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 Abstract-- This paper proposes a wavelet-based neural 
network classifier for recognizing power quality disturbances is 
implemented and tested under various transient events. The 
discrete wavelet transform technique is integrated with multiple 
neural networks using a learning vector quantization network as 
a powerful classifier. Various transient events are tested, the 
results show that the classier can detect and classify different 
power quality disturbance types efficiency. 

 
Index Terms-- Power quality disturbance, wavelet transform, 

neural network, pattern recognition   
 

I.  INTRODUCTION 
OWER quality has become an important issue in power 
systems nowadays. The demand for clean power has been 

increasing in the past several years. The reason is mainly due 
to the increased use of microelectronic processors in various 
types of equipment, such as computer terminals, 
programmable logic controller, diagnostic systems, etc. Most 
of these devices are quite susceptible to disturbances of the 
incoming alternating voltage waveform [1]. Poor power 
quality (PQ) may cause many problems for affected loads, 
such as malfunction, instabilities, short lifetime, and so on. 
Poor power quality is normally caused by power-line 
disturbances, such as impulses, notches, momentary 
interruptions, waveshape faults, voltage swell/sag, harmonic 
distortion, and flicker, resulting in failure of end-use 
equipment. In order to improve power quality, the sources and 
causes of such disturbances must be known before appropriate 
mitigating actions can be taken. A feasible approach to 
achieve this goal is to incorporate detection capabilities into 
monitoring equipment so that events of interest will be 
recognized, captured, and classified automatically. Thus, good 
performance monitoring equipment must have functions 
which involve the detection, localization, and classification of 
transient events. 
 Wavelet transform (WT) can hence offer a better 
compromise in terms of localization.   The  wavelet  transform 
decomposes transients into  a  series  of  wavelet  components, 
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each of which corresponds to a time domain signal that covers 
a specific octave frequency band containing more detailed 
information. Such wavelet components appear to be useful for 
detecting, localizing, and classifying the sources of transients 
[2].  Hence, the wavelet transform is feasible and practical for 
analyzing power quality disturbances. 

Santoso et al. [3] proposed to extract the features of power 
quality signals in terms of wavelet coefficients using the 
multiresolution analysis (MRA) as inputs of the neural 
network for identifying impulses, voltage sags, and transient 
oscillations. The detection, localization, and classification 
processes were performed by visual inspection. It yields low 
accuracy. Angrisani et al. [4] proposed to employ the 
continuous wavelet transform (CWT) to estimate the 
disturbance time duration and the discrete wavelet transform 
(DWT) to estimate the disturbance amplitude. The two 
features thus obtained are then used to classify the transient 
disturbance type. It gives medium accuracy.  

Santoso  et  al. [5]  presented a wavelet-based neural 
classifier integrating the DWT, and learning vector 
quantization (LVQ) neural network to become an actual 
power disturbance classifier. The classifier employed the 
DWT coefficients as inputs to multiple LVQ neural networks 
to train and perform waveform recognition but the detection 
and localization processes were performed by visual 
inspection. This paper used wavelet-based neural classifier to 
automatically detect, localize, and classify the transient 
disturbance type, for high accuracy and low usage time. The 
underlying approach of the proposed method is to carry out 
waveform recognition in the wavelet domain using multiple 
neural networks. A final decision about the disturbance type is 
made by combining the outcomes of the networks using 
decision-making schemes. 

 

II.  PATTERN RECOGNITION FOR DISTURBANCE WAVEFORMS 
   Pattern recognition is  a process of perceiving a pattern of a 
given object based on knowledge already possessed. Such 
recognition tasks are performed in a seemingly effortless 
fashion by humans or animals, but they are often extremely 
difficult for computers or any man-made machines. Practical 
pattern recognition techniques find widespread uses in modern 
life, such as handwriting recognition, fingerprint 
identification, and oceanic signal identification to mention a 
few.  
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Power quality disturbance waveform recognition is often 
troublesome because it involves a broad range of disturbance 
categories or classes, and therefore, the decision boundaries of 
disturbance features may overlap. As in most identification 
and classification work, the ultimate goal is to correctly label 
the unknown objects (i.e., signals, images, processes) 
according to their prescribed categories.  There are two main 
approaches to achieve this goal, the parametric and 
nonparametric approaches [6].  In the pattern recognition 
framework, the parametric approach, known as the statistical 
approach, requires a good assumption of the statistical  
distribution of the pattern data. On the other hand, the 
nonparametric approach, known as the neural network 
approach, does not require any statistical assumption of the 
pattern data. This paper employs the neural network approach 
or recognizing power quality disturbance waveforms.                                    f  

III.  WAVELET TRANSFORM 
The method of detection is fairly straightforward. A given 

disturbance waveform is  transformed  into  the  time-scale 
domain using multiresolution signal decomposition (MSD). 
Normally, one- or two-scale signal decomposition is adequate 
to discriminate disturbances from their background because 
the decomposed signals at lower scales have high time 
localization. In other words, high scale signal decomposition 
is not necessary since it gives a poor time localization. 
Assume that we have chosen a specific type of mother wavelet 
with L filter coefficients,  and )(nh )(ng , which form a family 

of scaling functions )(tφ and orthonormal wavelet )(tψ , 

respectively, so  that 
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 The detection and localization processes are then just a 
series of convolution and decimation processes at each 
corresponding scale. At scale one, the electric power signal 

, with N sample points, is decomposed into two other 
signals, and . From the MSD   technique, signal 

and are obtained from 
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 As mentioned in several wavelet transform references, 
signal is a smooth version of the original signal , 
while is the detailed version of the original signal. Both 
signals are referred to as wavelet transform coefficients 
(WTCs) at scale one. These coefficients bring the detection 
information. In power quality disturbance cases, whenever 
disturbances occur in a given sinusoidal waveform, WTCs are 
exclusively larger than their surroundings. As will be made 

clear later, the wavelet transform analysis is sensitive to 
signals with irregularities. Based on this property, it is clear 
that wavelet transform analysis is an appropriate tool to detect 
and localize power quality disturbances. The decomposed 
signals at scale two are given by 
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The implementation of MSD technique is  described  by 

Fig. 1. 
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Fig. 1.  Multiresolution signal decomposition (MSD) diagram. 
 

 Underlying this straightforward process, one should keep 
in mind that the physical understanding of the detection and 
localization of equations (3) and (4) is given by 
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The in (9) can be thought of as “dummy signal” 

generated by a linear combination of the scaling function at 
scale zero. Substituting (1) and (2) into (7) and (8), 
respectively, we have 
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 From (10), it is understood that is simply the smooth 
version of the original signal , since has a low pass 

frequency response. From (11), it is clear that  contains 
only higher frequency components of the signal because 

)(1 nc
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)(ng has a high pass filter response. In practice, the 

construction of is not necessary but it is useful in )(tf



  

understanding the detection and localization processes as 
indicated in (7) and (8). However, signals  and  are  )(1 nc )(1 nd
actually obtained directly from (3) and (4). This makes the 
detection and localization processes very straightforward. The 
detection process for scale two starts from signal where 
this signal can be thought of as  “new” . The above 
process is then repeated. Since the scaling and wavelet 
functions get wider and wider as the scale increases, time 
localization is lost. Thus, it suggests that higher-scale 
decomposition is not necessary. As far as detection in power 
quality disturbances is concerned, two-scale signal 
decomposition of the original signal is normally 
adequate to detect and localize disturbances [1]. 

)(1 nc
)(nco

)(nco

The choice of mother wavelet plays a significant role in 
detecting and localizing various types of disturbances. 
Daubechies’ wavelets with 4, 6, 8, and 10 filter coefficients 
work well in most disturbance detection cases. At the lowest 
scale (scale 1), the mother wavelet is most localized in time 
and oscillates most rapidly within a very short period of time. 
As the wavelet goes to higher scales, the analyzing wavelets 
become less localized in time and it oscillate less due to the 
dilation nature of the wavelet transform analysis. As a result 
of higher scale signal decomposition, fast and short power 
quality disturbances will be detected at lower scales, whereas 
slow and long power quality disturbances will be detected at 
higher scales. Hence, we can detect both fast and slow power 
quality disturbances with a signal type. Since Daub4 has the 
least number of filter coefficients and it gives the shortest 
sup e use Daub4 in our algorithm. port in the family, w                                  

IV.  LEARNING VECTOR QUANTIZATION (LVQ) 
Artificial neural network is a sophisticated networks system 

that is made of many neurons connected with each other. In 
this study, the proposed classification is carried out in sets of 
multiple neural network using a learning vector quantization 
network (LVQ). The LVQ network is a hybrid network which 
uses both unsupervised and supervised learning to form 
classifications [7]. 

 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Learning vector quantization network structure. 

 
In the LVQ network, each neuron in the first layer is 

assigned to a class and several other neurons are often 
assigned to the same class. Each class is then assigned to one 
neuron in the second layer. The number of neurons in the first 
layer ( ) will  therefore  always  be  at  least  the  number  of 
neurons in the second layer ( ) and will usually be larger. 

As with the competitive network, each neuron in the first layer 
of the LVQ network learns a prototype  vector, which allows 
it to classify a region of the input space. Instead of computing 
the proximity of the input and weight vectors by using the 
inner product, the net input of the first layer can be obtained 
by  

1S
2S
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 The output of the first layer of the LVQ network is 
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Therefore the neuron whose weighting vector is closest to 
the input vector will output a 1, and the other neurons will 
output 0. In the LVQ network, the winning neuron indicates a 
subclass, rather than a class. There may be several different 
neurons (subclasses) that make up each class. The second 
layer of the LVQ network is used to combine subclasses into a 
single class. This is done with the matrix. The columns of 

represent subclasses, and the rows represent classes. 
has a single 1 in each column, with the other elements set 

to zero. The row in which the 1 occurs indicates which class 
the appropriate subclass belongs to. 
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              ( )  12 ⇒=kiw Subclass is a part of class.           (14) 
 
 The LVQ learning rule proceeds as follows. At each 
iteration, an input vector  is presented to the network, and 
the distance from  to each prototype vector is computed. 

Then, the hidden neurons compete. If neuron 

p
p

∗i  wins the 
competition, the thi∗  element of  is set to 1. Next,  is 
multiplied by  to get the final output  , which also has 
only one nonzero element, , indicating that is being 

assigned to class 
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2W 2a

∗k p
∗k . The Kohonen rule is used to improve the 

hidden layer of the LVQ network in two ways. First, if  is 

classified correctly, then the weights  of the winning 

hidden neuron move toward . This can be expressed in (15). 
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Second, if  was classified incorrectly, then the weights 

move away from . This can be expressed in (16). 
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 The result will be that each hidden neuron moves toward 
vectors that fall into the class for  which it forms a subclass 
and away from vectors that fall into other classes. 

 



  

V.  WAVELET-BASED NEURAL CLASSIFICATION STRUCTURE 
 The basic idea of the wavelet-based neural classifier is to 
perform waveform recognition in the wavelet domain using 
multiple neural networks. Fig. 3 shows the schematic block 
diagram of the wavelet-based neural classifier which consists 
of preprocessing, processing, and post-processing. The input 
of the neural network is a preprocessing signal. In this case, 
the time domain of power quality disturbance waveform is 
transformed into the wavelet domain before being fed to the 
neural network. This transformation detects and extracts 
disturbance features in the form of simultaneous time and 
frequency information and gradient or slope of the disturbance 
signal using the dyadic  orthonormal  wavelet  transform.  The 
extracted  features  help  the  neural network in distinguishing  
one disturbance event from another. The processing phase 
contains a set of multiple artificial neural networks with 
wavelet transform coefficients as input signals. This 
processing phase performs waveform recognition in the 
wavelet domain since all input signals are in the wavelet 
domain. The output of the processing phase is the type of the 
disturbances. Since multiple neural networks are utilized, a 
post–processing phase is required to combine the outcomes of  
the  multiple  neural networks in order to make a decision 
about the disturbance type and to provide a level of  
confidence  for   the  decision  made. The output of the 
classifier declared that it is a disturbance with belief interval 
of 85-91% as the degree as of belief. 
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Fig. 3.  Schematic block diagram of the wavelet-based neural classifier. 
 

The entire disturbance record (1000 sampling points) is 
used for this purpose. The disturbance features reside in five 
scales of decomposed signals. Teams of  artificial neural 
networks which each team consists of 30 learning vector 
quantization networks are applied. The output of each team is 

then combined to produce a final decision about the 
disturbance with one of the decision making schemes. The 
LVQ must be trained using known disturbance waveforms 
before they can be used as a part of the classifier. Each of the 
LVQ is trained separately and their weight vectors are 
initialized independently. Thus, after training, the weight 
vectors are different from one another. In the testing phase, 
these disturbances are tested along with all other prespecified 
disturbances. The schematic diagram for the testing phase is 
the same as the one shown in Fig. 3. The use of multiple set of 
neural networks arises from the need for achieving a higher 
accuracy rate. This is normally achieved by rejecting 
ambiguous patterns which cannot be recognized by a neural 
network. The use of multiple neural networks also provides a 
means  of   determining   a   degree   of   belief   for   each   
identified disturbance waveform. The voting scheme is the 
simplest method of combining the output of multiple neural 
networks. A decision is made based on which type of 
disturbance waveform receives the most votes.  

 

VI.  DISTURBANCE DATA SET 
The wavelet-based neural classifier presented in this work 

is designed to recognize 6 types of power quality disturbances 
including of  type A low frequency oscillatory transient, type 
B medium frequency oscillatory transient, type C dc offset, 
type D sudden sag, type E gradual sag, and type F cyclic 
voltage fluctuation as described in [8, 9]. Typical disturbance 
waveforms of these kinds are shown in Fig. 4. 
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Fig. 4. Typical disturbance categories in this research. 

 
The power quality disturbance data set are split into the 

training data set and testing data set. Table I shows the 
number of disturbance records required for each type to train 
and test the classifier. The total number of disturbance records 
to train and test the classifier are  780 and 660 records, 
respectively. 

 
TABLE I 

 POWER QUALITY DISTURBANCE DATA SET 
 

 Type A B C D E F Total 
Training 
Testing 

130 
110 

130 
110 

130 
110 

130 
110 

130 
110 

130 
110 

780 
660 



  

VII.  RESULTS 
 This section discusses the simulation of the wavelet-based 
neural network classifier for recognizing power quality 
disturbance types. The proposed method is run by using 
MATLAB program. The random selected signal from 110 
signals of each disturbance type is used to test neural 
networks. The proposed method is able to detect and classify 
all 6 types for power quality disturbances as shown in Table 
II. From Table II, All disturbance types tested are 
differentiated from pure sinusoids. Type E and pure sinusoid 
are identified with 100 % accuracy. Type A is classified with 
92.70 % accuracy and type D is identified with 85.50 % 
accuracy. These results illustrate that many disturbance types 
can be recognized easily, and a few, particularly DC offset 
(type C) and cyclic voltage fluctuation (type F), are difficult to 
distinguish.  
 

TABLE II 
RESULTS OF TESTING CLASSIFICATION METHOD 

 
Type Correctly Incorrect Accuracy rate (%) 

Pure Sine 
A 
B 
C 
D 
E 
F 

110 
102 
98 
85 
94 

110 
80 

- 
8 

12 
25 
16 
- 

30 

100.00 
92.70 
89.10 
77.30 
85.50 

100.00 
72.70 

Total of accuracy rate = 88.20 % 
 
 After testing all power quality disturbances type A, B, C, 
D, E, F, and pure sinusoid, the proposed method is able to 
detect and classify the disturbance types with 88.20 % 
accuracy. Table III shows the performance of the automatic 
detection and localization against some of disturbance type. 
For example, power quality disturbance waveforms of type A  
(No. 15) have exact position point at 25.60 ms and 25.55 ms 
for auto-detection and localization on waveform. Thus,  the 
error is 0.20 %.  After testing all power quality disturbances 
type A, B, C, D, E, and F, the performance of auto-detection 

 localization have the error is less than 5 %. and     

VIII.  CONCLUSION 
 This paper proposed a prototype of wavelet-based neural 
network classifier for power quality disturbance recognition 
and classification. The experimental results showed that the 
proposed method has the ability of recognizing and classifying 
different power disturbance types efficiently. This work leads 
us to believe that wavelet analysis together with neural 
structure, as a new tool, offers a great potential for diagnosis 
of electrical power systems in the area of power quality 
problems. 
 Although the test result of the proposed power quality 
disturbance recognition system is quite promising, the real-life 
power quality disturbance data will not be as simple as those 
simulated waveforms and the size of sampled waveforms is 
hard to be sufficiently large.  Therefore, further adjustment 
and modification is required before this proposed power 

quality disturbance recognition system can be applied in real-
life situation.  

TABLE III 
RESULTS OF AUTO-DETECTION AND LOCALIZATION METHOD 

 
 

Type 
 

No. 
Exact 

Position 
(ms) 

Auto-Detect 
and Localize 

(ms) 

Error 
(%) 

 
 

A 

15 
34 
47 
66 
87 

25.60 
29.20 
15.60 
19.20 
10.40 

25.55 
29.05 
15.55 
19.05 
10.55 

0.20 
0.51 
0.32 
0.78 
1.42 

 
 

B 
 
 

15 
34 
47 
66 
87 

23.10 
40.60 
13.10 
30.60 
25.60 

23.05 
40.55 
13.05 
30.55 
25.55 

0.22 
0.12 
0.38 
0.16 
0.24 

 
 

C 
 
 

15 
34 
47 
66 
87 

23.60 
20.00 
27.60 
24.80 
30.00 

22.60 
20.10 
27.60 
25.10 
30.10 

4.42 
0.50 
0.00 
1.20 
0.33 

 
 

D 
 
 

15 
34 
47 
66 
87 

22.40 
30.00 
22.40 
12.40 
25.20 

22.60 
30.10 
22.60 
12.60 
25.10 

0.88 
0.33 
0.88 
1.59 
0.40 

 
 

E 
 
 

15 
34 
47 
66 
87 

22.60 
35.20 
32.60 
45.20 
27.60 

22.55 
35.05 
32.55 
45.05 
27.55 

0.22 
0.43 
0.15 
0.33 
0.18 

 
 

F 
 
 

15 
34 
47 
66 
87 

22.00 
29.40 
24.40 
12.00 
19.40 

22.05 
29.55 
24.55 
12.05 
19.55 

0.23 
0.51 
0.61 
0.41 
0.77 
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