n
2n∑

j=1

|Xj − Xj−1|p .
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Noticing that the sequence (Xk − Xk−1)k∈Z
is stationary and ergodic, the ergodic

theorem tells us that

Ỹn,p := 2−n

2n∑

j=1

|Xj − Xj−1|p → E |X1 − X0|p =: γp (n → ∞)

almost surely and in L1. Hence

Yn,p
d→ γp (n → ∞)

and therefore (Theorem A.1b) Yn,p
P→ γp. Hence,

Vn,p :=
2n∑

j=1

∣∣Xj2−n − X(j−1)2−n

∣∣p P→





0 if pH > 1,

∞ if pH < 1.
(15)

If H > 1
2
, we can choose p ∈ (H−1, 2) such that Vn,p → 0 in probability, and

therefore almost surely down a fast subsequence. This implies that the quadratic

variation of X is zero, and so (if X were to be a semimartingale) X must be a

finite-variation process. But since for p ∈ (1, H−1), Vp := limn→∞ Vn,p is almost

surely infinite, and (by scaling) the p-variation on any interval is infinite almost

surely, X can not be finite variation. If H < 1
2
, we can choose p > 2 such that

pH < 1, and the p-variation of X on [0, 1] (and hence on any fixed interval) must

be infinite. This contradicts the almost-sure finiteness of the quadratic variation

of X, assuming X is a semimartingale. In either way, if H 6= 1
2
, X is not a

semimartingale. �

1.6 A Fractional Brownian Motion Is Not A Markov Pro-

cess

1.6.1 Markov Processes

The Markov property states that if we know the present state of the process,

then the future behavior of the process is independent of its past. The process
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Xt has the Markov property if the conditional distribution of Xt+s given Xt = x,

does not depend on the past values (but it may depend on the present value x).

That means the process does not remember how it got to the present state x. Let

Ft denote the σ−algebra generated by the process up to time t.

Definition 1.3 (Markov Process). Let (Ω,F , P ) be a probability space. Let

(Ft)t≥0 be a filtration under F . Let (Xt)t≥0 be a stochastic process on (Ω,F , P ).

This process is said to be Markovian or Markov process if:

• the stochastic process (Xt)t≥0 is adapted to the filtration (Ft)t≥0, and

• The Markov property: for any t, s > 0, the distribution of Xt+s conditional

on Ft is the same as the distribution of Xt+s conditional on Xt, that is,

P (Xt+s ≤ y|Ft) = P (Xt+s ≤ y|Xt), a.s.

A Markov process is a particular type of stochastic process where only the

present value of a variable is relevant for predicting the future. The past history

of the variable and the way in which the present has emerged from the past are

irrelevant.

Lemma 1.1. Let R(t, s) be covariance function of a centered Gaussian process,

Yt is Markovian then for all t, s, t0 such that t > s > t0 we have

R(t, t0) =
R(t, s)R(s, t0)

R(s, s)
(16)

( see for example, E.Wong and B. Hajek, 1985)

Theorem 1.3. Every fractional Brownian motion with Hurst index H 6= 1
2

is not

a Markov process
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Proof . (Huy,2003) Let (W H
t )t≥0 be a fractional Brownian motion with

H 6= 1
2
. Suppose that it is a Markov process. Put

fs(t) =
R(t, s)

sα
=

1

2

[
(
t

s
)α + 1 − (

t

s
− 1)α

]
, t > s (17)

where α = 2H. Consider the derivative of fs(t) w.r.t. t:

f
′

s(t) =
1

2

α

s

[
(
t

s
)α−1 − (

t

s
− 1)α−1

]
, t > s (18)

We see for s < t that

f
′

s(t) < 0 if α < 1

f
′

s(t) > 0 if α > 1

f
′

s(t) = 0 if α = 1

So, if α 6= 1, fs(t) is either decreasing or increasing. On the other hand, for α < 1

we have

lim
t→∞

fs(t) =
1

2
lim
t→∞

1
tα

+ 1
sα − (1

s
− 1

t
)α

1
tα

=
1

2
lim
t→∞

(
1 + (

t

s
− 1)α−1

)
=

1

2
; t > s (19)

Hence for α < 1, fs(t) is decreasing from 1 to 1
2

when t varies from 0 to infinity.

Now for 0 < r < s < t it follows from the above Lemma that

R(t, r)

rα
=

R(t, s)

sα

R(s, r)

rα

or

fr(t) = fs(t).fr(s)

Taking the limit of both sides of (4) when t → ∞ get

1

2
=

1

2
fr(s), r < s

or

fr(s) ≡ 1, r < s.
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This is contrary to the property of the function fr(s) given by (18);

fr(s) =
1

2

[
(
s

r
)α + 1 − (

s

r
− 1)α

]

Then W H
t should not be a Markov process. �

1.7 A New Approach to Fractional Stochastic Calculus

In this section, we prepare mathematical tools for defining stochastic integral

with respect to fractional Brownian motion via integration by parts. Moreover,

in this thesis we choose to use the approximate approach, namely, using the L2-

convergence of a semimartingale to a fractional process.

1.7.1 A New Approximation of Fractional Brownian Motion

The following theorem was proved by Thao (2002). The result of this

theorem will be frequently referred to throughout the text.

For every ε > 0 we define

Bε
t =

∫ t

0

(t − s + ε)H− 1

2 dWs, H 6= 1

2
, 0 < H < 1.

Theorem 1.4. The process (Bε
t , t ≥ 0) is a semimartingale.

Proof. (Thao, 2002) Consider the stochastic process ϕε
t defined as

ϕε
t =

∫ t

0

(t − u + ε)α−1dWu

where α = H − 1
2

(then −1
2

< α < 1
2
, since 0 < H < 1).
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An application of the stochastic theorem of Fubini gives us:

∫ t

0

ϕε
sds =

∫ t

0

∫ s

0

(s − u + ε)α−1dWuds

=

∫ t

0

(∫ t

u

(s − u + ε)α−1ds

)
dWu

=

∫ t

0

(
(t − u + ε)α

α
− εα

α

)
dWu

=
1

α

[∫ t

0

(t − u + ε)αdWu −
∫ t

0

εαdWu

]

=
1

α
(Bε

t − εαWt) .

Hence

Bε
t = α

∫ t

0

ϕε
sds + εαWt.

Since α
∫ t

0
ϕε

sds is of bounded variation and Wt is a martingale so Bε
t is a semi-

martingale. �

Theorem 1.5. Bε
t converges to Bt in L2(Ω) when ε tends to 0. This convergence

is uniform with respect to t ∈ [0, T ].

Proof. The Mean Value Theorem applied to the function f(u) = uα yields:

|(t − s + ε)α − (t − s)α| ≤ |α| ε sup
0≤θ≤1

∣∣(t − s + θε)α−1
∣∣

= |α| ε(t − s)α−1, α = H − 1

2
(20)

(0 < s < t) .

By virtue of Ito integration isometry we see that

E |Bε
t − Bt|2 = E

∣∣∣∣
∫ t

0

[(t − s + ε)α − (t − s)α] dWs

∣∣∣∣
2

=

∫ t

0

|(t − s + ε)α − (t − s)α|2 ds. (21)
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(i) (Thao, 2003) If 1
2

< H < 1, that is, 0 < α < 1
2

we have from (20)

∫ t

0

|(t − s + ε)α − (t − s)α|2 ds ≤ α2ε2

∫ t

0

|t − s|2α−2
ds

= α2ε2

(∫ t−ε

0

|t − s|2α−2
ds +

∫ t

t−ε

|t − s|2α−2
ds

)

≤ α2ε2 ε2α−1

1 − 2α
+ α2ε2 ε2α−1

1 − 2α

= C1(α)ε2α+1 → 0 (22)

as ε → 0, where C1(α) = 2α2

1−2α
> 0.

(ii) (Thao et al., 2002) If 0 < H < 1
2
, that is, −1

2
< α < 0, we put α = −β, so

0 < β < 1
2

and we have

∣∣(t − s + ε)−β − (t − s)−β
∣∣ ≤ βε sup

0≤θ≤1

∣∣(t − s + θε)−β−1
∣∣

= βε(t − s)−β−1, (23)

E |Bε
t − Bt|2 = E

∣∣∣∣
∫ t

0

[
(t − s + ε)−β − (t − s)−β

]
dWs

∣∣∣∣
2

=

∫ t

0

∣∣(t − s + ε)−β − (t − s)−β
∣∣2 ds

=

∫ t−ε

0

∣∣(t − s + ε)−β − (t − s)−β
∣∣2 ds

+

∫ t

t−ε

∣∣(t − s + ε)−β − (t − s)−β
∣∣2 ds, (24)

The evaluation of (23) applied to the first term of (24) gives us

∫ t−ε

0

∣∣(t − s + ε)−β − (t − s)−β
∣∣2 ds ≤ β2ε2

∫ t−ε

0

(t − s)−2β−2ds. (25)

For the second term of the right hand side of (24) we have

∫ t

t−ε

∣∣(t − s + ε)−β − (t − s)−β
∣∣2 ds ≤

∫ t

t−ε

(t − s)−2βds. (26)

It follows from (24), (25) and (26) that

E |Bε
t − Bt|2 ≤ β2ε2

∫ t−ε

0

(t − s)−2β−2ds +

∫ t

t−ε

(t − s)−2βds.
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After some calculation we get

E |Bε
t − Bt|2 ≤ C2(β)ε1−2β → 0, as ε → 0, (27)

where C2(β) is a positive constant depending only on β.

From (22) and (27) we see that in both cases (H > 1
2

and H < 1
2
) there is

an estimation for ‖Bε
t − Bt‖2 = E

[
|Bε

t − Bt|2
]

as follows:

‖Bε
t − Bt‖2 ≤ C3(α)ε1+2α, (28)

where 0 < α < 1
2

for 1
2

< H < 1 and −1
2

< α < 0, for 0 < H < 1
2
, and

C3(α) = max{C1(α), C2(β)}depending only on α (= −β).

The relation (28) is valid for every t ≥ 0, so

sup
0≤t≤T

‖Bε
t − Bt‖ ≤ C(α)ε

1

2
+α → 0, as ε → 0, (29)

where C(α) =
√

C3(α) which proves that Bε
t → Bt in L2(Ω) uniformly with

respect to t ∈ [0, T ]. �

1.7.2 A New Approach to Fractional Stochastic Calculus

The main theoretical problem raised by the fractional Brownian motion is

that it is not a semimartingale nor a Markov process, hence the usual stochastic

calculus cannot be applied. Even though some authors have developed the calculus

for which the stochastic integral with respect to fractional Brownian motion is

defined, it is difficult for numerics. Since the Ito calculus is well-defined for an

integral with respect to semimartingale, it is more convenient to use the well-

developed one.

Recent advances in the branch of mathematics known as dynamical systems

promise to revolutionize the way scientists view many different kinds of evolution-

ary processes. These processes occur in all branches of science, ranging from the
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fluctuations of temperature, pressure, wind speed and so on in meteorology to the

ups and downs of stock market in economics. Indeed, any process which involves

time is an example of a dynamical system.

Let a filtered probability space (Ω,F , (FW
t )t≥0, P ) be given and W =

(Wt)t≥0 be the standard Brownian motion with its natural filtration (FW
t )t≥0.

Recall that f+ = max{f, 0}. Then for t ≥ 0, we have

∫

R

[(
(t − s)+)H− 1

2 −
(
(−s)+)H− 1

2

]
dWs =

∫ 0

−∞

[
(t − s)H− 1

2 − (−s)H− 1

2

]
dWs

+

∫ t

0

(t − s)H− 1

2 dWs.

Therefore, as proved in Theorem (1.1), our fractional Brownian motion is of the

form

W H
t =

1

CH

∫

R

[(
(t − s)+)H− 1

2 −
(
(−s)+)H− 1

2

]
dWs, t ≥ 0

=
1

CH

(
Zt +

∫ t

0

(t − s)H− 1

2 dWs

)
(30)

where

CH =

(∫ ∞

0

[
(1 + s)H− 1

2 − sH− 1

2

]2
ds +

1

2H

) 1

2

,

(Ws)s≥0 is a standard Brownian motion, H ∈ (0, 1), f+ = max{f, 0} and

Zt =

∫ 0

−∞

[
(t − s)H− 1

2 − (−s)H− 1

2

]
dWs.

Let us consider the fractional stochastic dynamical system of (Xt)0≤t≤T

expressed by the following fractional stochastic differential equation

dXt = b(t, Xt)dt + σ(t, Xt)dW H
t (31)

Xt|t=0 = X0, t ∈ [0, T ],

where X0 is a given random variable.
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In fact, to make (31) having a sense, we have to define the fractional

stochastic integral ∫ t

0

f(s, ω)dW H
s .

However, in 2000, Alos et al. have proposed to use

Bt =

∫ t

0

(t − s)H− 1

2 dWs, (32)

instead of W H
t in fractional stochastic calculus, since Zt has absolutely continuous

trajectories and it is the term Bt that has long memory. Therefore, instead of (31),

we consider the fractional stochastic differential equation

dXt = b(t, Xt)dt + σ(t, Xt)dBt

Xt|t=0 = X0, t ∈ [0, T ].

To define the fractional stochastic integral

∫ t

0

f(s, ω)dBs

where Bt is given by (32) and H ∈ (0, 1), we follow the work by Thao (2002). Even

though some authors (e.g., Alos et al., 2000, Alos&Nualart, 2001, Decreusefond et

al., 1999 and Duncan et al., 2000) have discussed many contents for a fractional

stochastic calculus with respect to this process Bt, they are complicated to apply

in practice and also difficult for numerics. The definition given by Thao is quite a

simple approach to fractional stochastic integration with an orientation to possible

applications in physics and finance. Of course a simple approach usually leads

to a less general result, but his aim is an essay of doing something for feasible

applications.

1.7.3 Fractional Stochastic Integration

Let a filtered probability space (Ω,F , (FW
t )t≥0, P ) be given where FW

t is

a σ-algebra generated by standard Brownian motion W = (Wt)t≥0. Suppose that
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f(t) is a deterministic function of bounded variation on [0, T ] and the fractional

process Bt is given as in (32):

Bt =

∫ t

0

(t − s)αdW (s), α = H − 1

2
, 0 < H < 1.

Then the integral
∫ t

0
Bsdf(s) is well defined in the sense of Riemann-Stieltjes for

almost all w.

Definition 1.4. The fractional stochastic integral of f(t) is a stochastic process

It defined as

It :=

∫ t

0

f(s)dBs = f(t)Bt −
∫ t

0

Bsdf(s)

Now suppose (ft(ω))t≥0 is a stochastic process on (Ω,F , P ) whose sample

paths are of bounded variation on [0, T ] for almost every ω ∈ Ω.

Definition 1.5. The fractional stochastic integral of f(t, ω) is a stochastic process

It defined as

It =

∫ t

0

f(s, ω)dBs = f(t, ω)Bt −
∫ t

0

Bsdf(s, ω)− [f, B]t. (33)

Remark 1.1. (i) The pathwise integral in the right hand side of (33) exists in

the sense of Riemann-Stieltjes for almost all ω.

(ii) If the function f(t, ω) has absolutely continuous sample paths (for

instance, if it is Lipschitzian with respect to t) then it is of bounded variation and

so its integral It =
∫ t

0
f(s, ω)dBs exists.

Theorem 1.6. Suppose that the process f(t, ω) has continuous sample paths and is

of bounded variation on [0, T ] such that E
∫ t

0
f 2(s, ω)ds < ∞. Then the stochastic

integral

Iε
t =

∫ t

0

f(s, ω)dBε
s, (34)
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where Bε
t =

∫ t

0
(t − s + ε)αdWs, α = H − 1

2
, 0 < H < 1, converges in L2(Ω) as

ε → 0 to It =
∫ t

0
f(s, ω)dBs defined as in (33). This convergence is uniform with

respect to t ∈ [0, T ].

Proof. (Thao, 2003) Since

E (Bε
t )

2 = E

(∫ t

0

(t − s + ε)αdWs

)2

= E

∫ t

0

(t − s + ε)2αds

= − (t − s + ε)2α+1

2α + 1

∣∣∣∣∣

s=t

s=0

= −
(

ε2α+1

2α + 1
− (t + ε)2α+1

2α + 1

)
< ∞

it follows from Theorem 1.5 that Bε
t is a square integrable martingale. Therefore

the stochastic integral Iε
t =

∫ t

0
f(s, ω)dBε

s exists. An application of the formula of

integration by parts to Iε
t gives us

Iε
t =

∫ t

0

f(s, ω)dBε
s = f(t, ω)Bε

t −
∫ t

0

Bε
sdf(s, ω)− [f, Bε]t.

Denote by ‖·‖ the norm in the space L2(Ω) and taking account of properties of

quadratic variations we have

‖It − Iε
t ‖ =

∥∥∥∥
∫ t

0

f(s, ω)dBs −
∫ t

0

f(s, ω)dBε
s

∥∥∥∥

=

∥∥∥∥
∫ t

0

f(s, ω)d (Bs − Bε
s)

∥∥∥∥

=

∥∥∥∥f(t, ω) (Bt − Bε
t ) −

∫ t

0

(Bs − Bε
s) df(s, ω)− [f, B − Bε]t

∥∥∥∥

≤ ‖f(t, ω)‖ ‖Bt − Bε
t ‖ +

∥∥∥∥
∫ t

0

(Bs − Bε
s) df(s, ω)

∥∥∥∥+ ‖[f, B − Bε]t‖ .

An analogous argument as in the proof of Theorem 1.5 yields

sup
0≤t≤T

‖Bt − Bε
t ‖ ≤ Cε

1

2
+α,

where α = H − 1
2
, H ∈ (0, 1) and C > 0 is some constant. Then

‖f(t, ω)‖ ‖Bt − Bε
t ‖ ≤ MCε

1

2
+α (35)
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where M = max0≤t≤T ‖f(t, ω)‖ (the maximum exists since E |f(t, ω)|2 is continu-

ous with respect to t ∈ [0, T ]). Moreover, we have

‖[f, B − Bε]t‖ ≤ ‖f(t, ω)‖ ‖Bt − Bε
t ‖ ≤ MCε

1

2
+α. (36)

On the other hand we see that

∥∥∥∥
∫ t

0

(Bs − Bε
s) df(s, ω)

∥∥∥∥ ≤
∥∥∥∥
∫ t

0

‖Bs − Bε
s‖ df(s, ω)

∥∥∥∥

≤ Cε
1

2
+α

∥∥∥∥
∫ t

0

df(s, ω)

∥∥∥∥

≤ Cε
1

2
+α (‖f(t, ω)‖ + ‖f(0, ω)‖)

≤ 2CMε
1

2
+α. (37)

It follows from (35), (36) and (37) that

‖It − Iε
t ‖ ≤ 4CMε

1

2
+α.

Hence

sup
0≤t≤T

‖It − Iε
t ‖ ≤ 4CMε

1

2
+α → 0, as ε → 0.

Therefore, It → Iε
t in L2(Ω) as ε → 0 uniformly with respect to t ∈ [0, T ]. �

Remark 1.2. Theorem 1.6 is proved for the L2-convergence of It → Iε
t in the

case that f is of bounded variation. This motivates us to define the fractional

stochastic integral for any stochastic process f(t, ω) as follows.

Definition 1.6. Let f(t, ω) be a stochastic process with continuous path. Then

the fractional stochastic integral of f(t, ω) is defined by

∫ t

0

f(s, ω)dBs := L2 − lim
ε→0

∫ t

0

f(s, ω)dBε
s,

whenever the limit exists in L2(Ω,F , P ), where Bt =
∫ t

0
(t − s)H− 1

2 dWs and Bε
t =

∫ t

0
(t − s + ε)H− 1

2 dWs for 0 < H < 1.
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1.7.4 Fractional Stochastic Differential Equations

Consider an equation formally written as

dXt = b(t, Xt)dt + σ(t, Xt)dBt (38)

Xt|t=0 = X0, t ∈ [0, T ],

where Bt =
∫ t

0
(t − s)H− 1

2 dWs.

Definition 1.7. A solution of (38) is a stochastic process (Xt, t ≥ 0) adapted

to the σ−algebra Ft ≡ σ(X0, Bs, s ≤ t), t ∈ [0, T ] and satisfying the following

relation:

Xt = X0 +

∫ t

0

b(s, Xs)ds +

∫ t

0

σ(s, Xs)dBs, 0 ≤ t ≤ T,

where the stochastic integral in the right hand side exists in the sense of Definition

1.6 if σ(t, Xt) has sample paths of bounded variation in [0, T ].

Theorem 1.7. Suppose that coefficients b(t, x) and σ(t, x) of the equation (38)

satisfy the Lipschitz conditions with respect to x:

1. |b(t, x) − b(t, y)| ≤ k1 |x − y|

2. |σ(t, x) − σ(t, y)| ≤ k2 |x − y|

and σ(t, x) is of bounded variation with respect to t ∈ [0, T ] for every fixed

x, and σ(t, x) has bounded derivative with respect to x. Moreover, X0 is supposed

to be a square-integrable random variable: E|X0|2 < ∞. Then there exists a unique

solution to equation (38).

Proof. (see Thao, 2002)



Chapter II

On The Absence of Arbitrage Opportunity for

The Fractional Black-Scholes Model

In this Chapter, after introducing an approximate approach to a fractional Black-

Scholes Model and to a fractional Langevin equation, we discuss the principle of

Absence of Arbitrage Opportunity (principle of AAO) for this model: We prove

that in spite of the fact that, in general, there exists an arbitrage opportunity for

a fractional model, there will be no arbitrage for our approximate model while

the approximation can be made with any exactitude. This is an advantage of our

approximate approach.

2.1 Introduction to A Fractional Black-Scholes Model

Following Black-Scholes (1973), we first assume that the price S = (St)t≥0 of a

risky asset at time t is given by geometric Brownian motion of the form

St = S0 exp

(
σWt + (µ − 1

2
σ2)t

)
, ∀t ∈ [0, T ], (1)

where W = (Wt)t≥0 is Brownian motion, S0 is a given random variable such that

ES2
0 < ∞, µ and σ are constants. The motivation for this assumption on St

comes from the fact that St is the unique strong solution of the linear stochastic

differential equation

St = S0 +

∫ t

0

µSudu +

∫ t

0

σSudWu, ∀t ∈ [0, T ],
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which can be formally written as

dSt = µStdt + σStdWt, St=0 = S0. (2)

where µ is also known as the drift rate or rate of return of the price St and σ as

the volatility (which measures the standard deviation of the return dSt

St
). Let us

note that the Brownian motion Wt is called the driving process of the stochastic

differential equation (2) or, in other words, the stochastic differential equation (2)

is driven by Brownian motion Wt.

If σ = 0, the equation (2) becomes an ordinary differential equation which,

in fact, describes an investment on a non-risky asset (e.g., a bank account). The

initial capital S0 grows, from t = 0, continuously compounded with the interest

rate µ to be

St = S0e
µt

at time t. If µ is a function of t then S0 grows from the initial time t = 0 to be

St = S0 exp

(∫ t

0

µ(s)ds

)

at time t. On the other hand, if one knows the amount, say, St that one would get

at the future time t, one can also find its present value by discounting it at the

same rate of growth. That is, if it grows to become St continuously compounded

with the rate µ then its present value at t = 0 is

e−µtSt.

The value e−µtSt is called the discounted value or the present value of St at the

rate µ.

Let us observe that the drift rate µ and the volatility σ could be some

adapted stochastic processes satisfying some conditions. So that the equation (2)
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could be in the form

dSt = µ(t, St)dt + σ(t, St)dWt, St=0 = S0. (3)

Since the strong solution of (3) possesses the Markov property, that means to

say roughly that its future behavior depends only on its immediately previous

values and not on its values long time ago, then, the strong solutions of (3) have

no memory. However, in practice, the stock price St at t may leave long-range

consequences: St must thus be a long memory process.

A stochastic process X = (Xt)t≥0 is said to have long memory (or long-

range dependence) if
∑∞

n=1 r(n) = ∞ where r(n) = E[X1(Xn − Xn−1)]. Instead

of (2), we consider a fractional Black-Scholes model defined by the following frac-

tional stochastic differential equation

dSt = St(µdt + σdBt), 0 ≤ t ≤ T, (4)

St=0 = S0,

where Bt =
∫ t

0
(t − s)H− 1

2 dWs and H is the Hurst index, 0 < H < 1.

Now we consider an approximate model defined for each ε > 0 by

dSε
t = Sε

t (µdt + σdBε
t ), 0 ≤ t ≤ T (5)

Sε
t=0 = S0 (same initial condition as in (4)),

where Bε
t =

∫ t

0
(t − s + ε)H− 1

2 dWs. We can prove that:

(i) Bε
t is a semimartingale and Bε

t → Bt, in L2(Ω) t ∈ [0, T ], as ε → 0 (this

assertion is mentioned already in Chapter I)

(ii) The solution Sε
t of (5) converges in L2(Ω) to the exact solution St of (4) as

ε → 0.
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Furthermore, the convergence mentioned in (i) and (ii) is uniform with respect

to t. That is we have the following theorem.

Theorem 2.1. The solution of (5), for ‖S0‖2 = E |S0|2 < ∞, is given by

Sε
t = S0 exp(−1

2
σ2ε2αt + σεαWt +

∫ t

0

Hε
sds)

where α = H − 1
2
,

Hε
t = µ + ασ

∫ t

0

(t − s + ε)α−1dWs.

Furthermore, for H > 1
2

the stochastic process S∗
t defined by

S∗
t = S0 exp(µt + σBt)

is the limit in L2(Ω) of Sε
t as ε → 0. This limit is uniform with respect to t ∈ [0, T ].

Moreover, S∗
t is the unique solution of the fractional stock pricing model (4).

Proof. [Thao&Thomas-Agnan, 2003] Replacing dBε
t = αϕε

tdt + εαdWt,

where ϕε
t =

∫ t

0
(t − s + ε)α−1dWs, in the equation (5) we obtain

dSε
t = Sε

t [µ + ασϕε
t ] dt + σεαSε

t dWt (6)

or

dSε
t

Sε
t

= Hε
t dt + σεαdWt (7)

where Hε
t = µ + ασϕε

t .

An application of Ito formula to the function f(u) = log u for u = Sε
t > 0

yields

log Sε
t = log S0 +

∫ t

0

dSε
s

Sε
s

+
1

2

∫ t

0

− 1

(Sε
s)

2 (σεαSε
s)

2
ds

or ∫ t

0

dSε
s

Sε
s

= log
Sε

t

S0

+
1

2
(σεα)2

t. (8)
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In combining (7) and (8) we get

log
Sε

t

S0
+

1

2
(σεα)2

t =

∫ t

0

Hε
sds + σεαWt (9)

or

Sε
t = S0 exp

(
−1

2
(σεα)2

t + σεαWt +

∫ t

0

Hε
sds

)
. (10)

On the other hand we have

∫ t

0

Hε
sds = µt + ασ

∫ t

0

ϕε
sds,

and it follows from the semimartingale expression of Bε
t (see the proof of Theorem

1.4) that ∫ t

0

ϕε
sds =

1

α
(Bε

t − εαWt) .

Therefore ∫ t

0

Hε
sds = µt + σBε

t − σεαWt.

And we have at last:

Sε
t = S0 exp

(
µt − 1

2
(σεα)2

t + σBε
t

)
.

One can see that if ε → 0, α = H − 1
2

> 0 then 1
2
(σεα)2

t → 0 and we have shown

(Theorem 1.5) that Bε
t → Bt in L2(Ω) uniformly with respect to t ∈ [0, T ]. In

fact, we consider the process S∗
t defined as

S∗
t = S0 exp (µt + σBt) .

We are now to show that S∗
t is the limit of Sε

t in L2(Ω) as ε → 0. We have

Sε
t − S∗

t = S0 exp

(
µt − 1

2
(σεα)2

t + σBε
t

)
− S0 exp (µt + σBt)

= S0 exp (µt + σBt)

(
exp

[
−1

2
(σεα)2

t + σ (Bε
t − Bt)

]
− 1

)
. (11)

Denoting the norm in L2(Ω) by ‖·‖ , we see that

‖S0‖2 = ES2
0 < ∞ by hypothesis of the theorem,
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and

‖exp (µt + σBt)‖ ≤ eµt exp (σ ‖Bt‖) ≤ eµT exp

(
σ

T α− 1

2

2α − 1

)

since, by virtue of Ito integration isometry,

‖Bt‖2 = E

[∫ t

0

(t − s)αdWs

]2

= E

∫ t

0

(t − s)2αds =
t2α−1

2α − 1
.

Moreover, it follows form the relation e‖A‖ − 1 = ‖A‖ + o(‖A‖) that

exp
(∥∥−1

2
σ2ε2αt + σ (Bε

t − Bt)
∥∥)− 1

=
∥∥−1

2
σ2ε2αt + σ (Bε

t − Bt)
∥∥+o

(∥∥−1
2
σ2ε2α + σ (Bε

t − Bt)
∥∥)

≤ 1
2
σ2ε2αt + σ ‖Bε

t − Bt‖ + o
(

1
2
σ2ε2α + σ ‖Bε

t − Bt‖
)
.

It follows from Theorem 1.5 that ‖Bε
t − Bt‖ ≤ C(α)ε

1

2
+α, α = H − 1

2
> 0 since

H > 1
2
. Hence

∥∥exp
(∥∥−1

2
σ2ε2αt + σ (Bε

t − Bt)
∥∥)− 1

∥∥

≤ 1

2
σ2ε2αT + σC(α)ε

1

2
+α + o

(
σC(α)ε

1

2
+α +

1

2
σ2ε2α

)
. (12)

Since the right hand side of (12) does not depend on t and approaches zero when

ε → 0. Therefore, one can see from (11) and (12) that Sε
t → S∗

t in L2(Ω) as ε → 0

and the convergence is uniform with respect to t. �

2.2 Fractional Langevin Equations

One knows from mathematical finance that an interest model can be expressed

by a Langevin equation. So for the fractional model case, we try to introduce

a fractional Langevin equation. The classical Langevin dynamics describes the

motion of a linear dynamical system of particles perturbed by a Wiener-white
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noise:

dXt = −bXtdt + σdWt (13)

Xt|t=0 = X0, t ∈ [0, T ]

where b and σ are some positive constants. The solution Xt of (13) expressing the

state of the system at time t, is known as an Ornstein-Uhlenbeck process:

Xt = X0e
−bt + σ

∫ t

0

e−b(t−s)dWs, 0 ≤ t ≤ T. (14)

This process is of crucial importance in the study of theory of stochastic processes.

It is a typical process having properties of a stationary Gauss-Markov and self-

similar process. As a Markov process, it presents a loss-memory evolution of the

system (13).

So, in order to study long memory dynamics for this kind linear dynamical

system, Thao & Nguyen (2002) consider the following equation

dXt = −bXtdt + σdBt (15)

Xt|t=0 = X0, t ∈ [0, T ],

The equation (15) is called a fractional Langevin equation. This is a

simplest particular case of fractional stochastic differential equations where the

volatility σ is a constant and the drift is a linear function of Xt. We can see (from

(15)) that Xt is a stochastic process, adapted to σ−algebra Ft = σ(Xs, s ≤ t; X0)

and satisfying the following relation

Xt = X0 − b

∫ t

0

Xsds + σBt.

And the approximately fractional equation corresponding to (15) is given for every

ε > 0 by:

dXε
t = −bXε

t dt + σdBε
t , X

ε
0 = X0, (16)
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where Bε
t =

∫ t

0
(t − s + ε)αdWs, α = H − 1

2
, H ∈ (0, 1

2
). The solution of (16) is

explicitly expressed by:

Xε
t = X0e

−bt + σεα

∫ t

0

e−b(t−s)dWs + σ

∫ t

0

e−b(t−s)ϕ(s)ds, (17)

where ϕ(s) = α
∫ t

0
(t − s + ε)α−1dWs.

To see this let us consider the equations

dZt = −bZtdt + σεαdWt. (18)

and

dYt = −bYtdt − σϕ(t)dt (19)

We see that (18) is a classical Langevin equation whose solution is an Ornstein-

Uhlenbeck process:

Zt = Z0e
−bt + σεα

∫ t

0

e−b(t−s)dWs

where Z0 is an initial value of Zt, that is supposed to be a random variable

independent of (Wt)t∈[0,T ]. The equation (19) is an ordinary differential equation

for every fixed ω and its solution is

Yt = Y0e
−bt − σ

∫ t

0

e−b(t−s)ϕ(s)ds

where Y0, an initial value of Yt, is independent of (Wt)t∈[0,T ]. It is easy to see that

for Xt := Yt + Zt with X0 := Y0 + Z0, we have

dXt : = dYt + dZt = −bXtdt + σεαdWt − σϕ(t)dt

= −bXtdt + σ (εαdWt − ϕ(t)dt)

= −bXtdt + σdBε
t

which is in fact (16). Moreover the solution Yt + Zt is exactly the right hand side

of (17) and hence solves (16).
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Now, for the convergence of solution, suppose that Xt and Xε
t are solutions

of (15) and (16), respectively:

dXt = −bXtdt + σdBt, 0 ≤ t ≤ T,

and

dXε
t = −bXε

t dt + σdBε
t , 0 ≤ t ≤ T.

Then

Xt − Xε
t = −b

∫ t

0

(Xs − Xε
s ) ds + σ (Bt − Bε

t )

and hence

‖Xt − Xε
t ‖ =

∥∥∥∥b
∫ t

0

(Xs − Xε
s ) ds

∥∥∥∥+ σ ‖Bt − Bε
t ‖ .

Moreover, it follows from Theorem A.6 that

‖Xt − Xε
t ‖ = b

∫ t

0

‖Xs − Xε
s‖ ds + σC(α)ε

1

2
+α, 0 ≤ t ≤ T (20)

where ‖·‖ denotes the norm in L2(Ω).

A standard application of Gronwall’s lemma starting from (20) gives us:

‖Xt − Xε
t ‖ ≤ σC(α)ε

1

2
+αebt.

Therefore,

sup
0≤t≤T

‖Xt − Xε
t ‖ ≤ σC(α)ε

1

2
+αebT → 0

as ε → 0. So Xε
t → Xt in L2(Ω) as ε → 0 uniformly with respect to t.

2.3 Arbitrage and Martingale Measure

In this section, we discuss several terms in the financial market such as derivative

security, options, riskless/risky assets, portfolio, arbitrage opportunity, etc. The

concept of (absence of) arbitrage opportunity is discussed via the derivation of
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Black-Scholes partial differential equation (Black-Scholes PDE). Furthermore, we

explain what it is meant by a martingale measure and how it relates to the absence

of arbitrage opportunity. Finally, at the end of this section, a criterion of free

arbitrage is given.

In financial markets, every item that is traded is of one of two types. The

first type is a basic asset (basic security) such as a stock, a bond, or a unit of

currency. The second type is a derivative security (also called contingent claim)

whose value depends on the value of another basic security such as a stock or a

bond. In this case the more basic security is called an underlying asset.

In this thesis, the derivative security of interest is European (call/put)

option. A European call (put) option is a contract that gives the purchaser a

right, but not obligation, to purchase (sell) the underlying asset, say stock, at a

fixed price K, called exercise price or strike price, at a specified time T , called

time of maturity or expiration. The person or firm who formulates the contract

and offers it for sale is termed the writer. The person or firm who purchases the

contract is termed the holder. If at the maturity time T the stock price ST is

greater than the exercise price K it makes sense to a holder of a call option to

exercise it (claim his right). He would purchase a share of stock (worth ST ) at

price K and making a profit of ST −K. On the other hand, if ST < K at maturity

a sensible holder would not exercise the option (to purchase a share of stock price

K and sell it at a lower price ST ) since otherwise he would make a loss of K −ST .

In this case the option expires worthless. Thus the value (payoff) of a call option

at maturity time T can be written as

max (ST − K, 0) = (ST − K)+
. (21)

Similarly, if at the maturity time T the stock price ST < K it would make financial

sense to a holder of put option to exercise it so that he can sell a share of stock
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worth ST at a higher price K and make a profit of K − ST . Again, if K < ST at

maturity, a sensible holder of put option would not exercise it since otherwise he

would make a loss of ST − K. Thus the payoff of a put option at maturity T can

be written as

max (K − ST , 0) = (K − ST )+
. (22)

The payoffs (21) and (22) are also called the option values. Since nobody knows

what is going to happen in the market situation, a trader usually invests in sev-

eral securities at the same time in order to distribute his risk. These securities

constitute his portfolio.

• Arbitrage Opportunity

An arbitrage opportunity is the opportunity in which one can obtain a profit

without risk (gain from zero). However, in the financial market it is assumed that

the market is fair i.e., there is no arbitrage opportunity in the market. This can

be loosely stated as “there is no such thing as a free lunch”. Moreover, if one

wants a high return one should be willing to face a high risk. Hence the contents

of the absence of arbitrage opportunity is of interest in this content.

Let us consider Black-Scholes analysis. Suppose that trader A has an

option (no matter put or call) whose value X(t, S) depends only on time t and

stock price S satisfied the stochastic differential equation (2). It is assumed that

there are no transaction costs and during the life of the option the underlying

asset pays no dividend. Moreover, trading of the underlying asset can take place

continuously, and this asset is divisible. The function X is required to have at

least one t derivative and two S derivatives. Using Ito’s lemma, we can write

dX = σS
∂X

∂S
dW +

(
µS

∂X

∂S
+

1

2
σ2S2∂2X

∂S2
+

∂X

∂t

)
dt. (23)
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Now suppose that his portfolio consists of one option and −∆ shares of stock (the

underlying asset). The value (wealth) of the portfolio is

Π = X − ∆S. (24)

In Black-Scholes analysis, it is assumed that the portfolio is self-financing i.e., the

value of the portfolio depends only on the movement of the stock price. Hence,

the jump in the value of this portfolio in one time-step (written in infinitesimal

notation) is

dΠ = dX − ∆dS.

Here ∆ is held fixed during the time-step. Putting (2), (23) and (24) together, we

find that

dΠ = σS

(
∂X

∂S
− ∆

)
dW +

(
µS

∂X

∂S
+

1

2
σ2S2∂2X

∂S2
+

∂X

∂t
− µ∆S

)
dt. (25)

In the equation above we can eliminate the random component by choosing

∆ =
∂X

∂S
. (26)

This results in the equation (25):

dΠ =

(
1

2
σ2S2∂2X

∂S2
+

∂X

∂t

)
dt. (27)

On the other hand, with the assumption of no transaction costs, if trader

B invests an amount Π in riskless assets, he would see a growth (in infinitesimal

notation) of rΠdt in a time-step dt where r is the rate of return of riskless assets

investment. The risk free interest rate r and the asset volatility σ are known

function of time during the life of the option. By the assumption that the market

is fair (no arbitrage), with the same initial capital, the two traders should gain an

equal amount during the same period of time. Thus we have

rΠdt =

(
1

2
σ2S2∂2X

∂S2
+

∂X

∂t

)
dt. (28)
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Substituting (24) and (26) into (28) and dividing throughout by dt we arrive at

∂X

∂t
+

1

2
σ2S2∂2X

∂S2
+ rS

∂X

∂S
− rX = 0. (29)

This equation is known as the Black-Scholes partial differential equation.

• Martingale Measure

Recall that a stochastic process M = (Mt)t≥0 on (Ω,F , P ) adapted to the filtration

M = (Mt)t≥0 is called a martingale if EP |M | < ∞ and for any s, t such 0 ≤ s ≤

t ≤ T,

EP (Mt|Ms) = Ms a.s. (30)

Sometimes, in order to be specified which probability we are working under, the

martingale M is also written P -martingale.

Let a probability space (Ω,F , P ) be given, W = (Wt,FW
t )t≥0 be a standard

Brownian motion where (FW
t )t≥0 satisfies the usual condition (see section A.1)

and, as usual, FW
s ⊂ FW

t ⊂ F , s ≤ t.

Definition 2.1. (a) A market is an FW
t −adapted (n+1)-dimensional Ito process

X(t) = (X0(t), X1(t), ..., Xn(t)); t ∈ [0, T ] which we will assume has the form

dX0(t) = ρ(t, ω)X0(t)dt; X0(0) = 1 (31)

and

dXi(t) = µi(t, ω)dt +

m∑

i=1

σij(t, ω)dWj(t); Xi(0) = xi (32)

where σi is row number i of the n × m matrix [σij]; 1 ≤ i ≤ n ∈ N, set of positive

integer numbers.

(b) The market (Xt)t∈[0,T ] is called normalized if X0(t) ≡ 1.
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(c) A portfolio in the market (Xt)t∈[0,T ] is an (n + 1)-dimensional (t, ω)-

measurable and FW
t -adapted stochastic process

θ(t, ω) = (θ0(t, ω), θ1(t, ω), ..., θn(t, ω)) ; t ∈ [0, T ]. (33)

(d) The value at time t of a portfolio θ(t) is defined by

V (t, ω) = V θ(t, ω) = θ(t) · X(t) =
n∑

i=0

θi(t)Xi(t) (34)

where · denotes inner product in R
n+1.

(e) The portfolio θ(t) is called self-financing if

dV (t) = θ(t) · dX(t) (35)

i.e.

V (t) = V (0) +

∫ t

0

θ(s)dX(s) for t ∈ [0, T ].

(f) A portfolio θ(t) which is self-financing is called admissible if the cor-

responding value process V θ(t) is (t, ω) a.s. lower bounded, i.e. there exists

K = K(θ) < ∞ such that

V θ(t, ω) ≥ −K for a.s. (t, ω) ∈ [0, T ] × Ω

(There must be a limit to how much debt the creditors can tolerate).

Remark 2.1. (a) The market can always be nomalized by defining

X i(t) = X−1
0 (t)Xi(t); i = 1, 2, ..., n. (36)

The market

X(t) =
(
1, X1(t), X2(t), ..., Xn(t)

)

is called the normalization of X(t).

(b) Let us consider the normalized market

X(t) =

(
1,

1

X0(t)
X1(t),

1

X0(t)
X2(t), ...,

1

X0(t)
Xn(t)

)
.
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The term 1
X0(t)

is called the discounted coefficient and
(

1
X0(t)

Xi(t)
)

t≥0
, i = 1, 2, ..., n

are called discounted price process.

The following notion of probability measure leads us to the (mathematical)

concept of arbitrage free market. If P and Q are two probability measures on

(Ω,F), we say that Q is absolutely continuous with respect to P (written Q � P )

if and only if P (A) = 0 implies Q(A) = 0 for A ∈ F . Moreover, if Q is an

indefinite integral with respect to P , i.e.,

Q(A) =

∫

A

hdP, ∀A ∈ F

where h is a Borel measurable function provided that
∫

A
hdP < ∞, then Q �

P. The converse assertion is guaranteed by the Radon Nikodym Theorem (see,

e.g., Dudley, 2002) that if P and Q are two probability measures on (Ω,F) and

Q � P then there exists a Borel measurable function g : Ω → R such that

Q(A) =
∫

A
hdP, ∀A ∈ F . Furthermore, the two measures are said to be equivalent

if Q � P and P � Q, written Q ∼ P.

Let us consider a market X(t), t ∈ [0, T ] defined on a filtered probability

space (Ω,F , (F)t≥0, P ). A probability Q on (Ω,F) is called a martingale measure

(or risk-neutral probability) if and only if

(i) Q ∼ P , i.e. the measure Q and P have the same null sets, and

(ii) almost surely,

EQ

[
1

X0(t)
Xi(t)

∣∣∣∣Fs

]
=

1

X0(s)
Xi(s), 0 ≤ s < t ≤ T.

Now we are in position to state a criterion of free arbitrage given by Ok-

sendal (1998) of a financial market. It is very useful in many applications. And we

will use it to prove that there is no more arbitrage opportunity for our approximate

model.
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In the theorem following, let W = (Wt,FW
t )t≥0 be a standard Brownian

motion on (Ω,F , P ) where FW
s ⊂ FW

t ⊂ F , s ≤ t and X = (Xt,FW
t )t≥0 be a

market consisting of two assets given by

dX0
t = ρ(t, ω)X0

t dt

and

dX1
t = µ(t, ω)dt + σ(t, ω)dWt

where µ(t, ω), σ(t, ω), ρ(t, ω) ∈ R.

Theorem 2.2. Suppose there exists a square integrable process u(t, ω) (t, ω)-

measurable adapted to the Brownian filtration (FW
t )t≥0 such that

σ(t, ω)u(t, ω) = µ(t, ω) − ρ(t, ω)X1
t (37)

for almost all (t, ω) and such that

EP exp

(
1

2

∫ T

0

u2(t, ω)dt

)
< ∞. (38)

Then the market (Xt)t∈[0,T ] has no arbitrage. Conversely, if the market (Xt)t∈[0,T ]

has no arbitrage, then there exists an FW
t -adapted, (t, ω)-measurable process u(t, ω)

such that

σ(t, ω)u(t, ω) = µ(t, ω) − ρ(t, ω)X1
t

for almost all (t, ω).

Proof. (see Oksendal, 1998, p.256)

2.4 Principle of AAO for Approximate Models

In this section, we give a very important result concerning AAO Principle by

proving that there will be no more arbitrage for our approximate model. This is

one of our main results in the Thesis.
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The solution of the classical Black-Scholes model driven by standard Brow-

nian motion is a Markov process. However, in some empirical studies of financial

time series (see, e.g. Shiryaev, 1999. p. 365) it has been demonstrated that

the log-returns have strong aftereffects (long-range dependence), i.e. the prices

remember their past. The self-similar and long-range dependence properties of

the fractional Brownian motion make this process a suitable candidate for replac-

ing the Brownian motion. The fractional Brownian motion, however, is not a

semimartingale when H 6= 1
2
. Therefore it may be suspected that a stock price

model driven by it would admit arbitrage opportunities. Indeed, Rogers (1997)

constructed the arbitrage by using the path properties of the fractional Brow-

nian motion. He showed that arbitrage is possible when the risky asset has a

log-normal price driven by a fractional Brownian motion. In 1999, Shiryaev gave

an explicit construction of an arbitrage strategy based on continuous time trading

(see also Cheridito, 2001, for more information on arbitrage in this kind of models

and Sottinen, 2001, where arbitrage appears in a natural discrete time binomial

approximation to the continuous time model).

Let us consider the fractional Black-Scholes model of the form

dSt = µStdt + σStdBt, St=0 = S0 (39)

where Bt =
∫ t

0
(t−s)H− 1

2 dWs, a fractional process and St is the option price at time

t ∈ [0, T ]. One can see that by the result of Rogers (1997), there exist arbitrage

opportunities for the fractional Black-Scholes model (39). Hence our interest is of

an approximate model for (39) which has no more arbitrage. In stead of (39), the

approximate model driven by Bε
t =

∫ t

0
(t − s + ε)H− 1

2 dWs of the form

dSε
t = µSε

t dt + σSε
t dBε

t , S
ε
t=0 = S0 (40)

is considered. It is seen in section 2.1 that Bε
t and Sε

t converge to Bt and St in
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L2, uniformly in t as ε → 0, respectively.

Based on the criterion of free arbitrage for a financial market given in

the previous section we will prove that for this approximate model there is no

more arbitrage opportunity, since the option price St can be approximated at any

exactitude by a suitable Sε
t . In (40), for every ε > 0,

dBε
t = αϕε

tdt + εαdWt

with α = H − 1
2
, H ∈ (0, 1) and

ϕε
t =

∫ t

0

(t − s + ε)α−1dWs.

By substituting the expression of dBε
t above into (40) one gets

dSε
t = µSε

t dt + σSε
t (αϕε

tdt + εαdWt)

= (µSε
t + ασϕε

tS
ε
t ) dt + εασSε

t dWt

= (µ + ασϕε
t )Sε

t dt + εασSε
t dWt (41)

Our main result here is to prove that the approximate model (40) has no-arbitrage.

We introduce an additional asset X0
t satisfying

dX0
t = ρ(t, ω)X0

t dt

where ρ(t, ω) = (ασ − εα+1)ϕε
t . Then according to (37) we have

u(t, ω) =
µ(t, ω) − ρ(t, ω)

σ(t, ω)

=
µ + ασϕε

t − (ασ − εα+1)ϕε
t

εασ

=
µ + εα+1ϕε

t

εασ

=
µ

εασ
+

εϕε
t

σ
. (42)

Since (a + b)2 ≤ 2(a2 + b2) then from (42) we have

u2 ≤ 2

[( µ

εασ

)2

+

(
εϕε

t

σ

)2
]

. (43)
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Let a probability space (Ω,F , P ) be given, W = (Wt,FW
t )t≥0 be a standard

Brownian motion where (FW
t )t≥0 satisfies the usual condition and, as usual, FW

s ⊂

FW
t ⊂ F , s ≤ t. In order to prove that the approximate model (40) has no-

arbitrage, the following lemmas will be needed.

Lemma 2.1. Suppose that X is a N (0, ν2)-random variable and a is a constant

such that (1 − 2ν2a2) > 0. Then Eea2X2

is finite.

Proof. Since X is N (0, ν2)-distributed, by definition

Eea2X2

=

∫ ∞

−∞
ea2x2

f(x)dx

where f(x) is the probability density function of X, i.e. f(x) = 1
ν
√

2π
exp(− x2

2ν2 ).

Hence

Eea2X2

=
1

ν
√

2π

∫ ∞

−∞
ea2x2

e−
x2

2ν2 dx

=
1

ν
√

2π

∫ ∞

−∞
e−

x2

2
( 1

ν2
−2a2)dx

=
1

ν
√

2π

∫ ∞

−∞
exp

[
− x2

2
(

ν2

1−2ν2a2

)
]

dx. (44)

Since 1 − 2ν2a2 > 0 and by putting σ = |ν|√
1−2ν2a2

, we see that

Eea2X2

= σ < ∞. �

Lemma 2.2. E exp
(

ε
σ
ϕε

t

)2
is finite for every t ≥ 0 and sufficiently small ε.

Proof . We notice that for every t, ϕε
t is a Gaussian random variable.

Indeed, we see that

ϕε
t =

∫ t

0

(t − s + ε)α−1
dWs = P − lim

|∆|→0

n∑

k=1

(t − sk−1 + ε)
[
Wsk

− Wsk−1

]
,

where ∆ is any partition of [0, t] into n subintervals [sk−1, sk), k = 1, ..., n. Since

each increment Wsk
−Wsk−1

is a Gaussian random variable, so is ϕε
t . We now find

the expectation µ and the variance ν2 of ϕε
t .
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In account of a well-known property of Itô integral saying that the expec-

tation of an Itô integral is equal to zero, we can write:

µ = Eϕε
t = E

∫ t

0

(t − s + ε)α−1
dWs = 0.

On the other hand,

ν2 = E [ϕε
t − Eϕε

t ]
2 = E [ϕε

t ]
2 = E

[∫ t

0

(t − s + ε)α−1
dWs

]2

.

By the isometry from the Itô integration we see that

E

[∫ t

0

(t − s + ε)α−1
dWs

]2

=

∫ t

0

(t − s + ε)2α−2
ds.

Now we have

∫ t

0

(t − s + ε)2α−2
ds =

1

2α − 1

[
(t + ε)2α−1 − ε2α−1

]
.

So, for every t, ϕε
t is a centered normal random variable N (0, ν2) with the variance

ν2 defined by

ν2 =
1

1 − 2α

[
(t + ε)2α−1 − ε2α−1

]
, 1 − 2α = 2(1 − H) > 0.

In order to apply Lemma (2.1) we calculate 1 − 2ν2a2, where a = ε
σ
. We see that

2ν2 ε2

σ2
=

2

σ2(1 − 2α)

[
ε2
(
(t + ε)2α−1 − ε2α−1

)]

which can be made smaller than 1 for small enough ε. Then we have Ee(
ε
σ

ϕε
t)

2

< ∞

as required. �

The theorem below gives the most important result showing that our approx-

imate model (40) is free of arbitrage. It makes use of the preceding two lemmas

and the Theorem 2.2 above in Section 2.3. One can see that the market in The-

orem 2.2, (32), is driven by Brownian motion Wt while our approximate model

(40) is driven by semimartingale Bε
t . However, we still make use of Theorem 2.2
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since the semimartingale Bε
t can be expressed as a sum of a process of bounded

variation and a Brownian motion. Therefore, the approximate model (40) driven

by the semimartingale Bε
t is in fact the model (41) driven by Brownian motion to

which Theorem 2.2 can be applied.

Theorem 2.3. For sufficiently small ε > 0, there is no-arbitrage for the approx-

imate model (40).

Proof. By Theorem 2.2, one needs to show that the Novikov condition:

E exp

(
1

2

∫ T

0

u2(t, ω)dt

)
< ∞ (45)

holds where u is defined by (42). Since µ, σ, ε and α are constants and by (43)

one gets

E exp

(
1

2

∫ T

0

u2(t, ω)dt

)
≤ E exp

[
1

2

∫ T

0

[
2
( µ

εασ

)2

+ 2

(
εϕε

t

σ

)2
]

dt

]

= E

[
exp

(∫ T

0

( µ

εασ

)2

dt

)
exp

(∫ T

0

(
εϕε

t

σ

)2

dt

)]

= exp

(( µ

εασ

)2

T

)
E exp

(∫ T

0

(
εϕε

t

σ

)2

dt

)
. (46)

It follows from (46) one only needs to show that E exp

(∫ T

0

(
εϕε

t

σ

)2

dt

)
is finite.

By Jensen’s inequality,

exp

(∫ T

0

(
εϕε

t

σ

)2

dt

)
≤
∫ T

0

exp

(
εϕε

t

σ

)2

dt

and by Fubini’s theorem and by lemma (2.2), E exp
(

εϕε
t

σ

)2

< ∞, one gets

E exp

(∫ T

0

(
εϕε

t

σ

)2

dt

)
≤
∫ T

0

(
E exp

(
εϕε

t

σ

)2
)

dt < ∞. (47)

Hence the Novikov’s condition (45) holds by (46) and (47). The proof of Theorem

2.3 is thus complete. �
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2.5 Conclusion

As said before, the presence of arbitrage opportunities in fractional models

for finance, based on path-wise constructions of fractional stochastic calculus, is

very often met and this is a considerable gap in applying these models to financial

practice. Our results presented in this Chapter overcomes this difficulty: In spite

of the fact that there exists arbitrage opportunity for the fractional model, this

model can be approximated with any level of exactitude by another model where

there is no more arbitrage! So in practice one can use a suitable approximate model

which expresses good enough the long-range dependence of financial prices.



Chapter III

A Fractional Vasiček Model

As we have seen in Section 2.3, in the derivation of Black-Scholes PDE, we as-

sumed the interest rate to be a constant (or at least a known function of time)

throughout a period of time, e.g., [0,T]. In reality this is far from the case. In

fact, it has been studied that the movement of interest rate also exhibits long-

range dependence (see, e.g., Duan et al., 2001 and Gil-Alana, 2004). Namely,

they exhibit significant autocorrelation between observations widely separated in

time.

In this chapter, the fractional Vasiček model is considered and the approx-

imate model for the fractional Vasiček model is also given. The solution to the

approximate model is found and we proved that it converges, in L2(Ω), to the

solution of the original model.

3.1 Introduction

In the continuous time t ≥ 0 the standard definition of the bank interest rate

r = (rt)t≥0 is based on the relation

dBt = rtBtdt

where B = (Bt)t≥0 is a bank account. Clearly,

rt =
d

dt
(ln Bt)
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and

Bt = B0 exp

(∫ t

0

rsds

)
.

The interest rate (also called short rate of interest, spot rate or instantaneous rate

of interest), in fact, reflects the price of borrowing/investing money from/in the

bank. The concept of interest rate plays even more important role in the “indirect

data” of the evolution of share prices. This explains the existence of a variety of

models with interest rate r = (rt)t≥0 described by diffusion equations

drt = µ(t, rt)dt + σ(t, rt)dWt (1)

where (µ(t, x))t≥0 , (σ(t, x))t≥0 are given stochastic processes and W = (Wt)t≥0 is

a standard Brownian motion. It is known that the solution to (1) is always a

Markov process that has no memory. So the model (1) is not suitable since, in

the financial markets, each value of rt can influence upon its behavior in some

time range. Correspondingly, the prices of bonds at a time t can have some

consequences on their price some time later.

Let the filtered probability space (Ω,Ft, (FW
t )t≥0, P ) satisfying the usual

conditions be given and r = (rt)t≥0 be an FW
t -measurable stochastic process. As

usual, W = (Wt)t≥0 is a standard Brownian motion. The classical Vasicek model

is the model of the form

drt = (b − art)dt + σdWt (2)

where a, σ are positive constants and b is any real number.

However, with Bt =
∫ t

0
(t − s)αdWs, α = H − 1

2
, H(0, 1) we consider the

model of the form

drt = (b − art)dt + σdBt, a > 0 (3)

rt|t=0 = r0.
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where r0 is a given square integrable random variable. The SDE (3) is also called

the fractional Vasicek model. According to our definition of fractional stochastic

integral (Definition (1.6)) the exact solution of (3) is

rt =

∫ t

0

(b − ars)ds + σBt.

3.2 Approximate Fractional Vasiček Model

We have seen that the driving process Bt of (3) is not a semimartingale unless

H = 1
2

(Theorem 1.2). Hence, in order to solve (3) we consider the approximate

equation

drε
t = (b − arε

t )dt + σdBε
t (4)

where Bε
t =

∫ t

0
(t− s + ε)αdWs is a semimartingale (Theorem 1.4). In fact Bε

t can

be expressed (see the proof of Theorem 1.4) as

Bε
t = α

∫ t

0

ϕε
sds + εαWt (5)

where ϕε
t =

∫ t

0
(t − s + ε)α−1dWs. Writing (5) in differential form:

dBε
t = αϕε

tdt + εαdWt (6)

and substituting it into (4) to obtain

drε
t = (b − arε

t )dt + σ (αϕε
tdt + εαdWt) , rε

t |t=0 = r0, (7)

where r0 is given at time t = 0. Rewrite (7) to obtain

drε
t = [(b − arε

t ) + σϕ(t)] dt + σεαdWt rε
t |t=0 = r0, (8)

where ϕ(t) = αϕε
t . We will solve the approximate model (8) (by Theorem 3.1)

and then we prove that its solution converges in L2 to the solution of the original

model (by Theorem 3.2).
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Remark 3.1. According to Theorem 1.7 in Chapter I, the problem (3) with

b(t, r) = b − ar and σ(t, r) = σ satisfy the Lipschitz conditions with respect to

r and since σ is constant, it is of bounded variation and has bounded derivative.

Then there exists a unique solution to the problem (3).

The following theorem yields the solution rε
t to the problem (4). In fact:

Theorem 3.1. The solution of the approximate model (8) is given by:

rε
t =

b

a
+

(
r0 −

b

a

)
e−at + σεα

∫ t

0

e−a(t−s)dWs + σ

∫ t

0

ϕ(s)e−a(t−s)ds.

Proof. Let us consider first the SDE

dx(t) = (b − ax(t)) dt + σεαdWt, x(0) = x0. (9)

Set u(t) = b−ax(t). Hence u0 = b−ax0, dx(t) = −du(t)
a

and (9) becomes

−du(t)

a
= u(t)dt + σεαdWt

or

du(t) = −au(t)dt − aσεαdWt. (10)

The equation (10) is in fact the classical stochastic Langevin equation whose

solution is given by

u(t) = u0e
−at − aσεα

∫ t

0

e−a(t−s)dWs. (11)

Substituting back u(t), as a function of x(t), (11) becomes

b − ax(t) = (b − ax(t)) e−at − aσεα

∫ t

0

e−a(t−s)dWs

or

x(t) =
b

a
−
(

b

a
− x0

)
e−at + σεα

∫ t

0

e−a(t−s)dWs. (12)
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Let us consider further an ordinary differential equations:

dy(t) = −ay(t)dt + σϕ(t)dt, y(0) = y0. (13)

Solving (13) we get

y(t) = y0e
−at + σ

∫ t

0

ϕ(s)e−a(t−s)ds. (14)

Now, let z(t) = x(t) + y(t) and x0 = y0 = r0

2
. Then

z(t) = x(t) + y(t)

=
b

a
−
(

b

a
− x0

)
e−at + σεα

∫ t

0

e−a(t−s)dWs + y0e
−at + σ

∫ t

0

ϕ(s)e−a(t−s)ds

=
b

a
− b

a
e−at + (x0 + y0) e−at + σεα

∫ t

0

e−a(t−s)dWs + σ

∫ t

0

ϕ(s)e−a(t−s)ds.

=
b

a
+

(
r0 −

b

a

)
e−at + σεα

∫ t

0

e−a(t−s)dWs + σ

∫ t

0

ϕ(s)e−a(t−s)ds. (15)

The process ϕ(t) appearing in (15) can be simulated as illustrated in the proof of

lemma 2.2. Moreover, we also have

dz(t) = dx(t) + dy(t)

= (b − ax(t)) dt + σεαdWt − ay(t)dt + σϕ(t)dt

= (b − az(t) + σϕ(t)) dt + σεαdWt

with z(0) = x0 + y0 = r0, which is indeed the problem (8). Therefore, by unique-

ness of the solution of (8) we get (15) is the solution to (8). �

A natural question arises whether the solution rε
t of (4) would converge to

the solution rt of (3).

3.3 Convergence

Suppose that rt and rε
t are solutions of (3) and (4), respectively:

drt = (b − art)dt + σdBt, 0 ≤ t ≤ T,
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and

drε
t = (b − arε

t )dt + σdBε
t , 0 ≤ t ≤ T.

Now the convergence of rε
t to rt as ε → 0 can be shown below.

Theorem 3.2. rε
t converges to rt uniformly in L2(Ω) as ε → 0.

Proof. We have

rt − rε
t = −a

∫ t

0

(rs − rε
s)ds + σ(Bt − Bε

t ),

then

‖rt − rε
t ‖ ≤

∥∥∥∥a
∫ t

0

(rs − rε
s)ds

∥∥∥∥+ σ ‖Bt − Bε
t ‖ , (16)

where ‖·‖ denotes the norm in L2(Ω). Since Bε
t converges to Bt in L2(Ω) when ε

tends to zero and this convergence is uniform with respect to t ∈ [0, T ] (Theorem

1.5). We have,

sup
0≤t≤T

‖Bt − Bε
t ‖ ≤ C(α)εα+ 1

2 ,

where 0 < α < 1
2

and C(α) depends only on α (see the proof of Theorem 1.5).

Therefore (16) becomes

‖rt − rε
t ‖ ≤ a

∫ t

0

‖rs − rε
s‖ ds + σC(α)εα+ 1

2 . (17)

A standard application of Gronwall’s lemma to equation (17) gives:

‖rt − rε
t ‖ ≤ eatσC(α)εα+ 1

2 .

It follows that

sup
0≤t≤T

‖rt − rε
t ‖ ≤ eaT C(α)εα+ 1

2 → 0,

as ε → 0. The proof is completed. �

It is known that a fractional Brownian motion differs from a standard

Brownian motion and one of differences is that its increments are dependent and
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exhibit some long memory. Namely, the process rε
t at long time ago may influ-

ence upon its behavior today. Hence, with the fractional Vasiček model (3), the

situation in real market is reflected more precisely than that by the classical one.

3.4 Conclusion

We have seen that in this Chapter, after introducing a fractional version for the

well-known interest model of Vasicek, we have perfectly solved this model from our

approximate approach by establishing and solving approximately fractional model

and by showing that its solution converges to the exact solution. These results

answer increasing demands from practice in considering long range consequence

of interest values.



Chapter IV

A Fractional Ho-Lee Model

In this chapter, we consider the fractional version of the classical Ho-Lee model.

We will investigate the solution of this model by studying its corresponding approx-

imate model. It is also found that the solution to the approximate model converges,

in L2(Ω), to the solution of the original model.

4.1 Introduction

In the classical Vasicek model:

drt = (b − art)dt + σdWt,

when rt is large, the negative coefficient in front of dt mean that rt will move down

on average, if rt is small, similarly the positive coefficient will raise rt on average

again. This phenomenon is called mean reversion. Mean-reverting models are

used for modeling a process that “does not go anywhere”. That is why they are

used for interest rates. However, in the Vasiček model, interest rates can easily

become negative which is not a very good property.

Let the filtered probability space (Ω,Ft, (FW
t )t≥0, P ) satisfying the usual

conditions be given and r = (rt)t≥0 be an FW
t -measurable stochastic process. As

usual, W = (Wt)t≥0 is a standard Brownian motion. The classical Ho-Lee Model

is the model of the form

drt = b(t)rtdt + σdWt.
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where b(t) is a deterministic function of t and finite on [0, T ] and σ is a positive

constant.

4.2 Approximate Fractional Ho-Lee Model

Definition 4.1. The model for interest rate rt expressed by

drt = b(t)rtdt + σdBt (1)

rt|t=0 = r0

where

Bt =

∫ t

0

(t − s)H− 1

2 dWs, H ∈ (0, 1), (2)

b(t) is a deterministic function and r0 is a square integrable random variable, is

called the fractional Ho-Lee model.

Solving Method: In order to solve (1) we consider the approximate equation

drε
t = b(t)rε

t dt + σdBε
t , (3)

where

Bε
t = α

∫ t

0

ϕε
sds + εαWt (4)

with ϕε
t =

∫ t

0
(t − s + ε)α−1dWs. Writing (4) in differential form

dBε
t = αϕε

tdt + εαdWt. (5)

Substituting (5) into (3) to obtain

drε
t = b(t)rε

t dt + σ (αϕε
tdt + εαdWt) , rε|t=0 = r0, (6)

where r0 is given at time t = 0. Rewrite (6) to obtain

drε
t = [b(t)rε

t + σαϕε
t ] dt + σεαdWt rε|t=0 = r0, (7)
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where ϕ(t) = αϕε
t . We will solve the approximate model (7) (by Theorem

4.1) and then we prove that its solution converges in L2 to the solution of

the original model (by Theorem 4.2).

Remark 4.1. The problem (1) with b(t, r) = b(t)r and σ(t, r) = σ satisfies the

Lipschitz conditions with respect to rt. In fact, for any s, t ∈ R,

‖b(t)rt − b(t)rs‖ ≤ |b(t)| ‖rt − rs‖

≤ L ‖rt − rs‖ ,

where ‖·‖ denotes the L2-norm and L = max0≤t≤T |b(t)| . Moreover, since σ is

constant, it is of bounded variation and has bounded derivative. Then by Theorem

1.7 there exists a unique solution to the problem (1).

We are now in the position to find the solution of (7) which is later shown

to be an approximate of the solution of (1).

Theorem 4.1. The solution of the approximate model (7) is the following:

rε
t = e

R t

0
b(s)ds

(
r0 + σεα

∫ t

0

e−
R s

0
b(τ)dτdWs + σ

∫ t

0

ϕ(s)e−
R s

0
b(τ)dτ ds

)
.

Proof. Recall that the solution of the general linear stochastic differential

equation

dX(t) = (α(t) + β(t)X(t)) dt + (γ(t) + δ(t)X(t)) dW (t)

where α, β, γ, and δ are given adapted processes and continuous functions of t is

given by

X(t) = U(t)

(
X(0) +

∫ t

0

α(s) − δ(s)γ(s)

U(s)
ds +

∫ t

0

γ(s)

U(s)
dW (s)

)

where

U(t) = U(0) exp

(∫ t

0

(
(β(s) − 1

2
δ2(s))ds

)
+

∫ t

0

δ(s)dW (s)

)
.
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Consider first the SDE:

dx(t) = b(t)x(t)dt + σεαdWt (8)

with x(0) = x0. Hence the solution of (8) is given by

x(t) = e
R t

0
b(s)ds

(
x0 +

∫ t

0

σεαe−
R s

0
b(u)dudWs

)
.

Consider next an ordinary differential equation

dy(t) = b(t)y(t)dt + σϕ(t)dt (9)

with y(0) = y0. It is an ordinary differential equation and its solution is given by

y(t) = e
R t

0
b(s)ds

(
y0 + σ

∫ t

0

ϕ(s)e−
R s

0
b(τ)dτ ds

)

Now with x0 = y0 = r0

2
and z(t) = x(t) + y(t) we get

dz(t) = dx(t) + dy(t)

= [b(t) (x(t) + y(t)) + σϕ(t)] dt + σεαdWt

= [b(t)z(t) + σϕ(t)] dt + σεαdWt

and z(0) = r0 which is, in fact, the problem (7). Therefore, by existence and

uniqueness of solution (Theorem 1.9)

z(t) = x(t) + y(t)

= e
R t

0
b(s)ds

[
(x0 + y0) + σεα

∫ t

0

e−
R s

0
b(τ)dτdWs

+ σ

∫ t

0

ϕ(s)e−
R s

0
b(τ)dτds

]

= e
R t

0
b(s)ds

(
r0 + σεα

∫ t

0

e−
R s

0
b(τ)dτdWs + σ

∫ t

0

ϕ(s)e−
R s

0
b(τ)dτ ds

)

is the solution of (7). �
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4.3 Convergence

Suppose that rt and rε
t are solutions of (1) and (3), respectively:

drt = b(t)rtdt + σdBt, 0 ≤ t ≤ T,

and

drε
t = b(t)rε

t dt + σdBε
t , 0 ≤ t ≤ T.

Now the convergence of rε
t to rt as ε → 0 can be shown below.

Theorem 4.2. rε
t converges to rt uniformly in L2(Ω) as ε → 0.

Proof. We have

rt − rε
t =

∫ t

0

b(s)(rs − rε
s)ds + σ(Bt − Bε

t ),

then with ‖·‖ represents the L2-norm,

‖rt − rε
t ‖ ≤

∫ t

0

‖b(s)‖ ‖rs − rε
s‖ ds + σ ‖Bt − Bε

t ‖ . (10)

Since Bε
t converges to Bt in L2(Ω) when ε tends to zero (Theorem 1.7) and this

convergence is uniform with respect to t ∈ [0, T ]. Hence,

sup
0≤t≤T

‖Bt − Bε
t ‖ ≤ C(α)εα+ 1

2 ,

where 0 < α < 1
2

and L(α) depends only on α as in the previous chapter. Set

b = sup
0≤t≤T

|b(t)| .

Therefore (10) becomes

‖rt − rε
t ‖ ≤ b

∫ t

0

‖rs − rε
s‖ ds + σC(α)εα+ 1

2 . (11)

A standard application of Gronwall’s lemma to (11) will give us:

‖rt − rε
t‖ ≤ ebtσC(α)εα+ 1

2 .
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It follows that

sup
0≤t≤T

‖rt − rε
t‖ ≤ ebT C(α)εα+ 1

2 → 0,

as ε → 0. The proof is completed. �

Since the random source of the fractional Ho-Lee model has long memory,

the model therefore reflects more precise the situation in real market where each

state of interest can influence many reactions later in the market.

4.4 Conclusion

In this chapter, the same approximate approach has been used to completely solve

the fractional case for Ho-Lee model that is frequently met in studying verious

problems in finance.



Chapter V

A Fractional Hull-White Model

In this chapter, the fractional version of the classical Hull-White model is studied.

Its approximate model is also given. The solution to the approximate model is

found and its convergence is shown. In fact, the approximation can be made with

any exactitude. Our main results presented in this Chapter are to appear in the

Vietnam Journal of Mathematics.

5.1 Introduction

Let the filtered probability space (Ω,Ft, (FW
t )t≥0, P ) satisfying the usual condi-

tions be given and r = (rt)t≥0 be an FW
t -measurable stochastic process. As usual,

W = (Wt)t≥0 is a standard Brownian motion. It is well-known in mathematical

finance that the Hull-White model for interest rt has the following form

drt = (b(t) − a(t)rt) dt + σ(t)dWt,

where a(t), b(t) and σ(t) are deterministic continuous functions of t and a(t) > 0,

σ(t) > 0, and W = (Wt)t≥0 is a standard Brownian motion. This model is very

useful in practice of financial markets, it gives also the price of zero-coupon bonds

corresponding to each value of the rate rt.

But each value of rt can influence upon its behavior in some time range.

Correspondingly, the prices of bonds at a time t can have some consequences

on their price some time later. Similar to the Vasiček and Ho-Lee models, the
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classical Hull-White model is not suitable since its solution is always a Markov

process that has no memory.

The purpose of this chapter is to introduce a fractional Hull-White model

for the interest rate rt for which the driving process is replaced by a fractional

Brownian motion, Bt =
∫ t

0
(t − s)H− 1

2 dWs, H ∈ (0, 1), a process of long memory.

5.2 Approximate Fractional Hull-White Model

Definition 5.1. The model for interest rate rt expressed by

drt = (b(t) − a(t)rt) dt + σ(t)dBt, a(t) > 0 (1)

rt|t=0 = r0

where Bt is defined by (2), a(t), b(t), σ(t) are deterministic functions with a(t) > 0,

σ(t) is of finite variation and r0 a square integrable random variable, is called the

fractional Hull-White model.

Solving Method: In order to solve (1) we consider and solve for the approximate

equation

drε
t = (b(t) − a(t)rε

t ) dt + σ(t)dBε
t (2)

where

Bε
t = α

∫ t

0

ϕε
sds + εαWt (3)

with ϕε
t =

∫ t

0
(t − s + ε)α−1dWs. Writing (3) in differential form:

dBε
t = αϕε

tdt + εαdWt. (4)

Substituting (4) into (2) to obtain

drε
t = (b(t) − a(t)rε

t ) dt + σ(t) (αϕε
tdt + εαdWt) , rε|t=0 = r0, (5)
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where r0 is given at time t = 0. Rewrite (5) with ϕ(t) = αϕε
t to obtain

drε
t = [b(t) − a(t)rε

t + σ(t)ϕ(t)] dt + σ(t)εαdWt, rε|t=0 = r0. (6)

We will solve the approximate model (6) (by Theorem 5.1) and then we prove that

its solution converges in L2 to the solution of the original model (by Theorem 5.2).

Theorem 5.1. The solution of the approximate model (6) is given as follows:

rε
t = e−

R t

0
a(s)ds

[
r0 + εα

∫ t

0

σ(s)e
R s

0
a(u)dudWs +

∫ t

0

(b(u) + σ(u)ϕ(u)) e
R u

0
a(s)dsdu

]
.

Proof. Consider a stochastic differential equation

dx(t) = −a(t)x(t)dt + σ(t)εαdWt (7)

with x(0) = x0. The SDE (7) is a linear stochastic differential equation whose

solution is given by

x(t) = e−
R t

0
a(s)ds

[
x0 + εα

∫ t

0

σ(s)e
R s

0
a(r)drdWs

]
.

Let us consider next an ordinary differential equation

dy(t) = (b(t) − a(t)y(t)) dt + σ(t)ϕ(t)dt (8)

with y(0) = y0. Rewriting the equation (8) as:

dy(t)

dt
+ a(t)y(t) = b(t) + σ(t)ϕ(t).

This is a linear ordinary differential equation whose solution is given by:

y(t) = e−
R t

0
a(s)ds

[
y0 +

∫ t

0

(b(u) + σ(u)ϕ(u)e
R u

0
a(s)dsdu

]
. (9)

Similar to the previous two chapters, let z(t) = x(t) + y(t) and with x0 = y0 = r0

2

we get z(0) = r0 and

dz(t) = (b(t) − a(t) (x(t) + y(t)) + σ(t)ϕ(t)) dt + σ(t)εαdWt

= (b(t) − a(t)z(t) + σ(t)ϕ(t)) dt + σ(t)εαdWt
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which, in fact, is the problem (6). By existence and uniqueness of the solution for

(6) we get

z(t) = x(t) + y(t)

= e−
R t

0
a(s)ds

[
r0 + εα

∫ t

0

σ(s)e
R s

0
a(r)drdWs +

∫ t

0

(b(u) + σ(u)ϕ(u)e
R u

0
a(s)dsdu

]

is the solution to (6). �

5.3 Convergence

We note that the equation (1) is a fractional linear stochastic differential

equation whose solution is defined by

rt = r0 +

∫ t

0

(b(s) − a(s)rs) ds +

∫ t

0

σ(s)dBs.

Under the regularity assumptions on a(t) and b(t), it is easy to verify that there

exists such a unique solution for (1). Denote this solution by rt and suppose that

rε
t is the solution of the corresponding approximate model (6). Thus rt and rε

t

satisfy the following equations:

drt = (b(t) − a(t)rt)dt + σ(t)dBt, 0 ≤ t ≤ T

drε
t = (b(t) − a(t)rε

t )dt + σ(t)dBε
t , 0 ≤ t ≤ T.

Theorem 5.2. rε
t converges to rt in L2(Ω) uniformly with respect to t ∈ [0, T ] as

ε → 0.

Proof. We have

rt − rε
t = −

∫ t

0

a(s) (rs − rε
s)ds + σ(t)(Bt − Bε

t ) −
∫ t

0

(Bs − Bε
s)dσ(s). (10)

Denote by ‖ · ‖ the norm in L2(Ω). Then

‖rt − rε
t ‖ ≤

∫ t

0

|a(s)| ‖rs − rε
s‖ds + |σ(t)|‖Bt − Bε

t ‖

+ ‖Bt − Bε
t ‖ |σ(t) − σ(0)| . (11)
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Since a(t) and σ(t) are continuous, hence bounded, on [0, T ] then there exist

positive constants M1, M2 such that

|a(t)| ≤ M1 = max
0≤t≤T

|a(t)| and |σ(t)| ≤ M2 = max
0≤t≤T

|σ(t)|.

Hence,

‖rt − rε
t‖ ≤ M1

∫ t

0

‖rs − rε
s‖ds + 2M2‖Bt − Bε

t ‖. (12)

We know that Bε
t → Bt in L2(Ω) uniformly with respect to t ∈ [0, T ] and we have

also the following estimate (see the proof of Theorem 1.7):

‖Bt − Bε
t ‖2 = E |Bt − Bε

t |2 ≤ C3(α) ε1+2α, (13)

where C3(α) is a constant depending only on α. Then

‖Bt − Bε
t ‖ ≤ K(α) ε

1

2
+α, (14)

where K(α) =
√

C3(α). It follows from (11), (12) and (13) that

‖rt − rε
t‖ ≤ M1

∫ t

0

‖rs − rε
s‖ds + M ε

1

2
+α, (15)

where M = 2M2K(α). A standard application of Gronwall Lemma will give us:

‖rt − rε
t‖ ≤ eM1tM ε

1

2
+α. (16)

Hence

sup
0≤t≤T

‖rt − rε
t‖ ≤ eM1T M ε

1

2
+α → 0 (17)

as ε → 0. The proof of Theorem 5.2 is thus complete. �

5.4 Conclusion

Once again, by the long-range dependence property of the fractional Brow-

nian motion, the fractional Hull-White model (1) reflects more precisely the move-

ment of the interest rate in the market. Namely, each state of interest at time
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t can influence upon the state of interest at long time after t. Our approximate

method giving an answer to requirements of study on financial interest rates where

the long-range dependence is mentioned.



Chapter VI

Applications

In this chapter, a sample path of standard Brownian motion is given. As examples,

the empirical historical IBM-prices are simulated by classical Black-Scholes model

and by approximate fractional Black-Scholes model. Both paths are illustrated

against the empirical data. As we expected, the result of simulation shows that the

latter pricing model give a better fit with the empirical data.

6.1 Sample Paths

For the simulation of Gaussian process in general, and Brownian motion in par-

ticular, there are numerous procedures. See also, Beran (1994, pp. 215-217),

Embrechts et al. (2002, p. 71), Lamperton et al. (1996, p. 165) and Mikosch

(1998, p. 51) for various methods of simulation.

Let us recall here that a process X = (Xt)t≥0 has a self-similarity property

with Hurst parameter H provided that for any c > 0,

Xct
d
= cHXt.

Since Brownian motion W = (Wt)t≥0 is self-similar wiht Hurst parameter H = 1
2
,

then

Wt
d
= t

1

2 W1,

W1 ∼ N (0, 1). Therefore a sample path of Brownian motion can be easily sim-

ulated by an independent and identically N (0, 1) distributed random variable.
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Figure 6.1a illustrates a sample path of standard Brownian motion (sample path

of Brownian motion with W0 = 0). Self-similarity is a distributional, not a path-

wise property. In fact, sample paths of self-similar process look quantitatively

similar, but they are not simply scaled copies of each other. Figure 6.1, illustrate

this on different scales.
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Figure 6.1: Self-similarity: the same Brownian sample paths on different scales.

Sample paths of self-similar process look quantitatively similar but

they are not scaled copied of each other.

For a sample path of fractional process, let us recall that the fractional

process used in this thesis is

Bt =

∫ t

0

(t − s)αdWs, (1)
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where α = H− 1
2
, and the Hurst parameter H ∈ (0, 1). Using the same idea of the

simulation of standard Brownian motion, a sample path of the fractional process

(1) can be simulated, for fixed t > 0, as

Bt '
N∑

k−1

(t − k

N
t)α
[
W(k+1) t

N
− Wk t

N

]

=
N∑

k−1

(t − k

N
t)α

√
t

N

[
W(k+1) − Wk

]

=

√
t

N

N∑

k−1

(t − k

N
t)αgk

where gk ∼ N (0, 1).

6.2 IBM-Simulated Prices

In this section we give the IBM1-simulated prices produced by geometric Brownian

motion:

St = S0 exp

(
σWt + (µ − 1

2
σ2)t

)
, ∀t ∈ [0, T ], (2)

whose random source is standard Brownian motion Wt and the prices simulated

by our approximate solution to the fractional Black-Scholes model (4):

Sε
t = S0 exp

(
µt − 1

2
(σεα)2

t + σBε
t

)
(3)

plotted against empirical data illustrated in Figure 6.2 and Figure 6.3 , respec-

tively. For comparative purposes, we compute the average relative percentage

error (ARPE):

ARPE =
1

N

N∑

k=1

|Xk − Yk|
Xk

· 100

where N is the number of prices, X = (Xk)k≥1 is the market price and Y = (Yk)k≥1

is the model prices.

1International Business Machines Corp (Paris)
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The historical stock prices of IBM was obtained from http://finance.yahoo.com.

The dataset consists of 264 open-prices of IBM starting from Aug 12, 2003 to Au-

gust 20, 2004. In both pricing models, (2) and (3), the drift µ and volatility σ are

kept fixed the same. The random source of (2) is the standard Brownian motion

Wt while the random source of (3) is the process Bε
t =

∫ t

0
(t − s + ε)H− 1

2 dWs in

which the simulation of its paths is similar to that of our fractional process (1).

0 1 2 3 4 5 6
60

65

70

75

80

85

90

95
drift = 0.03, volatility = 0.05, ARPE = 10.3528

Th
eo

re
tic

al
 p

ric
es

 b
y 

fo
rm

ul
a 

(6
.2

)

Time

Empirical IBM
Driven by Bm

Figure 6.2: IBM-prices is simulated by the pricing models with the initial price =

71.15, drift = 0.03 and volatility = 0.05.

Now, let the ARPE by the model (2) and (3) be denoted by ARPE(B) and

ARPE(FB), respectively. With µ = 0.03, σ = 0.05, H = 0.62 and ε = 0.00001 are

fixed. We worked out for 3,000 trails and stored the ARPE(B) and ARPE(FB)

for each sampling. It is found that the averages of ARPE(B) and ARPE(FB)

are 10.45% and 7.67%, respectively. While the variances are 23.28% and 8.07%,

respectively. One can see (Figures 6.2 and 6.3) that the pricing model (3) gives a

better fit the with real data than the pricing model (2). Moreover, in this case,
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Figure 6.3: IBM-prices is simulated by the pricing models with the initial price =

71.15, drift = 0.03, volatility = 0.05, the Hurst parameter = 0.62 and

ε = 0.00001 .

the pricing model (3) fits with real data 2.78% better than the pricing model (2).

Remark 6.1. 1. In fact, by observation, during the experiments we have done

many of 3000-sampling trails and found that even though, each time of the

experiment, the averages of ARPE(B) and ARPE(FB) are not certain, the

difference between them is quite certain. For example, in 18 3,000-sampling

trails, the averages of ARPE(B) vary from 10.20 to 10.54 and ARPE(FB)

from 7.53 to 7.77. Moreover, we found that, each time, the minimum and

maximum of ARPE(B) are mostly higher than those of the ARPE(FB).

2. In some rare case the ARPE(FB) is down to 2.82% (see Figure 6.4).

3. However, in any case, the results depend on what data one uses. For some

sets of data the theoretical price of classical Black-Scholes model is better

and for some data the fractional Black-Scholes is better.



77

0 1 2 3 4 5 6
60

65

70

75

80

85

90

95
drift = 0.03, volatility = 0.05, ARPE = 2.8185

Th
eo

re
tic

al
 p

ric
es

 b
y 

fo
rm

ul
a 

(6
.3

)

Time

Empirical IBM
Driven by fBm

Figure 6.4: IBM-prices simulated by the pricing model with the same set up as

Figure 6.3.
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Appendix I

Tools

A.1 Definitions

We shall assume that all our considerations are Ω, the space of elementary events

ω (market situations in this context); F , some σ−algebras of subsets of Ω (the

set of observable market events) and P, a probability (or probability measure) on

F . A probability P on a measurable space (Ω,F) is a function P : F → [0, 1]

such that

(a) P (φ) = 0, P (Ω) = 1 and

(b) if A1, A2, ... ∈ F with Ai ∩ Aj = φ for i 6= j then

P (∪∞
i=1Ai) =

∞∑

i=1

P (Ai).

The triple (Ω,F , P ) is called a probability space. It is called a complete

probability space if F contains all subsets of sets of (probability) measure zero.

To define our probability space (Ω,F , P ) more specifically assume that we

have a flow (Ft)t≥0 of σ−algebras such that

Fs ⊂ Ft ⊂ F , ∀s ≤ t, s ≥ 0, t ∈ [0, T ].

This flow of nondecreasing σ−algebras Ft is also called a filtration and (Ω,Ft, (Ft)t≥0, P )

is called a filtered probability space or a stochastic basis. If each σ−algebras

Ft, t ≥ 0 is completed with all sets of probability zero and the whole family
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is right continuous, i.e.,

Ft = ∩t<sFs

one say that the corresponding basis (Ω,Ft, (Ft)t≥0, P ) satisfies usual conditions.

Throughout the thesis, any filtered probability space is assumed to satisfy the

usual conditions. A random variable X on a probability space (Ω,F , P ) is a

Borel measurable function from Ω to R, i.e.,

X : (Ω,F) → (R,B(R)).

A family

Xt(ω) = X(t, ω), ω ∈ Ω, t ∈ [0, T ]

of random variables, also written X = (Xt)t≥0, is called a stochastic process with

index or parameter set R+ and state space R. Stochastic processes are functions

of two variables; the usual notation suppresses the probability space variable ω.

For a fixed instant of time t ∈ [0, T ],

Xt = X(t) = X(t, ·)

denote a random variable on the probability space (Ω,F , P ); for a fixed random

outcome ω ∈ Ω,

X(·, ω)

corresponds to a real-valued function defined on [0, T ]. The latter is called a sample

path, trajectory or realization of the process X. For the sake of convenience we

may sometimes use the notation

X = (Xt)t≥0 or X = {X(t), t ≥ 0}

for a stochastic process.

The σ−algebras Ft represents the information available up to time t. We

say that the process (Xt)t≥0 is (nonanticipating or) adapted to the filtration (Ft)t≥0
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if for any t ∈ [0, T ], Xt is a random variable on Ft, that is, Xt is Ft−measurable

(measurable relative to Ft). The intuitive significance is that X is adapted if and

only if for each t and ω, Xt(ω) is known (to the ‘observer’) at time t. Often, we

have

Ft = σ (Xs, s ≤ t)

so that the information about ω available at time t is (Xs)s≤t.

Since σ−algebras generated by Xs, s ≤ t, σ(Xs, s ≤ t), is the smallest

σ−algebras making Xs, s ≤ t measurable (see for example, Ash 2000, theorem

5.2(b)), we have, in other words, σ(Xs, s ≤ t) ⊂ F . Such a smallest σ−algebras is

also called a natural filtration denoted by (FX
t )t≥0. Obviously, a process is adapted

to its natural filtration. Moreover, if a stochastic process X = (Xt,Ft)t≥0 is given,

this means the process Xt is adapted to the given σ−algebras Ft for all t ≥ 0.

Definition A.1. If X is a random variable on the probability space (Ω,F , P ),

the expectation of X, with respect to the probability measure P , is defined by

EP (X) =

∫

Ω

XdP

provided the integral exists.

Remark A.1. (a) Since E(X) is the integral of the Borel measurable function

X with respect to the probability measure P , so that the results of integration

theory are applicable.

(b) The subscript P indicates in which measure the expectation is taken.

However, if the (underlying) measure is clear we simply write E (instead of EP ).

In the following we let (Ω,F , P ) denote a given complete probability space.

If X is a random variable on (Ω,F , P ) the probability measure induced by X is

the probability measure FX on B(R) given by

FX(B) = P{ω ∈ Ω : X(ω) ∈ B}, B ∈ B(R).
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The numbers FX(B), B ∈ B(R), completely characterize the random variable X

in the sense that they provide the probability of all events involving X. In fact,

the function F = FX from R to [0, 1] given by

F (x) = P{ω ∈ Ω : X(ω) ≤ x}, x real

is called the distribution function of the random variable X and the probability

measure P is also referred to as the P -law of X. Moreover, for p > 0 we define the

space Lp = Lp(Ω,F , P ) as the collection of all complex-valued Borel measurable

function X such that

E (|X|p) < ∞.

In particular, if p = 2 then X is said to be square-integrable. Moreover, we set

‖X‖p = (E |X|p)
1

p , X ∈ Lp.

• Modes of Convergence

Now, let A, An, n = 1, 2, 3, ... be a sequence of random variables defined on the

same probability space (Ω,F , P ).

Definition A.2 (Convergence in Distribution). The sequence (An) converges

in distribution or converges weakly to the random variable A, written An
d→ A, if

for all bounded continuous functions f the relation

Ef(An) → Ef(A), n → ∞,

holds.

Definition A.3 (Convergence in Probability). We say that (An) converges

in probability to the random variable A (An
P→ A) if for all positive ε the relation

P (|An − A| > ε) → 0, n → ∞

holds.
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Theorem A.1. (a) Convergence in probability implies convergence in distribution

(Ash, 2000, Theorem 7.1.7 a).

(b) The converse is true if and only if A = a a.s. for some constant a

(Ash, 2000, Theorem 7.1.7 c).

Definition A.4 (Almost Sure Convergence). We say the (An) converges al-

most surely (a.s.) to the random variable A (An
a.s.→ A) if for P -almost all ω ∈ Ω

the relation

An(ω) → A(ω), n → ∞

holds.

Remark A.2. 1. This means that

P (An → A) = P ({w : An(ω) → A(ω)}) = 1.

In such a case the property is said to hold with probability 1 or almost

surely. In nonprobabilistic contexts, a property that holds for ω outside a

set of (probability) measure zero is said to hold almost everywhere or for

almost all ω.

2. Convergence with probability 1 implies convergence in probability and hence

convergence in distribution. In fact, for every ε > 0,

P (An → A) = 1 =⇒ P (|An − A| > ε) → 0.

Definition A.5 (Lp-Convergence). Let p > 0. We say that (An) converges in

Lp or in the pth mean to the random variable A (An
Lp

→ A) if E |A|p < ∞ and

E |An|p < ∞ and

E |An − A|p → 0, n → ∞
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Remark A.3. 1. By Markov’s inequality, P (|An − A| > ε) ≤ ε−pE |An − A|p

for positive p and ε. Thus An
Lp

→ A implies An
P→ A. The converse is in

general not true.

2. For p = 2, the L2-convergence is also referred to as convergence in mean

square.

• Wick Product

Let

hn(x) := (−1)n exp(
x2

2
)

dn

dxn

(
exp(−x2

2
)

)
; n = 0, 1, 2, ...

and

ξn(x) := π−1/4 ((n − 1)!)−1/2
hn−1

(√
2x
)

exp(−x2

2
) n = 1, 2, ...

Further let J be the set of all multi-indices α = (α1, ...) of finite length, with

αi ∈ N ∪ {0} for all i. For α = (α1, ..., αm) ∈ J define

Hα(ω) = hα1
(< ω, ξ1 >)hα2

(< ω, ξ2 >)...hαm
(< ω, ξm >).

Moreover, the space (S)∗ of Hida distributions is the set of all formal expansions

G(ω) =
∑

α∈J

bαHα(ω)

such that
∑

α∈J

b2
αα! (2N)−qα

< ∞ for some q ∈ N.

Definition A.6 (The Wick Product). Let

F (ω) =
∑

α∈J

aαHα(ω) ∈ (S)∗

and

G(ω) =
∑

β∈J

bβHβ(ω) ∈ (S)∗.
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Then the Wick Product of F and G, F � G, is defined by

(F � G) (ω) =
∑

α,β∈J

aαbβHα+β(ω)

=
∑

γ∈J

( ∑

α+β=γ

aαbβ

)
Hγ(ω).

A.2 Brownian Motion

In the continuous time case, many models of ‘complex’ structure one played by

Brownian motion. The concept of Brownian motion goes back to 1828 when the

botanist R. Brownian described the random movement of particles of pollen in

water. It was observed that a particle moved in an irregular, random fashion.

Brownian motion as a mathematical concept was introduced for the first time by

L. Bachelier (1900) and A. Einstein (1905). A rigorous mathematical theory was

given by N. Wiener (1923). For this reason the Brownian motion is often called

the Wiener process and denoted by Wt.

Since Brownian motion and fractional Brownian motion are both Gaussian

processes, in the following, we define all terms for a Gaussian process.

If V is any d-dimensional random vector, then we define the mean vector

of

V =




V1

V2

...

Vd




to be the vector µ = E[V ] =




µ1

µ2

...

µd




,

and we define the covariance matrix of V to be
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∑
=




σ11 σ12 . . . σ1d

σ21 σ22 . . . σ2d

...
...

...

σd1 σd2 . . . σdd




, where σij = E [(Vi − µi)(Vj − µj)] .

A d-dimensional random vector V is said to have the multivariate Gaussian

distribution with mean µ and covariance
∑

if the density of V is given by

(2π det
∑

)−
d
2 exp

(
−1

2
(x − µ)T

∑−1(x − µ)
)

∀x ∈ R
d.

A stochastic process (Xt)t≥0 is called a Gaussian process if it has the prop-

erty that the vector (Xt1 , Xt2 , ..., Xtn) has the multivariate Gaussian distribution

for any finite sequence 0 ≤ t1 < t2 < ... < tn. A Gaussian process with zero mean

is called a centered Gaussian process. The distribution of a process is determined

by all joint distributions and the density of a multivariate Gaussian distribution

is explicitly given through its mean and covariance matrix. Indeed, if (Xt)t≥0

is a Gaussian process, then its distribution is determined by its mean function

µt = EXt and its covariance function

R(t, s) = E [(Xt − µt) (Xs − µs)] .

Definition A.7 (Brownian motion). Brownian motion (Wt)t≥0 is a stochastic

process defined on some probability space (Ω,F , P ) with

• (Normal increments) Wt − Ws has normal distribution with mean 0 and

covariance t − s, s < t. This implies with s = 0 that Wt − W0 has N (0, t)

distribution.

• (Independent increments) Wt−Ws is independent of the past i.e., of Wu, 0 ≤

u ≤ s.
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• (Continuous path) P -a.s. t 7→ Wt(ω) is a continuous function of t.

(For the existence of Brownian motion see, for example, Billingsley, 1995

p. 503) The Brownian motion (Wt)t≥0 is standard if

W0 = 0 P -a.s. EWt = 0, EW 2
t = t

where P -a.s. means almost surely with respect to the measure P . Moreover, one

can easily see that the covariance function of standard Brownian motion (Wt)t≥0

is given by

cov(Wt, Ws) = min(s, t). (A.1)

In fact, suppose, without loss of generality, that s < t. Then

E(WtWs) = E [(Wt − Ws + Ws)Ws]

= E
[
(Wt − Ws)Ws + W 2

s

]

= E [(Wt − Ws)Ws] + EW 2
s

= EW 2
s = s

= min(s, t).

One can see from the covariance function of fractional Brownian motion (10) on

page 10 that when H = 1
2

the covariance function becomes

R(t, s) =
1

2
(t + s − |t − s|) .

The right hand side is, in fact, min(s, t). This means that when H = 1
2

the

fractional Brownian motion becomes Brownian motion. Notice that some authors

define a standard Brownian motion to be a centered Gaussian process having the

covariance function (A.1).

Another important notion of Brownian motion is the variation of the paths.

Suppose X = (Xt)t≥0 is a continuous stochastic process on (Ω,F , P ), then for
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p > 0 the p−variation of the process of (Xt)t≥0 is defined as

[X, X]t := P − lim
n→∞

n∑

k=1

∣∣Xtk − Xtk−1

∣∣p (A.2)

where P − lim means limit in probability, for each n, {tk}n
k=0 is a partition of

[0, t] ⊂ [0, T ] with 0 = t0 < t1 < t2 < ... < tn = t, and the limit is taken over all

partition with, for each n,

δn = max
1≤k≤n

{tk − tk−1} → 0

as n → ∞. When p = 1 and p = 2, (A.2) is called the (first) variation and

quadratic variation of the process (Xt)t≥0, respectively. The process (Xt)t≥0 is

said to have bounded (finite) p-variation provided that the limit (A.2) exists on

any fixed finite interval. Suppose further that Y = (Yt)t≥0 is another stochastic

process defined on the same space. Then the quadratic covariation of Xt and Yt

on [0, t] is defined by the following limit

[X, Y ]t = P − lim
n→∞

n∑

k=1

[(
Xtk − Xtk−1

) (
Ytk − Ytk−1

)]
.

Remark A.4. The mathematical analysis gives the following results:

1. If X is continuous and of bounded variation (i.e., p = 1) then its quadratic

variation is zero (see, e.g., Klebaner, 1998 Theorem 1.10).

2. If X and Y are continuous and either X or Y is of bounded variation. Then

[X, Y ]t = 0 (Klebaner, 1998 Theorem 1.11)

The following theorem shows that almost every Brownian path is of un-

bounded variation on every interval while its quadratic variation over [0, T ] is

t.

Theorem A.2. Quadratic variation of Brownian motion over [0, t] is t.
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Corollary A.1. Almost every Brownian path is of unbounded variation on [0, t].

However, as in Mikosch (1998) and the references therein, it is well known

that the sample paths of Brownian motion have bounded p−variation on any

fixed finite interval, provided that p > 2 and unbounded p−variation for p ≤ 2.

According to the proof of Theorem A.2 we have

E
[(

Wtk − Wtk−1

)2 − (tk − tk−1)
]2

= 2 (tk − tk−1)
2

when tk−tk−1 is very small, (tk − tk−1)
2 is very small and we have the approximate

equation

(
Wtk − Wtk−1

)2 ' (tk − tk−1)

in mean square. Hence in this sense we get

∫ t

0

(dWt)
2 =

∫ t

0

dt

or, informally,

d[W, W ]t = dWtdWt = dt. (A.3)

Moreover, by Remark A.4(2) with Xt = Wt and Yt = t we have the quadratic

variation of Wt and t:

[W, ·]t = 0

since Wt is of continuous path and t is of bounded variation. In other words

∫ t

0

dWudu = 0 or d[W, ·]t = dWtdt = 0. (A.4)

Similarly it follows from Remark A.4(1), with Xt = t, that

∫ t

0

(dt)2 = 0 or d[·, ·]t = (dt)2 = 0. (A.5)

Theorem A.3. Almost every Brownian path is of unbounded variation on every

interval.
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A.3 Ito Processes and Ito Formulae

Let (Ω,F , (FW
t )t≥0, P ) be a filtered probability space satisfying the usual condi-

tion, W = (Wt,FW
t )t≥0 be a standard Brownian motion and let f = (f(t, ω))t≥0,ω∈Ω

be a random function.

The stochastic integral

∫ T

S

f(s, ω)dWs(ω)

is defined as a kind of Riemann-Stieltjes sum. That is, first divide the interval

[0, t] into n sub-intervals: S = t0 ≤ t1 ≤ ... ≤ tn = T. Then choose points {τi}

for i = 1, 2, ..., n, such that τi lies in the i-th sub-interval: ti−1 ≤ τi ≤ ti. The

stochastic integral is now defined as a limit of partial sums, I = limn→∞ Sn (in

some sense) with

Sn =

n∑

i=1

f(τi, ω)
[
Wti − Wti−1

]
(ω).

Unlike the Riemann-Stieltjes integral, it does make a difference what points τi we

choose. The following two choices have turned out to be most useful ones:

1. τi = ti−1 (the left end point), which leads to the Ito integral, from now on

denoted by ∫ T

S

f(s, ω)dWs(ω) (limit in probability)

and

2. τi = (ti−ti−1)
2

(the mid point), which leads to Stratonovich integral, denoted

by ∫ T

S

f(s, ω)dWs(ω) (limit in probability).

Throughout this thesis, unless stated, the stochastic integral means Ito in-

tegral.
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We now describe our class of functions for which the Ito integral will be

defined:

Definition A.8. Let V = V (S, T ) be the class of functions

f : [0,∞) × Ω → R

such that

1. (t, ω) 7→ f(t, ω) is B × F -measurable, where B denotes the Borel σ-algebra

on [0,∞).

2. f(t, ω) is FW
t -measurable.

3. E
∫ T

S
f 2(s, ω)ds < ∞.

To define the Ito integral

It(f) =

∫ T

S

f(s, ω)dWs(ω)

for functions f ∈ V, we first define It(fn) for a sequence of simple functions fn.

For each function f ∈ V can be approximated by such fn. We then use this to

define
∫

fdW as the limit of
∫

fndW as fn → f .

In detail, we consider the functions fn ∈ V of the form

fn(t, ω) =

N∑

i=1

y
(n)
i−1(ω)I(ti−1,ti](t), n = 1, 2, 3, ... (A.6)

where I is the indicator function of the set G: IG(x) = 1 if x ∈ G otherwise

IG(x) = 0. Note that since fn ∈ V, each function y
(n)
i must be FW

ti
-measurable.

For these functions fn we define the Ito integral as

It(fn) =
N∑

i=1

y
(n)
i−1(ω)

[
Wti − Wti−1

]
(ω). (A.7)

Now we make the following important observations:
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Remark A.5. 1. The Ito isometry: Let ϕ ∈ V. If ϕ(t, ω) is bounded and of

the form (A.6) then

E

(∫ T

S

ϕ(s, ω)dWs(ω)

)2

= E

∫ T

S

ϕ2(s, ω)ds. (A.8)

2. Let g ∈ V be bounded and g(·, ω) continuous for each ω. Then there exist

functions fn ∈ V of the form (A.6) such that

E

∫ T

S

(g − fn)2
dt → 0 as n → ∞.

3. Let h ∈ V be bounded. Then there exist bounded functions gn such that

gn(·, ω) is continuous for all ω and n, and

E

∫ T

S

(h − gn)2
dt → 0 as n → ∞.

4. Let f ∈ V. Then there exists a sequence {hn} ⊂ V such that hn is bounded

for all n and

E

∫ T

S

(f − hn)2
dt → 0 as n → ∞.

We are ready to complete the definition of the Ito integral

∫ T

S

f(s, ω)dWs(ω) for f ∈ V.

That is, if f ∈ V we choose, by Remark A.5(2-4), functions ϕn ∈ V of the form

(A.6) such that

E

∫ T

S

(f − ϕn)2
dt → 0.

Then define

It(f) :=

∫ T

S

f(s, ω)dWs(ω) := lim
n→∞

∫ T

S

ϕn(s, ω)dWs(ω).

The limit exists as an element of L2(Ω,F , P ), since
{∫ T

S
ϕn(s, ω)dWs(ω)

}
forms

a Cauchy sequence in L2(Ω,F , P ), by Remark A.5(1).

We summarize this as follows:
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Definition A.9. Let f ∈ V (S, T ). Then the Ito integral of f (from S to T ) is

defined by

∫ T

S

f(s, ω)dWs(ω) := lim
n→∞

∫ T

S

ϕn(s, ω)dWs(ω) limit in L2(Ω,F , P ) (A.9)

where {ϕn} is a sequence of functions of the form (A.6) such that

E

∫ T

S

(f(t, ω) − ϕn(t, ω))2 dt → 0 as n → ∞. (A.10)

Note that such a sequence {ϕn} satisfying (A.10) exists by Remark A.5(2-

4) above. Moreover, by Remark A.5(1) the limit in (A.9) exists and does not

depend on the actual choice {ϕn}, as long as (A.10) holds. Furthermore, from

Remark A.5(1) and (A.9) we get the following important result.

Corollary A.2. (The Ito Isometry)

E

(∫ T

S

f(s, ω)dWs(ω)

)2

= E

∫ T

S

f 2(s, ω)ds (A.11)

(see also Steele, 2001 p.85).

Corollary A.3. If f(t, ω), fn(t, ω) ∈ V (S, T ) for n = 1, 2, ... and E
∫ T

S
(f(t, ω) −

fn(t, ω))2dt → 0 as n → ∞, then

∫ T

S

fn(t, ω)dWs(ω) →
∫ T

S

f(t, ω)dWs(ω) in L2(Ω,F , P ) as n → ∞.

Theorem A.4. Let f, g ∈ V (0, T ) and let 0 ≤ S < U < T. Then

(i)
∫ T

S
fdWs =

∫ U

S
fdWs +

∫ T

U
fdWs for almost all ω

(ii)
∫ T

S
(cf + g) dWs = c

∫ T

S
fdWs +

∫ T

S
gdWs (c constant) for almost all ω

(iii) E
∫ T

S
fdWs = 0

(iv)
∫ T

S
fdWs is FW

t -measurable.
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The stochastic integral defined as (A.9) is called Ito integral. Moreover, if

(Ω,F , (FW
t )t≥0, P ) is a filtered probability space and W = (Wt)t≥0 is a Brownian

motion then we define an Ito process as the followings:

Definition A.10. X = (Xt)t≥0 is an Ito process if it can be written as

P − a.s. ∀t ≤ T Xt = X0 +

∫ t

0

asds +

∫ t

0

bsdWs, (A.12)

where X0 is FW
0 -measurable and (at)0≤t≤T and (bt)0≤t≤T are FW

t -adapted processes

with ∫ t

0

|as| ds < +∞ P − a.s.

and ∫ t

0

|bs|2 ds < +∞ P − a.s.

For ease of notation, one uses the following (formal) differential notation

in place of the integral notation (A.12):

dXt = at(ω)dt + bt(ω)dWt (A.13)

and says that the process X = (Xt)t≥0 has the stochastic differential (A.13).

Furthermore, it follows from (A.3), (A.4) and (A.5) that

d[X, X]t = dXtdXt = b2
t (ω)dt

or, in fact the quadratic variation of X is

[X, X]t =

∫ t

0

b2
s(ω)ds.

In this context, the martingale property is a very important notion since

it relates directly to the notion of arbitrage. In fact, it is easily seen that an Ito

integral is a martingale. Let us consider the Ito integral:

Yt =

∫ t

0

fs(ω)dWs.
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Since ft(ω) is FW
t -adapted then, for s ≤ t,

E
[
Yt | FW

s

]
= E

[∫ s

0

fu(ω)dWu +

∫ t

s

fu(ω)dWu | FW
s

]

= E

[∫ s

0

fu(ω)dWu | FW
s

]
+ E

[∫ t

s

fu(ω)dWu | FW
s

]

=

∫ s

0

fu(ω)dWu + E

∫ t

s

fu(ω)dWu

=

∫ s

0

fu(ω)dWu.

At this point another question may arise that whether the Ito process is a mar-

tingale. The following theorem answers this question.

Theorem A.5. Let X = (Xt)t≥0 be an Ito process defined on a filtered probability

space (Ω,F , (FW
t )t≥0, P ) :

Xt = X0 +

∫ t

0

as(ω)ds +

∫ t

0

bs(ω)dWs

where the FW
t -adapted processes a = (at(ω))t≥0 and b = (bt(ω))t≥0 satisfy the

conditions in Definition A.10. Then X is a martingale (relatively to the Brownian

filtration (FW
t )t≥0) if and only if at(ω) = 0 almost surely, for every t ≥ 0.

Proof. Suppose first that at(ω) = 0 almost surely, for all t ≥ 0. Then

Xt − X0 =

∫ t

0

bs(ω)dWs

and so by the above discussion, the process (Xt − X0)t≥0 is a martingale. It follows

that the process (Xt)t≥0 is a martingale by the linearity of conditional expectation.

Conversely, suppose that the process (Xt)t≥0 is a martingale. Rewrite the

process (Xt)t≥0 as

Xt − X0 −
∫ t

0

bs(ω)dWs =

∫ t

0

as(ω)ds.

Since the process
∫ t

0
bs(ω)dWs is also a martingale, again by the linearity of con-

ditional expectation, it follows that

∫ t

0

as(ω)ds
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is a martingale. This means that, for any t, u ≥ 0,

∫ t

0

as(ω)ds = E

[∫ t+u

0

as(ω)ds | FW
t

]

= E

[∫ t

0

as(ω)ds +

∫ t+u

t

as(ω)ds | FW
t

]
. (A.14)

Since at(ω) is FW
t -adapted then

E

[∫ t

0

as(ω)ds | FW
t

]
=

∫ t

0

as(ω)ds.

Therefore (A.14) becomes

∫ t

0

as(ω)ds =

∫ t

0

as(ω)ds + E

[∫ t+u

t

as(ω)ds | FW
t

]

or

E

[∫ t+u

t

as(ω)ds | FW
t

]
= 0.

This implies ∫ t+u

t

E
[
as(ω) | FW

t

]
ds = 0.

Dividing through by 1
u
, u > 0 we get

1

u

∫ t+u

t

E
[
as(ω) | FW

t

]
ds = 0.

By the Lebesgue differentiation theorem (see for example Jones, 1993, p. 456),

lim
u→0

1

u

∫ t+u

t

E
[
as(ω) | FW

t

]
ds = E

[
at(ω) | FW

t

]
= at(ω)

almost surely, for almost every t. It follows that at(ω) = 0 almost surely, for

almost every t ≥ 0. �

Besides the stochastic differential of an Ito process one can also find the

stochastic differential of a function. In this section we give formulae for investi-

gating the stochastic differential of a function of a stochastic process which itself

has a stochastic differential. Let (Ω,F , P ) be a probability space and F (t, x)
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be a function defined on R+ × R such that ∂F
∂t

, ∂F
∂x

and ∂2F
∂x2 exist. As usual let

W = (Wt,FW
t )t≥0 be a standard Brownian motion and X = (Xt,FW

t )t≥0 be an

Ito process. Firstly, if x = Wt, the process F = (F (t, Wt))t≥0 has the stochastic

differential (see also Oksendal, 1998, Theorem 4.1.2):

dF (t, Wt) =

[
∂F

∂t
(t, Wt) +

1

2

∂2F

∂x2
(t, Wt)

]
dt +

∂F

∂x
(t, Wt)dWt. (A.15)

Secondly, if x = Xt whose stochastic differential is of the form (A.13), then the

stochastic differential of the process F = (F (t, Xt))t≥0 is of the form

dF (t, Xt) =

[
∂F

∂t
(t, Xt) + at

∂F

∂x
(t, Xt) +

1

2
b2
t

∂2F

∂x2
(t, Xt)

]
dt + bt

∂F

∂x
(t, Xt)dWt.

(A.16)

The formulae (A.15) and (A.16) are two forms (among many) of Ito formulae.

See, e.g., Chapter 4 of Klebaner (1998) for the derivation of the formulae.

A.4 Stochastic Differential Equations

Let W = (Wt,FW
t )t≥0 be a Brownian motion defined on a filtered probability

space (Ω,F , (FW
t )t≥0, P ) and a(t, x) and b(t, x) be FW

t -measurable functions on

R+ × R. An equation of the form

dXt = a(t, Xt)dt + b(t, Xt)dWt

where X = (Xt)t≥0 is an unknown process is called a stochastic differential equa-

tion. This section is devoted to the existence and uniqueness of solutions for

stochastic differential equations and solution to linear stochastic differential equa-

tions.

In the following theorem, let X = (Xt)t≥0 be an n-dimensional stochastic

process defined on a probability space (Ω,F , P ), W = (Wt,FW
t )t≥0 where FW

t =

σ(Ws, s ≤ t) be an m-dimensional standard Brownian motion (recall that FW
s ⊂
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FW
t ⊂ F , ∀s ≤ t) and FZ

t = σ(Z, Ws, s ≤ t) where Z is an n-dimensional random

variable independent of FW
t , for all t ≥ 0 with EP |Z|2 < ∞.

Theorem A.6 (Existence & Uniqueness Theorem for SDEs). Let T > 0

and b(·, ·) : [0, T ] × R
n → R

n, σ(·, ·) : [0, T ] × R
n → R

n×m be F−measurable

functions satisfying

|b(t, x)| + |σ(t, x)| ≤ C (1 + |x|) ; x ∈ R
n, t ∈ [0, T ] (A.17)

for some constant C, (where |σ|2 =
∑ |σij|2) and such that

|b(t, x) − b(t, y)| + |σ(t, x) − σ(t, y)| ≤ D |x − y| ; x, y ∈ R
n, t ∈ [0, T ] (A.18)

for some constant D. Then the stochastic differential equation

dXt = b(t, Xt)dt + σ(t, Xt)dWt, t ∈ [0, T ], X0 = Z (A.19)

has a unique t-continuous solution

X = (Xt,FZ
t )t≥0 (A.20)

with

E

∫ T

0

|Xt|2 dt < ∞. (A.21)

Proof. (see Oksendal, 1998, p.66-70)

Remark A.6. 1. The uniqueness of the solution means that if (X)0≤t≤T and

(Y )0≤t≤T are two solutions of (A.19) then P -a.s. for all 0 ≤ t ≤ T , Xt = Yt.

2. The uniqueness of the theorem above is called strong or pathwise uniqueness,

while weak uniqueness simply means that any two solutions are identical in

law, i.e. they have the same finite-dimensional distributions.
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The following section is one of the most important contents in the context

of the AAO (Absence of Arbitrage Opportunity) principle. In the language that

the existence of (equivalent) martingale measure is equivalent to the AAO, one

needs to understand how a process acts under one (original) measure and how it

acts under another measure (equivalent to the original one). Moreover, the mea-

sure transform brings the most important theorem (Girsanov’s Theorem) saying

that under a new (but equivalent) measure a stochastic process with drift can be

expressed as a stochastic process without drift and hence is a martingale (under

the new measure).

A.5 Measure Transform

Before introducing some forms of The Girsanov’s Theorem, the first part

of this section begins with how one measure can be transformed to another using

the simple example of two normal distributions on the real line.

Recall the probability density of a normal N (µ, σ2) random variable:

ϕ(µ,σ2)(x) =
1√
2πσ

exp

(
−(x − µ)2

2σ2

)
, x ∈ R,

and write

Φ(µ,σ2)(x) =

∫ x

−∞
ϕ(µ,σ2)(y)dy, x ∈ R

for the corresponding distribution function. Consider two pairs (µ1, σ
2
1) and

(µ2, σ
2
2) of parameters and define

f1(x) =
ϕ(µ1 ,σ2

1
)(x)

ϕ(µ2 ,σ2
2
)(x)

and f2(x) =
ϕ(µ2,σ2

2
)(x)

ϕ(µ1,σ2
1
)(x)

.
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Obviously,

Φ(µ1 ,σ2
1
)(x) =

∫ x

−∞
ϕ(µ1 ,σ2

1
)(y)dy

=

∫ x

−∞
ϕ(µ1 ,σ2

1
)(y)

ϕ(µ2,σ2
2
)(x)

ϕ(µ2,σ2
2
)(x)

dy

=

∫ x

−∞
f1(y)dΦ(µ2,σ2

2
)(y).

Similarly,

Φ(µ2 ,σ2
2
)(x) =

∫ x

−∞
f2(y)dΦ(µ1,σ2

1
)(y).

The function f1 and f2 are called density function (or Radon-Nikodym derivative)

with respect to Φ(µ1 ,σ2
1
)(x) and Φ(µ2 ,σ2

2
)(x), respectively.

For example, suppose that a random variable X has standard normal

N (µ, 1). This presumes a probability P under which X is N (µ, 1). Recall that

the density function of N (µ, 1) distribution is

ϕ(µ,1)(x) =
1√
2π

exp

(
−(x − µ)2

2

)
, x ∈ R,

hence,

P (X ≤ x) = Φ(µ,1)(x) =

∫ x

−∞
ϕ(µ,1)(y)dy, x ∈ R.

By the definition of a density function, the probability of a set A on the line is

the integral of the density over this set,

PX(A) = P (X ∈ A) =

∫

A

ϕ(µ,1)(x)dx =

∫

A

dPX .

In infinitesimal notation this relation is often written as

dPX = PX(dx) = P (X ∈ dx) = ϕ(µ,1)(x)dx.

Now, define a new probability Q by

dQ = e−µX+µ2/2dP.
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Then in view of density function

Q(X ≤ x) =

∫ x

−∞
e−µy+µ2/2dP

=

∫ x

−∞
e−µy+µ2/2ϕ(µ,1)(y)dy

=

∫ x

−∞
e−µy+µ2/2 1√

2π
e−(y−µ)2/2dy

=

∫ x

−∞

1√
2π

e−y2/2dy

=

∫ x

−∞
ϕ(0,1)(y)dy.

We see that X ∼ N (µ, 1) under P but it has N (0, 1) distribution under Q.

Remark A.7. If P is a probability such that X is N (µ, 1), then X−µ has N (0, 1)

distribution. This is operation on the outcome x itself, and X − µ has N (0, 1)

under the same probability P . But here we change the probability measure P to

Q, we leave the outcomes as they are, but assign different law to them.

Let us recall here that if X = (Xt,FW
t )t≥0 is a stochastic process on

(Ω,F , P ) where FW
s ⊂ FW

t ⊂ F , ∀s ≤ t, then X is called an Ito process if X

is of the form

Xt = X0 +

∫ t

0

µ(u, ω)du +

∫ t

0

σ(u, ω)dWu, (A.22)

provided that the two integrals are well-defined. The integral form above can be

written in the differential notation:

dXt = µ(t, ω)dt + σ(t, ω)dWt,

called (Ito) stochastic differential equation. Moreover, if µ = 0 the process X is

referred to as a stochastic process without drift.

Let W = (Wt)t≥0 be a standard Brownian motion defined on (Ω,F , P ).

One can see that the process of the form

W̃t = qt + Wt
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where q is a constant, is not a standard Brownian motion under that probability

P unless q = 0. However, if one changes the measure P for another probability

measure Q (in which Q is equivalent to P ), the Brownian motion with drift can

also be viewed as a Brownian motion without drift under the new probability Q.

This is the content of the famous Girsanov’s Theorems.

Girsanov’s theorem is an important tool for the study of the martingale

measure for models of financial markets. So we present here some forms of this

theorem. In Section 2.3, we will recall also a criterion for free arbitrage as an

application of this theorem. Then, in Section ??, we will apply it to the problem

of free arbitrage for our fractional model.

• Girsanov’s Theorem

Since it is known that an Ito process without drift is a martingale (see Section

1.2.3), one is interested in whether a stochastic process with drift can be viewed

as a process without drift. Girsanov theorem shows how to change the drift of an

Ito stochastic differential equation by changing its law to obtain a process without

drift. It says that if we change the drift coefficient of a given Ito process, the law

of the process will not change dramatically. In fact, the law of the new process

will be absolutely continuous with respect to the law of the original process and

one can compute explicitly the Radon-Nikodym derivative.

Now, let us turn back to the Girsanov theorem. Let W = (Wt)t≥0 be

a standard Brownian motion defined on (Ω,F , P ) and FW
t be the σ−algebra

generated by random variables Ws; s ≤ t (FW
s ⊂ FW

t ⊂ F , s ≤ t). In other words,

Ft is the smallest σ−algebra containing all sets of the form

{ω; Wt(ω) ∈ F, t ≥ 0} ,

where F ⊂ R is Borel set.
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In brief, the Girsanov theorem I shows that under some conditions the Ito

process of the form

Y (t) =

∫ t

0

a(s, ω)ds + W (t); Y (0) = 0, t ≤ T

is a Brownian motion with respect to a new probability Q on (Ω,F). This result

brings the Girsanov theorem II which says that the Ito process of the form

dY (t) = β(t, ω)dt + θ(t, ω)dW (t), t ≤ T

can be written as

dY (t) = α(t, ω)dt + θ(t, ω)dW̃ (t), t ≤ T

where W̃ (t) is a Brownian motion with respect to new probability Q. One can see

that under the new driving process W̃ (t) the drift β(t, ω) of the Ito process Y (t)

is changed to α(t, ω) while the volatility θ(t, ω) is unchanged.

Finally, the Girsanov theorem III shows that the P -law of the Ito diffusion

Xx(t) of the form

dX(t) = b(X(t))dt + σ(X(t))dW (t), t ≤ T, X(0) = x

and the Q-law of the Ito process Y x(t) of the form

dY (t) = [γ(t, ω) + b(Y (t))] dt + σ(X(t))dW (t), t ≤ T, Y (0) = x

are the same. In all cases, the measures P and Q are equivalent (see Section 2.3

for the definition). The precise statements are the followings:

Theorem A.7 (Girsanov Theorem I). Let Y (t) ∈ R be an Ito process of the

form

dY (t) = a(t, ω)dt + dW (t); t ≤ T, Y0 = 0,
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where T ≤ ∞ is a given constant and W (t) is Brownian motion. Put

Mt = exp

(
−
∫ t

0

a(s, ω)dWs −
1

2

∫ t

0

a2(s, ω)ds

)
; t ≤ T. (A.23)

Assume that a(s, ω) satisfies Novikov’s condition

EP exp

(
1

2

∫ t

0

a2(s, ω)ds

)
< ∞ (A.24)

Define the measure Q on (Ω,F) by

dQ(ω) = MT (ω)dP (ω). (A.25)

Then Y (t) is a Brownian motion with respect to probability law Q, for t ≤ T.

Proof. (see Oksendal, 1998, p.154)

Theorem A.8 (Girsanov Theorem II). Let Y (t) ∈ R be an Ito process of the

form

dY (t) = β(t, ω)dt + θ(t, ω)dW (t); t ≤ T (A.26)

where W (t) is Brownian motion, β(t, ω) and θ(t, ω) are processes on R. Suppose

there exist Ft−adapted and square integrable processes u(t, ω) and α(t, ω) such

that

θ(t, ω)u(t, ω) = β(t, ω) − α(t, ω) (A.27)

and assume that u(t, ω) satisfies Novikov’s condition

EP exp

(
1

2

∫ t

0

u2(s, ω)ds

)
< ∞. (A.28)

Put

Mt = exp

(
−
∫ t

0

u(s, ω)dWs −
1

2

∫ t

0

u2(s, ω)ds

)
; t ≤ T (A.29)

and

dQ(ω) = MT (ω)dP (ω) on F . (A.30)
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Then

Ŵ (t) :=

∫ t

0

u(s, ω)ds + W (t); t ≤ T (A.31)

is a Brownian motion with respect to Q and in terms of Ŵ (t) the process Y (t)

has the stochastic integral representation

dY (t) = α(t, ω)dt + θ(t, ω)dŴ (t). (A.32)

Proof. (see Oksendal, 1998, p.156)

Theorem A.9 (Girsanov Theorem III). Let X(t) = Xx(t) ∈ R and Y (t) =

Y x(t) ∈ R be an Ito diffusion and an Ito process, respectively, of the forms

dX(t) = b(X(t))dt + σ(X(t))dW (t); t ≤ T, X(0) = x (A.33)

dY (t) = [γ(t, ω) + b(Y (t))] dt + σ(Y (t))dW (t); t ≤ T, Y (0) = x (A.34)

where the function b,σ : R → R satisfy the conditions of theorem (A.6) and γ(t, ω)

is Ft−adapted and square integrable, x ∈ R. Suppose there exists an Ft−adapted

and square integrable process u(t, ω) such that

σ(Y (t))u(t, ω) = γ(t, ω)

and assume that u(t, ω) satisfies Novikov’s condition

EP exp

(
1

2

∫ T

0

u2(s, ω)ds

)
< ∞.

Define Mt, Q and Ŵ (t) as in (A.29), (A.30) and (A.31). Then

dY (t) = b(Y (t))dt + σ(Y (t))dŴ (t).

Therefore, the Q-law of Y x(t) is the same as the P -law of Xx(t); t ≤ T.

Proof. (see Oksendal, 1998, p.157)
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Abstract

In this paper we consider a fractional Hull-White model driven by a frac-

tional Brownian motion. We use an approximate approach to find the solution of

this model that exhibits a long-range behavior of the interest.

1. Introduction

It is well-known in mathematical finance that the Hull-White model for

interest rt has the following form

drt =
(
b(t) − a(t)rt

)
dt + σ(t)dWt, (1.1)

where a(t), b(t) and σ(t) are deterministic continuous functions of t and a(t) > 0,

σ(t) > 0, and Wt is a standard Brownian motion. This model is very useful in

practice of financial markets, it gives also the price of zero-coupon bonds corre-

sponding to each value of the rate rt.

But each value of rt can influence upon its behavior in some time range.

Correspondingly, the prices of bonds at a time t can have some consequences on

their price some time later. In this context, the ordinary Hull-White model is not

suitable since its solution is always a Markov process that has no memory.

The purpose of this paper is to introduce a fractional Hull-White model

for the interest rate rt for which the driving process is replaced by a fractional

Brownian motion, a process of long memory. A fractional Brownian motion BH
t ,

H ∈ (0, 1), is a centered Gaussian process with the covariance function R(t, s)



112

given by

R(t, s) =
1

2

[
t2H + s2H − |t − s|2H

]
.

Notice that if H = 1
2

the fractional Brownian motion is a standard Brownian

motion. However, increments of a fractional Brownian motion are not independent

except for the standard Brownian case. Moreover, for H < 1
2

the increments are

negatively correlated and for H > 1
2

they are positively correlated. In the latter

case, BH
t is a long memory process since the correlation between two observations

that are far apart decay to zero very slowly.

From [6] and the references therein, it is known that for H ∈ (0, 1) the

fractional Brownian motion BH
t has a representation as follows:

BH
t =

1

Γ(α + 1)

[
Zt +

∫ t

0

(t − s)αdWs

]

where α = H − 1
2
, Γ(·) is the gamma function, (Wt)t≥0 is a standard Brownian

motion and

Zt =

∫ 0

−∞
[(t − s)α − (−s)α] dWs.

Since Zt is of absolutely continuous trajectories, the long-range property of BH
t is

essentially expressed by the term

Bt =

∫ t

0

(t − s)αdWs.

Now, let us consider the fractional Hull-White model for the interest rt of the

form:

drt =
(
b(t) − a(t)rt

)
dt + σ(t)dBt, (1.2)

where Bt is a fractional Brownian motion of Hurst index H(0 < H < 1) defined

by

Bt =

∫ t

0

(t − s)H− 1

2 dWs (1.3)

and σ(t) is a differentiable function of t ∈ [0, T ], σ(t) > 0. A solution rt of (1.2) is

a long memory process satisfying the following relation:

rt = r0 +

∫ t

0

[b(s) − a(s)rs]ds + σ(t)Bt. (1.4)

2. Approximate Model
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Starting from (1.1) we introduce in this Section a so-called approximate

model, driven by a semimartingale and we give the solution for this model. And

the convergence to the solution of (1.1) will be proved in the next Section.

The equation (1.2) is rewritten again as

drt =(b(t) − a(t)rt)dt + σ(t)dBt, 0 ≤ t ≤ T (2.1)

rt(t=0) =r0,

where Bt =
∫ t

0
(t − s)αdWs, −1

2
< α < 1

2
(2.2)

and r0 is a given square integrable random variable. Now define, for every ε > 0,

a process Bε
t as follows:

Bε
t =

∫ t

0

(t − s + ε)αdWs. (2.3)

We can notice that
∫ t

0

∫ s

0

(s − u + ε)α−1dWuds =

∫ t

0

∫ t

u

(s − u + ε)α−1dsdWu

=
1

α

[∫ t

0

(t − u + ε)αdWu − εα

∫ t

0

dWu

]

=
1

α
[Bε

t − εαWt] .

By the above computation we get

Bε
t = α

∫ t

0

ϕε
sds + εαWt (2.4)

where

ϕε
t =

∫ t

0

(t − s + ε)(α−1)dWs.

Since α
∫ t

0
ϕε

sds is of bounded variation and εαWt is a martingale, then Bε
t is a

semimartingale. This result was stated in [6].

Furthermore, from [6] it was also proved that Bε
t converges to Bt in L2(Ω)

uniformly with respect to t ∈ [0, T ]. We now consider an approximate model

defined for each ε > 0 as follows:

drε
t =
(
b(t) − a(t)rε

t

)
dt + σ(t)dBε

t , 0 ≤ t ≤ T (2.5)

rε
t(t=0) =r0,
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where Bε
t is defined by (2.3) and the random variable r0 is exactly equal to the

value given in the initial condition of (2.1). From (2.4) we have

dBε
t = αϕε

tdt + εαdWt.

Hence, after substituting dBε
t by its above-mentioned expression, (2.5) becomes

drε
t = (b(t) + ασ(t) − a(t)rε

t ) dt + εασ(t)dWt (2.5′)

rε
t(t=0) = r0.

Theorem 1. Suppose that a(t) and b(t) are continuous functions on [0, T ]. Then

for each ε > 0 there exists a unique solution rε
t for (2.5′) given by

rε
t = e−

R t

0
a(s)ds

[
r0 + εα

∫ t

0

σ(s)e
R s

0
a(u)dudWs +

∫ t

0

(
b(u) + σ(u)αϕε

u

)
e

R u

0
a(s)dsdu

]
.

(2.6)

Proof. We split the equation (2.5′) into two equations:

dr
(1)
t = − a(t)r

(1)
t dt + σ(t)εαdWt, 0 ≤ t ≤ T (2.7)

r
(1)
t(t=0) =r

(1)
0

and

dr
(2)
t =

(
b(t) − a(t)r

(2)
t

)
dt + σ(t)αϕε

tdt, (2.8)

r
(2)
t(t=0) =r

(2)
0 ,

where r
(1)
t + r

(2)
t = rε

t satisfies (2.5′) and r
(1)
0 and r

(2)
0 are two square integrable

random variables such that r
(1)
0 + r

(2)
0 = rε

0 (given initial condition). We see that

(2.7) is a linear stochastic differential equation of the form

dr(t) =
(
α(t) + β(t)r(t)

)
dt +

(
γ(t) + δ(t)r(t)

)
dWt.

It is known that if coefficients α, β, γ, δ are continuous functions of t, then the

existence and uniqueness for solution of (2.7) are assured. Moreover, its solution

has the form (see, [3] for example)

r(t) = U(t)

[
r(0) +

∫ t

0

α(s) − δ(s)γ(s)

U(s)
ds +

∫ t

0

γ(s)

U(s)
dWs

]
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where

U(t) = U(0) exp

[∫ t

0

(
β(s) − 1

2
δ2(s)

)
ds +

∫ t

0

δ(s)dWs

]
.

Here we have α(t) = 0, β(t) = −a(t), γ(t) = σ(t)εα, and δ(t) = 0. Then, with

U(0) = 1,

r
(1)
t = e−

R t

0
a(s)ds

[
r
(1)
0 + εα

∫ t

0

σ(s)e
R s

0
a(r)drdWs

]
. (2.9)

Now let us consider the equation (2.8) that can be rewritten in the form:

dr
(2)
t

dt
+ a(t)r

(2)
t = b(t) + σ(t)αϕε

t , 0 ≤ t ≤ T,

This is an ordinary linear differential equation whose solution can be given by:

r
(2)
t = e−

R t

0
a(s)ds

[
r
(2)
0 +

∫ t

0

(b(u) + σ(u)αϕε
u)e

R t

0
a(s)dsdu

]
. (2.10)

Combining (2.9) and (2.10) yields the expression (2.6) for the solution rε
t of (2.5′).

3. Convergence

We note that the equation (1.2) is a fractional linear stochastic differential

equation whose solution is defined by (1.4). Under the regularity assumptions on

a(t) and b(t), it is easy to verify that there exists such a unique solution for (1.2).

Denote this solution by rt and suppose that rε
t is the solution of the corresponding

approximate model (2.5′). Thus rt and rε
t satisfy the following equations:

drt = (b(t) − a(t)rt)dt + σ(t)dBt, 0 ≤ t ≤ T

drε
t = (b(t) − a(t)rε

t )dt + σ(t)dBε
t , 0 ≤ t ≤ T.

Theorem 2. rε
t converges to rt in L2(Ω) uniformly with respect to t ∈ [0, T ] as

ε → 0.

Proof. We have

rt − rε
t = −

∫ t

0

a(s) (rs − rε
s)ds + σ(t)(Bt − Bε

t ) −
∫ t

0

(Bs − Bε
s)dσ(s). (3.1)

Denote by ‖ · ‖ the norm in L2(Ω). Then

‖rt − rε
t ‖ ≤

∫ t

0

|a(s)| ‖rs − rε
s‖ds + |σ(t)|‖Bt − Bε

t ‖

+ ‖Bt − Bε
t ‖ |σ(t) − σ(0)| . (3.2)
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Since a(t) and σ(t) are continuous, hence bounded, on [0, T ] then there exist

positive constants M1, M2 such that

|a(t)| ≤ M1 = max
0≤t≤T

|a(t)| and |σ(t)| ≤ M2 = max
0≤t≤T

|σ(t)|.

Hence,

‖rt − rε
t‖ ≤ M1

∫ t

0

‖rs − rε
s‖ds + 2M2‖Bt − Bε

t ‖. (3.3)

We know that Bε
t → Bt in L2(Ω) uniformly with respect to t ∈ [0, T ] and we have

also the following estimate (see [6])

‖Bt − Bε
t ‖2 = E |Bt − Bε

t |2 ≤ C(α) ε1+2α, (3.4)

where C(α) is a constant depending only on α. Then

‖Bt − Bε
t ‖ ≤ K(α) ε

1

2
+α, (3.5)

where K(α) =
√

C(α). It follows from (3.2), (3.3) and (3.4) that

‖rt − rε
t‖ ≤ M1

∫ t

0

‖rs − rε
s‖ds + M ε

1

2
+α, (3.6)

where M = 2M2K(α). A standard application of Gronwall Lemma will give us:

‖rt − rε
t‖ ≤ eM1tM ε

1

2
+α. (3.7)

Hence

sup
0≤t≤T

‖rt − rε
t‖ ≤ eM1T M ε

1

2
+α → 0 (3.8)

as ε → 0. The proof of Theorem 3.1 is thus complete.

Remarks

1. It is known that a fractional stochastic dynamical system driven by a frac-

tional Brownian motion exhibits a long-range behavior of system states. In

spite of the fact that the interest rate is in general a short rate, its behavior in

some considerably long time has no more Markov property. In this context,

a fractional Hull-White model is needed to understand realistic dynamics of

interest rate.

2. The interest rate is strictly related to bond prices. And as we know, for a

bond market driven by a fractional Brownian motion, in general, the absence

of arbitrage opportunity can not be guaranteed [5]. But by the approximate

approach given by authors of [6], the fractional bond price model can be

approximated by a model driven by a semimartingale where there is no

more any arbitrage opportunity.
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