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Abstract. One class of partially invariant solutions of the Navier–Stokes equations is studied here. This class of solutions is
constructed on the basis of the four-dimensional algebra L4 with the generators

X1 = φ1∂x + φ′
1∂u − xφ′′

1 ∂p, X2 = φ2∂x + φ′
2∂u − xφ′′

2 ∂p,

Y1 = ψ1∂y + ψ ′
1∂v − yψ ′′

1 ∂p, Y2 = ψ2∂y + ψ ′
2∂v − yψ ′′

2 ∂p .

Systematic investigation of the case, where the Monge–Ampere equation (10) is hyperbolic (L fz + k + l ≥ 0) is given. It is
shown that this class of solutions is a particular case of the solutions with linear velocity profile with respect to one or two space
variables.
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1. Introduction

An unsteady motion of incompressible viscous fluid is governed by the Navier–Stokes equations

ut + u · ∇u = −∇ p + �u, ∇ · u = 0, (1)

where u = (u, v, w) is the velocity field, p is the fluid pressure, ∇ is the gradient operator in the
three-dimensional space x = (x, y, z) and � is the Laplacian. The Navier–Stokes equations contain
complete information about the structure of flows under usual temperature and pressure. Despite progress
in numerical methods and techniques, there is considerable interest in finding exact solutions of the
Navier–Stokes equations. Each exact solution has value, first, as the exact description of the real process
in the framework of a given model; secondly, as a model to compare various numerical methods; and
thirdly, as theoretical tool to improve the models used.

One method of constructing exact solutions is group analysis [1]. A historical review of the devel-
opment of group analysis can be found in [2]. Many results obtained by group analysis are collected in
[3]. The method is based on symmetries of given equations. Note that many of invariant solutions of the
Navier–Stokes equations have been known for a long time: these solutions were obtained by assuming a
form of the representation of the solution. Group analysis gives a method for obtaining a representation
of a solution. The first group classification of the Navier–Stokes equations in the three-dimensional case
was done in [4]. The first classification of the two-dimensional Navier–Stokes equations was studied in
[5]. It was shown that the Lie algebra admitted by the Navier–Stokes equations is infinite-dimensional
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Classification of infinite-dimensional subalgebras of this algebra was studied in [6]. There is still no
complete classification of subalgebras of this algebra. For each subalgebra of the admitted algebra one
can try to find an invariant or partially invariant solution. Several papers [7–13] are devoted to invariant
solutions of the Navier–Stokes equations. Short reviews devoted to invariant solutions of the Navier–
Stokes equations can be found in [7, 14–16]. Another class of solutions proposed by group analysis
is the class of partially invariant solutions [1, 17]. The theory of partially invariant solutions is still
developing [18, 19]. While partially invariant solutions of the Navier–Stokes equations have been less
studied [7], there has been substantial progress in studying such classes of solutions of the inviscid gas
dynamics equations [1, 20–26].

It should be noted here that there are also other approaches for constructing exact solutions of
the Navier–Stokes equations. We mention two of them: nonclassical symmetry reductions and direct
methods [16, 27], and linear profile of velocity [28, 29].

This manuscript is devoted to the class of partially invariant solutions, which generalizes the class
considered in [30].

2. One Class of Partially Invariant Solutions

The class of solutions studied in [30] is a class of partially invariant solutions with respect to the group
H with the generators

X = ∂x , Y = ∂y, U = t∂x + ∂u, V = t∂y + ∂v.

There exist no invariant solutions that correspond to this group. In fact, the universal invariant of this
group is t, z, w, p. Hence, the rank of the Jacobi matrix of the universal invariant with respect to
the dependent variables q equals two. Therefore, δ ≥ 2 and one can only construct partially invariant
solutions with respect to this group. According to the classification [18], a partially invariant solution with
minimum defect δ = 2 is a regular partially invariant solution of H (2, 2). In this case a representation
of the partially invariant solution is

w = 2 f (z, t), p = h(z, t), u = u(x, y, z, t), v = v(x, y, z, t).

For the gas dynamics equations such a class of solutions was studied in [19]. V. V. Pukhnachov (oral
communication) noted that for the Navier–Stokes equations this representation can be generalized by
including two arbitrary functions k = k(t) and l = l(t):

w = 2 f (z, t), p = h(z, t) − k(t)x2 − l(t)y2, u = u(x, y, z, t), v = v(x, y, z, t). (2)

The arbitrariness of the functions k(t) and l(t) gives additional possibilities for satisfying boundary
conditions. Representation (2) can also be explained from the group point of view. In fact, let us
consider the four-dimensional group H 4, which is generated by the operators

X1 = φ1∂x + φ′
1∂u − xφ′′

1 ∂p, X2 = φ2∂x + φ′
2∂u − xφ′′

2 ∂p,

Y1 = ψ1∂y + ψ ′
1∂v − yψ ′′

1 ∂p, Y2 = ψ2∂y + ψ ′
2∂v − yψ ′′

2 ∂p.
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Here the functions φi = φi (t), ψi = ψi (t), (i = 1, 2) satisfy the natural conditions for the algebra to
be a four-dimensional algebra:

φ1φ
′
2 − φ′

1φ2 �= 0, ψ1ψ
′
2 − ψ ′

1ψ2 �= 0,

φ1φ
′′
2 − φ′′

1 φ2 = 0, ψ1ψ
′′
2 − ψ ′′

1 ψ2 = 0.

A regular partially invariant solution with respect to the Lie group H 4 has representation (2), where
k = φ′′

i /(2φi ), l = ψ ′′
i /(2ψi ). The solutions studied in [34] and one of the solutions in [27] are particular

cases of (2).

3. Compatibility Conditions

As is well known, the main difficulty in the study of partially invariant solutions is compatibility
analysis of reduced systems. The compatibility analysis can be reduced to a consecutive performance
of algebraic operations of symbolic nature [35, 36]. These operations are related with prolongation of a
system, substitution of composite expressions (transition onto manifold), and finding ranks of matrices.
Typically, the compatibility study of systems of partial differential equations requires a large amount
of analytical calculations, and it is necessary to use a computer system for these calculations. Here the
system REDUCE [37] was used.

For the case k = 0, l = 0 the analysis of compatibility was done in [30]. As was mentioned, the
arbitrariness of the functions k(t) and l(t) gives additional possibilities; however, compatibility analysis
of the overdetermined system obtained after substituting representation (2) into the Navier–Stokes
equations (1), becomes more difficult. Here the compatibility analysis of this overdetermined system is
given.

Introducing the functions û(x, y, z, t), v̂(x, y, z, t) by the formulae:

u = û − x
∂ f

∂z
, v = v̂ − y

∂ f

∂z
,

the second equation of (1) becomes

∂ û

∂x
+ ∂v̂

∂y
= 0.

The general solution of the last equation can be given through the analog of the stream function
ψ = ψ(x, y, z, t):

û = ∂ψ

∂y
, v̂ = −∂ψ

∂x
.

The first two scalar equations of (1) take the form

ψyt + ψyψxy − ψxψyy + 2 f ψyz − x
(

fzt + fzψxy + 2 f fzz − f 2
z

) − y fzψyy

= �ψy − x fzzz + 2xk,

−ψxt − ψyψxx + ψxψxy − 2 f ψxz − y
(

fzt − fzψxy + 2 f fzz − f 2
z

) + x fzψxx

= − � ψx − y fzzz + 2yl. (3)
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The third equation serves for determining the function h(z, t) (if the function f (z, t) is known):

hz + 2 ft − 2 fzz + 4 f fz = 0.

Compatibility conditions are derived with respect to the following equivalence transformations:
representation (2) is invariant with respect to rotations in the (x, y)–plane and shifts in (x, y, z) and t .

3.1. PRELIMINARY ANALYSIS

Let us consider some solutions of (1), which we call simple.
The first solution is a solution of the form

ψ(x, y, z, t) = 1

2
(x2γ (z, t) + y2c(z, t)) + xλ(z, t) + yb(z, t) + xyα(z, t). (4)

This representation is a particular case of the solutions with linear profile of velocity1

u = x(α − fz) + yc + b, v = −xγ − y(α + fz) − λ.

Substituting the representation (4) into (3) and splitting with respect to x and y, one obtains the com-
patibility conditions:

L fz + k + l = −cγ + α2, Lα = α fz + k − l,

Lγ = fzγ, Lλ = λα − bγ Lc = fzc, Lb = λc − αb, (5)

where L is the linear operator

L F ≡ Ft + 2 f Fz − Fzz − fz F.

The second type of solutions has the representation

ψ(x, y, z, t) = x2a(y, z, t) + xb(y, z, t) + g(y, z, t). (6)

Because the Navier–Stokes equations are symmetric with respect to rotations, the case ψyyy = 0 is
similar to the case ψxxx = 0. As in the previous case, after substituting the representation of the solution
into (3) and splitting with respect to x , one obtains compatibility conditions. Two of these conditions are
ay = 0, byy = 0. Hence, the function b(y, z, t) is linear with respect to y: b(y, z, t) = yα(z, t) + λ(z, t).
If a �= 0, then gyyy = 0, but this case corresponds to (4), which was considered earlier. Hence, a = 0.
The remaining compatibility conditions are

L fz + k + l = α2, Lα = α fz + k − l,

Lλ = αλ, Lϕ − ϕyy − (y(α + fz) + λ)ϕy + αϕ = 0, (7)

where ϕ = gy . This solution has a linear profile of velocity with respect to x

u = x(α − fz) + ϕ, v = −y(α + fz) − λ.

1 Solutions with linear profile of velocity with respect to one, two or three space variables were studied in [28, 29].
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Let us consider the representation

ψ(x, y, z, t) = a(x, z, t) + b(y, z, t) + xyα(z, t). (8)

After substitution of this representation into the Navier–Stokes equations one obtains

axxxbyy = 0, axxbyyy = 0.

Without loss of generality, this case can be considered as a particular case of representation (6).
We exclude the above considered solutions from the further study of the compatibility conditions of

system (3).

Remark. A solution of the form

ψ(x, y, z, t) = x2ϕ(z, t) + xλ(z, t) + y2c(z, t) + yb(z, t) + xyα(z, t) + Q(x + yq(z, t), z, t) (9)

is a particular case of (4) if the function Q = Q(ξ, z, t) is a quadratic function with respect to the first
argument. This case corresponds to a linear profile of velocity, which was studied before. If Qξξξ �= 0,
then the compatibility conditions require that q is a constant. By rotating in the (x, y)–plane this case
can be transformed to (6).

3.2. MONGE–AMPERE EQUATION

Adding the first equation of (3) differentiated with respect to x to the second equation differentiated
with respect to y, one obtains

ψ2
xy − ψxxψyy = L fz + k + l. (10)

The right side of this equation only depends on z and t ; therefore it can be regarded as the Monge–
Ampere equation with a constant (depending on the parameters z and t) right side. A method for solving
the Monge–Ampere equation depends on the sign of the right side.

The next theorem is one of the main results of this paper.

Theorem. Any solution of system (3) satisfies the Monge–Ampere equation (10). If the right side of
the Monge–Ampere equation is non-negative, L fz + k + l ≥ 0, then the solution of the overdetermined
system (3) is either a solution of system (5) or system (7).

Before proving the theorem a few comments are in order.
Particular solutions of the Navier–Stokes equations of type (2) with both positive and negative right

sides are known. For example, solutions with linear profile of velocity (4) with respect to x and y
can be of both types, depending on the value of α2 − cγ . For solutions that are linear with respect
to one independent variable x (9), and essentially nonlinear with respect to y, the right side of the
Monge–Ampere equation is positive. In case (6) the type of the Monge–Ampere equation is hyperbolic.

Here we also present two known solutions [27, 34].
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As the first example one can consider a slight generalization of the solution [34]2

u = −�(y − g1(z, t)), u = �(x − g2(z, t)), w = w0,

where w0 is constant and � denotes constant angular velocity. Compatibility conditions for this solution
are

g1t + w0g1z − g1zz + �g2 = 0, g2t + w0g2z − g2zz − �g1 = 0.

This solution can be represented as type (2) if k = −�2/2, l = −�2/2, h = h(t), 2 f = w0. In this
case

L fz + k + l = −�2 ≤ 0. (11)

The second example is the class of steady solutions studied in [27]:

f = f (z), h = 2( f ′(z) − f 2(z)), u = xũ(z), v = −y (̃u(z) + 2( f ′(z))2,

and constants k and l. The functions f (z) and ũ(z) satisfy the equations

ũ′′ − 2 f ũ′ − ũ2 + 2l = 0, f ′′′ − 2 f f ′′ + 2( f ′)2 + 2̃u f ′ + ũ2 = k + l.

For this solution

L fz + k + l = ( f ′ + ũ)2 ≥ 0. (12)

The next section is devoted to the proof of the theorem.

3.3. HYPERBOLIC CASE

Further we consider the hyperbolic case, where the right side of the Monge–Ampere equation (10) is
non-negative. By virtue of this assumption it is denoted

α2(z, t) ≡ L fz + k + l.

It is well known [38] that in this case the Monge–Ampere equation can be integrated3

gy = 2αx + G (gx , z, t) . (13)

where g(x, y, z, t) = ψ(x, y, z, t) + xyα(z, t), and G = G(z, t, ξ ) is an arbitrary function. Substituting
this representation into the first equation (3), with the help of the second equation, one can exclude the
third-order derivatives:

S ≡ b4g2
xx + b5g2

xz + b1gxx + b2gxz − b3 = 0, (14)

2 In [34] the functions g and f do not depend on time t . But this is not significant, because without loss of generality one can
include in these functions dependence on time.

3 There are some studies of an elliptic case of the Monge–Ampere equation, for example [39, 40].
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where

b1 = 4αGξ Gξξ , b2 = 2Gξ z, b4 = (
G2

ξ + 1
)

Gξξ , b5 = Gξξ ,

b3 = x (̂α − 2(k − l)) + yα̂Gξ + ( fz − α)
(
ξGξ − G

) + Gt + 2 f Gz − Gzz − 4α2Gξξ ,

α̂ ≡ Lα − α fz + k − l

By direct calculations the expression Dy S−Gξ Dx S−2gxxGξξ S = 0 can be rewritten as a polynomial
of second order with respect to the derivatives gxx, gxz :

α
(
1 + G2

ξ

)
Gξξξ g2

xx + αGξξξ g2
xz + f1gxx + f2gxz + f3 = 0. (15)

Here Dx and Dy are the total derivatives with respect to x and y, respectively,

f1 = (x (̂α − 2(k − l)) + yα̂Gξ )Gξξ + f̂ 1, f2 = 2(αzGξξ + αGξξ z), f3 = −yαα̂Gξξ + f̂ 3

with some functions f̂ i , (i = 1, 3), which are not explicitly dependent on x and y. Because the
expressions of the functions f̂1 and f̂ 3 are very cumbersome we omit their representations here. For
the treatment of complicated mathematical expressions we used the system REDUCE [37].

Note that if Gξξ = 0, then this is a particular case of the representation (8) or (9). In fact, assume that
Gξξ = 0 or G = qgx +β for some functions q = q(z, t), β = β(z, t). By (13) the function g(x, y, z, t)
has to satisfy the equation

gy − qgx = 2αx + β. (16)

If q = 0, the general solution of (16) is

g = 2αxy + yβ + ϕ(x, z, t),

which is a particular case of (8). If q �= 0, the general solution of (16) is

g = q−1(αx2 + βx) + ϕ(x − qy, z, t),

which is a particular case of (9).

3.4. THE NONLINEAR CASE (Gξξ �= 0)

Let Gξξ �= 0, then Equation (15) with the help of (14) can be rewritten as the quasilinear equation

a1gxx + a2gxz + a3 = 0, (17)

with the coefficients ai = bi Gξξξ − fi Gξξ , (i = 1, 2, 3). The last equation and Equation (14) can
be regarded as a system of linear algebraic equations with respect to x and y. The determinant of this
system is equal to Gξξαα̂(̂α − 2(k − l)).

If α = 0, then by virtue of the definition of α̂ we get α̂ = (k − l), and the following prolongation

Dy H − Gξ Dx H − gxxGξξ H = −6(k − l)gxxGξ Gξξ = 0,
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where H = Dy S − Gξ Dx S − 2gxxGξξ S. Because gxxGξ Gξξ �= 0, then k − l = 0. This means, that
α̂ = 0. In this case

H + 2gxxGξξ S = −2gxx
(
(gxzGξξ + Gξ z)

2 + g2
xxG2

ξξ (1 + G2
ξ )

) = 0.

The last equation contradicts the condition gxxGξξ �= 0. Therefore, α �= 0.

3.4.1. The Case α̂(̂α − 2(k − l)) �= 0
If α̂(̂α − 2(k − l)) �= 0, then αα̂(̂α − 2(k − l))Gξξ �= 0 and, hence, Equations (14) and (17) can be
solved with respect to x and y:

x = 
1(gxx, gxz, gx , z, t), y = 
2(gxx, gxz, gx , z, t). (18)

Differentiating the last equations with respect to x and y, substituting the expressions of
gy, gxy, gxyz, gxxy into them and taking linear combinations, one obtains

Dy
1 − Gξ Dx
1 = g2
xx
1,1Gξξ + 
1,2(2αz + gxxgxzGξξ + gxxGξ z) + 2
1,3α + Gξ = 0, (19)

H (gxx, gxz, gx , z, t) ≡ Dy
2 − Gξ Dx
2

= g2
xx
2,1Gξξ + 
2,2(2αz + gxxgxzGξξ + gxxGξ z) + 2
2,3α − 1 = 0, (20)

H3(gxx, gxz, gx , z, t) ≡ −
2,1 Dx
1 + 
1,1 Dx
2 − 
2,2 Dz
1 + 
1,2 Dz
2

= gxx(
1,1
2,3 − 
1,3
2,1) + gxz(
1,2
2,3 − 
1,3
2,2) + 
1,2
2,4 − 
1,4
2,2 + 
2,1 = 0

where 
i,1 = ∂
i
∂gxx

, 
i,2 = ∂
i
∂gxz

, 
i,3 = ∂
i
∂z . Note that after substituting the expressions of the func-

tions 
i , (i = 1, 2) into the last equations, Equation (19) is a consequence of Equation (20) and the
function H (gxx, gxz, gx , z, t) is a polynomial of fourth degree with respect to gxx and second degree
with respect to gxz

H = h2g2
xz + h1gxz + h0,

where

h2 = 3g2
xxG4

ξξ + 4αgxxGξξξ G2
ξξ + 2α2

(
Gξξξξ Gξξ − G2

ξξξ

)
The coefficient of the polynomial H with respect to g4

xx is 3G4
ξξ (1 + G2

ξ ) �= 0 and does not depend on
gxz . Hence, the equation H (gxx, gxz, gx , z, t) = 0 can be rewritten as H1 ≡ gxx −χ (gxz, gx , z, t) = 0. In
the same way, after differentiating the last equation with respect to x and y, substituting the expressions
of gy, gxy, gxyz, gxxy into them, one obtains

Dy H − Gξ Dx H = g2
xx H1Gξξ + H2(2αz + gxxgxzGξξ + gxxGξ z) + 2H3α = 0.

Since H (gxx, gxz, gx , z, t) = 0, the left side of the last equation can be rewritten as a polynomial of
degree three with respect to gxx:

H2(gxx, gxz, gx , z, t) = 0. (21)
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If the Jacobian ∂(H1,H2)
∂(gxx,gxz ) is not equal to zero, then from the equations

H1(gxx, gxz, gx , z, t) = 0, H2(gxx, gxz, gx , z, t) = 0.

one can define

gxx = �1(gx , z, t), gxz = �2(gx , z, t).

Substitution of these derivatives into (18) gives the contradictory equalities

x = 
̂1(gx , z, t), y = 
̂2(gx , z, t). (22)

If the Jacobian ∂(H1,H2)
∂(gxx,gxz ) = ∂ H2

∂gxx
∂χ

∂gxz
− ∂ H2

∂gxz
= 0, this means that the function Ĥ2 = H2(χ (gxz, gx , z, t),

gxz, gx , z, t) does not depend on gxz . Furthermore Ĥ2gx
= 0, because otherwise one can define gx as

a function of z and t only, which contradicts the condition gxx �= 0. Therefore H2 = F(H1). In our
case,

H2 = â3 H 3
1 + â2 H 2

1 + â1 H1 + â0.

Thus, the coefficients âi must be constants and â0 = 0. Note that

â2 = b̂1χ + b̂2, â1 = b̂3χ
2 + b̂4χ + b̂5g2

xz + b̂6gxz + b̂7,

where b̂i are functions of the variables gx , z, t and

b̂3 = b̂1 = 3(1 + G2
ξ )̂b5, b̂5 = 3Gξξ Gξξξξ − 5G2

ξξξ .

If b̂1 �= 0, then from the equation â2 = const we have χ = −b̂−1
1 (̂b2 − â2), which does not depend

on gxz . In this case the equation â1 = const is a polynomial of degree two with respect to gxz with
coefficient b̂5 �= 0. This means that one can obtain contradictory equations of the type (22). Therefore,
b̂1 = 0 or

3Gξξ Gξξξξ − 5G2
ξξξ = 0.

This equation can be integrated twice with respect to ξ :

Gξξ = λ(Gξ + q)3,

Two more integrations with respect to ξ give:

λ(G + ξq + γ )2 + 2ξ + β = 0.

Here the functions λ = λ(z, t), q = q(z, t), γ = γ (z, t), β = β(z, t) are arbitrary and λ �= 0. Note
that in this case â3 = 0, b2 = b3 = b4 = b5 = b6 = 0, â3 = b7,

â0 = ϕ1(gx , z, t)χ + ϕ0(gx , z, t), (23)
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and

h2 = 3λ2(Gξ + q)5(gxx(Gξ + q) + 2α)2.

Assume that the function χ (gxz, gx , z, t) does not depend on gxz : χ = χ (gx , z, t). Because of the
prohibition for obtaining equations of the type (22), the coefficients hi (i = 1, 2) of the polynomial H
have to be equal to zero. Since Gξξ �= 0, we have

gxx(Gξ + q) = −2α.

The left side of this expression is the total derivative with respect to x of G(gx , z, t) + q(z, t)gx . Thus,

G(gx , z, t) + q(z, t)gx + 2α(z, t)x = φ(y, z, t). (24)

Because gxy = Gξ gxx + 2α, then

φy = gxy(Gξ + q) = (Gξ + q)Gξ gxx + 2α(Gξ + q) = 2αq.

After integrating the last equation with respect to y, there is φ(y, z, t) = 2yα(z, t)q(z, t) + h(z, t).
Substituting the function φ(y, z, t) and gy into (24), one obtains

gy + qgx = 2yαq + h.

The general solution of this equation is

g(x, y, z, t) = yh(z, t) + y2α(z, t)q(z, t) + 
(x − yq(z, t), z, t)

or

ψ(x, y, z, t) = −xyα(z, t) + yh(z, t) + y2α(z, t)q(z, t) + 
(x − yq(z, t), z, t).

This is a particular case of (9). Therefore, we only need to study the case ∂χ

∂gxz
�= 0.

Assume that ∂χ

∂gxz
�= 0. From the expression for the function â0 = 0 (23) we conclude that

ϕ1(gx , z, t) = 0, ϕ0(gx , z, t) = 0.

Splitting these equations with respect to gx , one obtains

qz = 0, αqt + q(k − l) = 0,

2α2λ(λt + 2 f λz − λzz + fzλ − αλ) − (αzλ + αλz)2 + λ2α(̂α − 4(k − l)) + 4λ2
zα

2 = 0.

The same analysis of the equation H3(gxx, gxz, gx , z, t) = 0 as for the equation H2 = 0 leads to a
contradiction. Therefore, the case α̂(̂α − 2(k − l)) = 0 is studied.
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3.4.2. The Case α̂ = 0
Let us consider α̂ = 0 or

∂α

∂t
+ 2 f

∂α

∂z
− ∂2α

∂z2
− 2α

∂ f

∂z
+ k − l = 0.

In this case the coefficients ai , bi , fi , (i = 1, 2, 3), b4, b5 do not explicitly depend on y.
Assume first that k �= l, then one can define the value of x from (14) and substitute it into (17), which

becomes a third-order polynomial with respect to gxx

H1 = h3g3
xx + h2g2

xx + h1gxx + h0,

where4

h3 = G2
ξξ

(
1 + G2

ξ

) �= 0

This means that one can define gxx = χ (gxz, gx , z, t) from this equation. Note that the coefficient in
H1, which is related with the maximal order (second) with respect to gxz , is equal to

gxxG2
ξξ + αGξξξ . (25)

By the equation H1(gxx, gxz, gx , z, t) = 0, the left side of the expression

H2 ≡ Dy H1 − Gξ Dx H1 = 0.

is a polynomial of second degree with respect to gxx:

H2 = a2g2
xx + a1gxx + a0 = 0.

Before further consideration, we note that if from the equations

H1(gxx, gxz, gx , z, t) = 0, H2(gxx, gxz, gx , z, t) = 0.

one can define

gxx = �1(gx , z, t), gxz = �2(gx , z, t),

then after substitution of these derivatives into (14) one has the equality

x = 
(gx , z, t). (26)

Differentiating the last equality with respect to y we have gxy
ξ = 0. If 
ξ = 0, then (26) is a
contradictory equality between the independent variables. The case gxy = 0 was considered earlier.

4 The analysis is similar to the previous case. For the polynomials and their coefficients we use the same symbols as in the
previous case. However, the functions H, H2, H3, etc. are now different.
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First assume that the function χ (gxz, gx , z, t) does not depend on gxz . In this case all coefficients of
the equation H1 = 0 with respect to gxz have to be equal to zero. Hence, from (25) we obtain

χ = −αG−2
ξξ Gξξξ . (27)

Hence, Dx S = H3(gxz, gx , z, t), which give the equation H3 = 0. Since gxx �= 0, then Gξξξ �= 0.
Because it is prohibited to define gxz from the equation H1 = 0, H2 = 0, H3 = 0, all coefficients of
these polynomials with respect to gxz have to be equal to zero. In particular, from the coefficient related
with the highest (second) degree of the equation H3 = 0 we have

Gξξξξ = 3G2
ξξξ

2Gξξ

.

Since Gξξξ �= 0, the general solution of the last equation is

G = −λ−1 ln(λgx + β) + µgx + γ,

where β, λ, µ, γ are arbitrary functions of the independent variables z, t . In this case,

gxx = 2α(λgx + β). (28)

The general solution of Equation (28) is

g = − β

2αλ2
(1 + 2αλx) + ϕ1e2αλx + ϕ2,

where ϕ1 = ϕ1(y, z, t), ϕ2 = ϕ2(y, z, t). All coefficients of the polynomials H1 and H3 with respect
to gxz , which have to be equal to zero, are polynomials with respect to gx . This allows splitting them
with respect to gx , otherwise gx can be defined as a function only of z and t . Further examination
of all these coefficients leads to the equality µ = 0. By virtue of µ = 0 and substituting g into the
equation

gy = G(gx , z, t) + 2αx,

one obtains ϕ1,y = 0, ϕ2,yy = 0. This means that gyy = 0 or ψyy = 0. This case was studied earlier.
Assume that χgxz �= 0. The study of this case is similar to the previous case where α̂(̂α−2(k −l)) �= 0.

Because the Jacobian ∂(H1,H2)
∂(gxx,gxz ) has to be equal to zero, then H2 = F(gxx − χ (gxz, gx , z, t)). In our case

H2 = â2 H 2
1 + â1 H1 + â0,

The coefficients âi must be constant and â0 = 0. Note that

â1 = b̂1χ + b̂2, â0 = b̂3χ
2 + b̂4χ + b̂5g2

xz + b̂6gxz + b̂7,

where b̂i are functions of the variables gx , z, t and

â2 = b̂1 = b̂3 = (
1 + G2

ξ

)
b̂5, b̂5 = (

2Gξξ Gξξξξ − 3G2
ξξξ

)
.
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If b̂1 �= 0, then χ = −b̂−1
1 (̂b2 − â2) does not depend on gxz . This case has already been studied. If

Gξξξ = 0, then â2 = b̂1 = b̂3 = b̂5 = b̂6 = 0. This requires b̂4 = b̂7 = 0. Analysis of these coefficients
by splitting them with respect to gx leads to the condition that a2 = a3 = 0 in Equation (17) and that
a1 is linear with respect to gx : a1 = a(z, t)gx + φ(x, z, t), where a �= 0. This gives the contradiction
gxxgxy = 0. Thus, b̂1 = 0 and Gξξξ �= 0 or

G = −1

λ
ln(λξ + β) + µξ + γ.

In this case

â0 = b̂4χ + b̂6gxz + b̂7 = 0.

If the coefficient b̂4 = 0, then as it is done earlier, analysis of the coefficients b̂4 = b̂6 = b̂7 = 0 by
splitting them with respect to gx leads to the condition that Equation (17) be written in the form

a1(gxx − 2α(λgx + β)) = 0,

where a1 = a(z, t)gx + φ(x, z, t) with a �= 0. These cases have been already studied.
If b̂4 �= 0, then

χ = −b̂−1
4 (̂b6gxz + b̂7).

Returning to the equation H1 = 0, which becomes a cubic polynomial with respect to gxz and analyzing
the coefficients of this polynomial, which have to be equal to zero, leads to a contradiction. This
completes the study of the case k �= l.

Assume that k = l. Note that if a1 = 0 in Equation (17), then Equation (14) is reduced to

(gxzGξξ + Gξ z)
2 + G2

ξξ (gxxGξ + 2α)2 + (gxxGξξ )2 = 0.

Hence, a1 �= 0 and from Equation (17) one can define gxx = −a−1
1 (a2gxz + a0). Substituting gxx into

(14) gives a polynomial of second degree with respect to gxz :

S = a−2
1 Gξξ (a2

1 + a2
2

(
1 + G2

ξ )
)

g2
xz + b̂1gxz + b̂0 = 0.

This means that Equations (14) and (17) can be solved with respect to gxx and gxz :

gxx = 
̂1(gx , z, t), gxz = 
̂2(gx , z, t). (29)

Because gxx �= 0, then the first equation of (29) can be integrated


̂(gx , z, t) = x + q(y, z, t)

or

gx = 
(x + q(y, z, t), z, t).
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Here the function q = q(y, z, t) is an arbitrary function of integration. The general solution of the last
equation is expressed by the formula

g(x, y, z, t) = 
1(x + q(y, z, t), z, t) + 
2(y, z, t)

Note that

G(gx , z, t) = Ĝ(x + q(y, z, t), z, t)

and the equation gy − (2αx + G) = 0 is rewritten as

qy
1,x ′ (x ′, z, t) + 
2,y(y, z, t) = 2αx ′ + Ĝ(x ′, z, t) − 2αq,

where x ′ = x + q(y, z, t). Differentiating the last equation with respect to y one obtains

qyy
1,x ′ (x ′, z, t) + 
2,yy(y, z, t) = −2αqy . (30)

Differentiating one more with respect to x ′ gives

qyy
1,x ′x ′ = 0.

If 
1,x ′x ′ = 0, this is a particular case of the representation (6). If qyy = 0 or q = yk1(z, t) + k2(z, t),
then integrating equation (30), we have


2 = −αk1 y2 + yψ1(z, t) + ψ2(z, t).

This is a particular case of the representation (9).
The case α̂ = 2(k − l) is studied in a similar way as the previous case α̂ = 0. Note that in this case

α(k − l) �= 0. A detail analysis leads either to contradictions or to the studied cases.

4. Group Classification of System (7)

System (7) is split into three parts: the system of the first two equations

L fz + k + l = α2, Lα = α fz + k − l (31)

is determined and can be studied independently; the equation

Lλ = αλ

is for determining the function λ(z, t); and the equation

Lϕ − ϕyy − (y(α + fz) + λ)ϕy + αϕ = 0

is for the function ϕ(y, z, t). In this section group classification of system (31) is studied.

4.1. EQUIVALENCE TRANSFORMATIONS

The first stage of group classification requires determining a group of equivalence transformations of
Equation (31). An equivalence transformation [1] is a nondegenerate change of the dependent and
independent variables and arbitrary elements, which transforms any system of differential equations of
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a given class to a system of equations of the same class. It allows using the simplest representation of
the given equations.

Since the arbitrary elements are k = k(t), l = l(t), then for calculating group of equivalence
transformations we have to append to Equation (31) the following equations

kz = 0, k f = 0, kα = 0,

lz = 0, l f = 0, lα = 0

All coefficients of the infinitesimal generator of the equivalence group

Xe = ζ t∂t + ζ z∂z + ζ f ∂ f + ζ α∂α + ζ k∂k + ζ l∂l

are assumed to be dependent on the variables t, z, f, α, k, l.
Calculations show that the group of equivalence transformations of system (31) corresponds to the

Lie algebra with the generators

Xe
1 = ∂t , Xe

2 = 2ξ (t)∂z + ξ ′(t)∂ f , Xe
3 = −2t∂t − z∂z + f ∂ f + 2α∂α + 4k∂k + 4l∂l .

4.2. ADMITTED GROUP

To find an admitted group we are looking for the generator

X = ζ t∂t + ζ z∂z + ζ f ∂ f + ζ α∂α

with the coefficients depending on t, z, f, α. Calculations lead to the following result.
The equations that determine the extensions are

c1(tk ′ + 2k) + c2k ′ = 0, c1(tl ′ + 2l) + c2l ′ = 0,

where c1 and c2 are constant. Analysis of these equations is similar to the analysis of the group classifi-
cation of the gas dynamics equations [1]. Let us consider the vectors v1(t) = (tk ′ + 2k, k ′) and v2(t) =
(tl ′ + 2l, l ′). If they generate a two-dimensional space (where t is changed), then c1 = 0, c2 = 0. This
corresponds to the kernel of principal Lie algebras. The kernel is infinite and defined by the generators

X1 = 2ξ (t)∂z + ξ ′(t)∂ f .

An extension of the kernel can be made by specializing the functions k = k(t), l = l(t).
Let the vectors v1(t), v2(t) generate a one-dimensional space

v1(t) = s1(k1, k2), v2(t) = s2(k1, k2),

with some scalars s1 = s1(t), s2 = s2(t). Note that in this case s2
1 + s2

2 �= 0 and k2
1 + k2

2 �= 0.
If k2 = 0, then k(t), l(t) are constants and k �= l (otherwise the space is zero-dimensional). Hence,

c1 = 0 and the kernel is extended by the generator

X2 = ∂t .
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Table 1. Group classification of system.

Functions Extension

1. k = q1t−2, l = q2t−2 X3

2. k = const, l = const X2

3. k = l = 0 X2, X3

If k2 �= 0, then

(
t − k−1

2 k1
)

k ′ + 2k = 0,
(
t − k−1

2 k1
)

l ′ + 2l = 0.

By virtue of an equivalent transformation (shift with respect to t), one can assume that k1 = 0. The
general solution of the last equations is

k = q1t−2, l = q2t−2,
(
q2

1 + q2
2 �= 0

)
.

In this case c2 = 0 and the extension of the kernel is

X3 = 2t∂t + z∂z − f ∂ f − 2α∂α.

Assume that the vectors v1(t), v2(t) generate a zero-dimensional space. This gives that k(t) = l(t) =
const. If this constant is not equal to zero, the kernel is extended by the generator X2. If k(t) = l(t) = 0,
the kernel is extended by the generators X2, X3.

The result of the group classification is given in Table 1.

Remark. A detailed analysis of invariant solutions of the case k = l = 0 is done in [30].

4.3. GROUP STRATIFICATION AND INVARIANT SOLUTIONS

The group admitted by Equation (31) is infinite. Classification of an infinite group is more difficult.
This obstacle can be overcome by studying group stratification of an infinite group [1]. Group stratifi-
cation allows splitting the initial system into automorphic and resolving systems. Any solution of the
automorphic system is obtained from one fixed solution by a transformation belonging to the group.

The infinite group with the operator X1 has the prolonged operator

X1 = 2ξ (t)∂z + ξ ′(t)(∂ f − 2 fz∂ ft − 2αz∂αt − 2βz∂βt ) + ξ ′′(t)∂ ft ,

whereβ = fz . The universal invariant of the first order of the operators, which are obtained as coefficients
of ξ, ξ ′, ξ ′′ is

J = (t, β, α, αz, βz, βt + 2 fβz, αt + 2 f αz).

Hence, the automorphic system AG of rank 2 can be written in the form

α = α(t, β), αz = ϕ(t, β), βz = γ (t, β), βt + 2 fβz = ς1(t, β), αt + 2 f αz = ς2(t, β), (32)
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Table 2. Group classification of system.

Functions Extension

1. k = q1t−2, l = q2t−2 Y2

2. k = const, l = const Y1

3. k = l = 0 Y1, Y2

where α(t, β), ϕ(t, β), γ (t, β), ς1(t, β) and ς2(t, β) are unknown functions. Compatibility conditions
for the last system and the initial system (31) are

ϕ = γαβ, ς1 = γ γβ + α2 + β2, (33)

αt + (α2 + β2 − k − l)αβ − γ 2αββ − 2αβ − k + l = 0,

γt + (α2 + β2 − k − l)γβ − γ 2γββ − 2αγ = 0. (34)

Thus, the group stratification of system (31) with respect to the infinite group with the operator X1

is the union of the automorphic system (32) with the functions (33) and the resolving system, which
consists of Equations (33).

The group of equivalence transformations of Equation (33) corresponds to the Lie algebra with the

Y e
1 = ∂t , Y e

2 = −2t∂t + 2β∂β + 2α∂α + 3γ ∂γ + 4k∂k + 4l∂l .

The kernel of the admitted group is empty. The group classification with respect to the arbitrary elements
k = k(t) and l = l(t) is summarized in Table 2, where

Y1 = ∂t , Y2 = 2t∂t − 2β∂β − 2α∂α − 3γ ∂γ .

System (32) and (33) are equivalent to the initial system (31) provided fzz �= 0. Let us consider the
degenerate case fzz = 0. In this case the function f (t, z) is f = zq(t) + q1(t) , where the functions
q = q(t) and q1 = q1(t) are arbitrary. Substituting this representation into system (31) one obtains that
the function α depends only on t , and

(q − α)′ − (q − α)2 = −2k,

(q + α)′ − (q + α)2 = −2l.

These equations can be considered either as equations for the functions α = α(t) and q = q(t) with
known functions k = k(t) and l = l(t), or the functions α = α(t) and q = q(t) are given, and the
functions k = k(t) and l = l(t) are defined by these equations.

Let us consider invariant solutions of the resolving system with fzz �= 0 (or γ �= 0). Because the
case k = l = 0 has been studied in [30], then we only need to study two cases: a) k = const, l =
const (k2 + l2 �= 0); b) k = q1t−2, l = q2t−2, (q2 + q2

1 �= 0).
The case k = const, l = const. Further study is also valid for k = l = 0.
The admitted algebra of the resolving system consists of the generator Y1 = ∂t . An invariant solution

has the representation

α = α(β), γ = γ (β). (35)
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The functions α(β) and γ (β) have to satisfy the equations

(β2 + α2 − k − l)α′ − γ 2α′′ − 2αβ − k + l = 0,

(β2 + α2 − k − l)γ ′ − γ 2γ ′′ − 2αγα′ = 0.

Since the case γ = 0 corresponds to fzz = 0, then γ �= 0. In order to find a solution of the initial system
(31) one has to solve the automorphic system. One of equations of the automorphic system is βz = γ (β).
By virtue of γ �= 0 and β = fz , the function f = f (t, z) has the representation f = H (z + q(t)) + s(t)
with some functions q = q(t) and s = s(t). The solution of system (31), which corresponds to the
invariant solution (35) has the representation

α = α(z + q(t)), f = H (z + q(t)) + s(t). (36)

Substituting this representation into system (31), one has

(2H + q ′ + 2s)H ′′ − H ′′′ − (H ′)2 + k + l = α2, (2H + q ′ + 2s)α′ − α′′ − 2αH ′ − k + l = 0.

From the first equation, by considering ẑ = z + q(t) and t̂ = t as the new independent variables and
differentiating the first equation with respect to t̂ , one obtains H ′′(q ′′+2s ′) = 0. Because fzz = H ′′ �= 0,
then q ′ + 2s = s0 = const and the last system becomes

(H ′ − α)′′ − (2H + s0)(H ′ − α)′ + (H ′ − α)2 = 2k,

(H ′ + α)′′ − (2H + s0)(H ′ + α)′ + (H ′ + α)2 = 2l.

The case k = t−2q1, l = t−2q1. The admitted group of the resolving system consists of the generator
Y2 = 2t∂t − 2β∂β − 2α∂α − 3γ ∂γ . An invariant solution has the representation

α = t−1�(tβ), γ = t−3/2�(tβ). (37)

Similar as in the previous case one obtains the solution of system (31), which corresponds to the invariant
solution (37). This solution has the representation

α = t−1�(ξ ), f = t−1/2 H (ξ ) + s(t), (38)

where ξ = t−1/2(z + q(t)) and q = q(t) is an arbitrary function. Substituting this representation into
system (31), one has t−1/2(q ′ + 2s) = s0 = const and the functions �(ξ ), H (ξ ) satisfy the equations

(H ′ − �)′′ +
(

ξ

2
− 2H − s0

)
(H ′ − �)′ + (H ′ − �)2 + (H ′ − �) = 2q1,

(H ′ + �)′′ +
(

ξ

2
− 2H − s0

)
(H ′ + �)′ + (H ′ + �)2 + (H ′ + �) = 2q2.

5. Group Classification of System (5)

System (5) is split into two parts: the system of the equations

L fz + k + l = −cγ + α2, Lα = α fz + k − l, Lγ = fzγ, Lc = fzc (39)
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Table 3. Group classification of system (5).

Functions Extension

k �= l
1. k = q1t−2, l = q2t−2 (q1 �= q2) X5

2. k = const, l = const X6

k = l
3. X3, X4

4. k = l = qt−2 X3, X4, X5

5. k = l = const �= 0 X3, X4, X6

6. k = l = 0 X3, X4, X5, X6

is closed and can be studied independently; the equations

Lλ = λα − bγ, Lb = λc − αb (40)

are for determining the functions λ(z, t) and b(z, t).
Calculations showed that the group of equivalence transformations of system (39) corresponds to the

Lie algebra with the generators

Xe
1 = ∂t , Xe

2 = 2ξ (t)∂z + ξ ′(t)∂ f , Xe
3 = γ ∂γ − c∂c,

Xe
4 = −2t∂t − z∂z + f ∂ f + 2α∂α + 2γ ∂γ + 2c∂c + 4k∂k + 4l∂l .

The equations that determine the admitted Lie group are

c1(tk ′ + 2k) + c2k ′ = 0, c1(tl ′ + 2l) + c2l ′ = 0, c3(k − l) = 0, c4(k − l) = 0,

where c1, c2, c3 and c4 are constants. The same analysis as in the previous section gives the kernel,
which consists of the generator

X1 = 2ξ (t)∂z + ξ ′(t)∂ f , X2 = γ ∂γ − c∂c.

An extension of the kernel occurs by specializing the functions k(t) and l(t). The result of group
classification of system (5) is presented in Table 3, where

X3 = γ ∂α + 2α∂c, X4 = c∂α + 2α∂γ , X5 = 2t∂t + z∂z − f ∂ f −2α∂α − 4γ ∂γ , X6 = ∂t .

5.1. GROUP STRATIFICATION AND INVARIANT SOLUTIONS

The group admitted by Equation (39) is infinite. The infinite group with the operator X1 has the prolonged
operator

X1 = 2ξ (t)∂z + ξ ′(t)(∂ f − 2 fz∂ ft − 2αz∂αt − 2βz∂βt − 2γz∂γt − 2cz∂ct ) + ξ ′′(t)∂ ft ,

where β = fz . The universal invariant of first order is

J = (t, β, α, αz, βz, γz, cz, βt + 2 fβz, αt + 2 f αz, γt + 2 f γz, ct + 2 f cz).
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Hence, the automorphic system AG of rank 2 can be written in the form

α = α(t, β), γ = γ (t, β), c = c(t, β), αz = ϕ1(t, β), βz = ϕ2(t, β),

γz = ϕ3(t, β), cz = ϕ4(t, β), βt + 2 fβz = ϕ5(t, β),

αt + 2 f αz = ϕ6(t, β), γt + 2 f γz = ϕ7(t, β), ct + 2 f cz = ϕ8(t, β), (41)

where α(t, β), γ (t, β), c(t, β), ϕi (t, β) (i = 1, 2, . . . , 8) are unknown functions. The compatibility
conditions for the last system and the initial system (39) are

ϕ1 = ϕ2αβ, ϕ3 = ϕ2γβ, ϕ4 = ϕ2cβ,

ϕ5 = ϕ2ϕ2β + β2 + α2 − cγ − k − l,

ϕ6 = αt + αβϕ5, ϕ7 = γt + γβϕ5, ϕ8 = ct + cβϕ5, (42)

αt + (α2 + β2 − cγ − k − l)αβ − ϕ2
2αββ − 2αβ − k + l = 0,

ϕ2t + (α2 + β2 − cγ − k − l)ϕ2β − ϕ2
2ϕ2ββ − 2αϕ2αβ + γ ϕ2cβ + cϕ2γβ = 0,

γt + (α2 + β2 − cγ − k − l)γβ − ϕ2
2γββ − 2γβ = 0,

ct + (α2 + β2 − cγ − k − l)cβ − ϕ2
2cββ − 2cβ = 0. (43)

Thus, the group stratification of system (39) with respect to the infinite group with the operator X1

is the union of the automorphic system (41) with the functions (33) and the resolving system, which
consists of Equation (43).

The group of equivalence transformations of Equations (43) corresponds to the Lie algebra with
generators

Y e
1 = ∂t , Y e

2 = −2t∂t + 2β∂β + 2α∂α + 2γ ∂γ + 2c∂c + 3ϕ2∂ϕ2 + 4k∂k + 4l∂l ,

Y e
3 = γ ∂γ − c∂c.

The kernel of the admitted group is one-dimensional and consists of the group, corresponding to the
generator

Y1 = γ ∂γ − c∂c.

The group classification with respect to the arbitrary elements k = k(t) and l = l(t) is summarized in
Table 4, where

Y2 = −2t∂t + 2β∂β + 2α∂α + 3ϕ2∂ϕ2 + 2γ ∂γ + 2c∂c,

Y3 = ∂t , Y4 = γ ∂α + 2α∂c, Y5 = c∂α + 2α∂γ .

5.2. CONCLUSION AND DISCUSSION

In this article we have systematically investigated a class of partially invariant solutions of the Navier–
Stokes equations, where the Monge–Ampere equation (10) is hyperbolic (L fz + k + l ≥ 0). It was
shown that this class of solutions is a particular case of a solution either of system (5) or system (7).
Note that the representation (2) is very rich and includes some solutions that were studied earlier. The
presence of two arbitrary functions k(t) and l(t) gives additional possibilities for satisfying boundary
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Table 4. Group classification of system (43).

Functions Extension

k �= l
1. k = q1t−2, l = q2t−2 (q1 �= q2) Y2

2. k = const, l = const Y3

k = l
3. Y3, Y4

4. k = l = qt−2 Y1, Y3, Y4

5. k = l = const �= 0 Y2, Y3, Y4

6. k = l = 0 Y1, Y2, Y3, Y4

conditions. The problem of describing all solutions of the given representation (2) where the Monge–
Ampere equation (10) is elliptic (L fz + k + l < 0) still remains open, although there are examples of
solutions of such type of the Navier–Stokes equations(constructed here and known before).

In this paper the group classifications of systems (7) and (5) was discussed. These systems have
infinite admitted groups. Infinite-dimensionality is an obstacle for classification of such groups. To
overcome this difficulties, group stratification of these groups was done. Group stratification allows
splitting the initial system into automorphic and resolving systems. Any solution of the automorphic
system is obtained from one fixed solution by a transformation belonging to the group. Therefore
the problem of constructing solutions is reduced to finding solutions of the resolving systems. Group
classification of resolving systems was done. The admitted groups are finite-dimensional. All invariant
solutions of system (7) were presented.

Note that we did not present here a comprehensive study of invariant solutions of the group admitted
by (7). This study is a subject for the construction of new solutions of the Navier–Stokes equations.
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