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Abstract

The method suggested in the manuscript uses the idea of the hodograph transformation method, which exchange
the independent and dependent variables. Here a change of the independent variables into dependent variables
applied to first derivatives. For the derivatives one obtains a system of differential equations. Group analysis is
applied to this system. New invariant solutions, which are not invariant for the original equations, are obtained.
The approach is illustrated by the semi-linear wave equation. For example, for Pion Meson equation one obtains a
solution, which is reduced to quadrature.
© 2005 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The manuscript is concerned with the methodology of group andlifster finding exact solutions
of partial differential equations. Group analysis provides three types of solutions: injaiigoartially
invariant[1] and solutions related with conditional (weak) symmeti@sApplications of group analysis
are discussed in numerous articles. Many of these results are colle¢4édAn approach for obtaining
exact solutions by using invariant solutions of system which is related with original is suggested in the
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article. The idea of the method is also related with the method of differential consfEdims application
of the suggested approach is illustrated by the semi-linear wave equation.

2. The wave equation

The semi-linear wave equatibn

Uy — Uy = h(u) (1)

is used for modeling many nonlinear wave phenomena. Since in thehaye 0 Eq. (1) is reduced
to the classical wave equation — Uy =0, the restrictioy(u) £ 0 is assumed in the manuscript. There
are complete classifications of cont§&} and Lie—Backlund[7—9] symmetries of Eq(1). The kernel of
admitted Lie algebras is three-dimensional and consists of the generators

Xl = 8ta X2 = axa X3 = xat + tax (2)
The group of equivalence transformations is infinite and corresponds to the generators
X1=08,  X*=ud+hdy,  X3*=(P+ V)0 +(¢— V)3 + 21(¢"+ ¥)h.

whereg = ¢(x+t) andy = (X — t) are arbitrary functions.
Eq. (1) can be reduced to the equivalent system of first order quasilinear eqdations

Uy — Uy = 0, v+ v, = h(u). 3)

By the first equation of syste(B), any infinitesimal symmetry of systefR) provides a contact symmetry
of Eg. (1). Since contact symmetries of EH{.) are prolongations of the point symmetr{€$, there is a
simple correspondence between the gr@)mdmitted by Eq(1) and the group admitted by systd8).
Therefore the Lie algebra admitted by syst@his spanned by the generators

X1 =0, X7 = 0y, X3 = x0, + 13y + vd,. (4)
An optimal system of subalgebras of the Lie algef@econsists of the subalgebras
{X1, X2, X3}, (X1, X2}, {X1, X}, {Xa), {X1}.

All invariant solutions (up to transformations of the admitted group) are exhausted by these two repre-
sentations

w=flx),  v=g) ()
and
u= f(x?—1?, v=(x+1)g(x* —1?). (6)

Letu=u(x, t) andv = v(x, r) be a solution of systeif8). If u(x, t) andv(x, ¢) are functionally dependent,
then this solution is reduced to a well-known class of invariant solutions: travelling waves. Therefore one
needs to study only functionally independent solutions of sy$8m

! There is also another representation of this equatigr,F(2).
2 It should be noted here that the method useld @) cannot be applied to Eql).
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If u(x, t) andv(x, r) are functionally independent, then any autonomous homogeneous system of
guasilinear equations can be linearized by a hodograph transformation. The hodograph transformatior
applied to systen3) does not simplify it. There is another way of using the variables\d v as the
independent variables. For solutions with functionally independamidv the derivativesl, andv, can
be expressed as

u, =U(u,v), vy = V(u, v).

Substituting them into systei®), and using the integrability conditions,f; = (U)x, (vi):=(v:)x, One
obtains the system

U, + 2V —h)U, +V =0,  —(U +v)V, —hV, + KU =0. )

This manuscript is devoted to the group classification of sy§f@and constructing its invariant solutions.

3. Group classification of systen(7)

Group classification of syste(i) is regarded with respect to an arbitrary functign). The first step

in the group classification is the step of obtaining a group of equivalence transformations. An equivalence
transformation is a nondegenerate change of the dependent and independent variables, and arbitral
elements, which transforms a system of differential equations of a given class to a system of equations of
the same class. These transformations allow using the simplest representation of the given equations. Th
next step in the group classification is searching an admitted group of transformations, which is admitted
for all arbitrary elements. This group is called a kernel of admitted groups. Note that an admitted group
depends on specialization of arbitrary elements. A specialization of the arbitrary elements can extend the
admitted group.

3.1. Group of equivalent transformations

For the calculation of equivalence transformations we follow to the approach develdgédlig] In
this approach all coefficients of the generator

X = g9, + &3, + Yoy + ¢Vdy + "o,

are assumed dependent on all involved variahlgs (U, V, h). The coefficients of the prolonged generator

X=X+ %oy, + ¢V oy, + by, + ¢y, + oy, -
are defined by the formulae
¢ = Dye? U DE ~ UDE, %= Dyt — UDiE" — U Dg",
(= Dyt" = V.Dig" = V,Dg’, ¢V =Dit" — V,DyE" — V,DiE"
and

gv=oh —negY, Mv=ch—neg,  e=¢—neg, M= —nE
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Here
Dfl :au—i_UMaU—i_VMaV—i_huahv D$:aU+UU8U+VU8V,

and the property that the functidifu) only depends om is used. The coefficientdv, v, ¢ are also
needed since the equations

hy=0, hy=0, h,=0 8)

have to be invariant with respect to the equivalence group. All necessary calculations were carried on
a computer using the symbolic manipulation program REDUCH. The calculations showed that
the group of equivalence transformations of syst{@jnand (8) corresponds to a Lie algebra with the
generators

X§_= —ud, + Voy + hoy, ;= 0ys §=2u8u+v8U+U8U,

X5 =—vd,+ (U+v)dy + (h — 2V)oy.
The transformations corresponding to the genera&§emndX¢ do not change the functidifu). Thus they
belong to the kernel of admitted Lie groups. The gener&tpshows the importance of the assumption

that all coefficients of the generator of an equivalence group must be considered as dependent on all
variables, including arbitrary elements. Without this assumption the genéfgateould be lost.

3.2. Admitted Lie group of transformations

A generator of the admitted Lie group has the form
X =89, +&8,+ "y + "oy,

where the coefficients of the generakoare functions of the variables,(v, U, V). Calculations yield the
following results.
The kernel of principal Lie algebras is empty. The generator

Yy = —vdy, + (U + v)dy + (h — 2V)dy,

plays a role of an operator from the kernel: it is admitted for any fundi{oiy but it also depends on
h(u). This symmetry is induced by the transformations corresponding to the genkgator

An extension of the kernel of principal Lie algebras occurs by specializing the furigtiprit occurs
for the functions (up to equivalence transformatiomg)) = u® andh(u) = ¢e".

If h(u) =u” there is the additional symmetry

Y1 = 2ud, + (B + Lo, + (B + 1)Udy + 2BVoy.
If h(u) =€ (the Liouville equation) there is the additional symmetry

Y2 = 28u + Uav + U8U + 2V8V
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4. Invariant solutions

Here the general case of the functig(u) is studied. In this case systgR) only admits the generator
Yh.
Invariants of the generatof, are

(v+3)- (v-2)»7
u, v 5)° > v .

Thus, an invariant solution has the representation
v g h
U= —§+v q(u), V= §+v p(u). 9

After substituting the representation of an invariant solution one obtains that the furiprasidg(u)
have to satisfy the equations

4gp’ + 4hp — W' =0, 2¢' +4pg—h =0. (10)
From the second equation (if0) one can define
h — 24
p= . (12)
4q
After substituting it into the first equation ¢10) one has
294" — 2(¢')* + 3hq' — 2gh’ — h? = 0. (12)

Since the symmetry, is induced by the transformations corresponding to the genekatasne may
think that the invariant solutio(®) also corresponds to the solution of syst&) which is invariant with
respect taXs. This is not right. Let us show that the class of invariant solutions of sy§f@mefined
by (9) is not an invariant solution of the original equati(l). Assume that a solution ¢B) and(10)
gives an invariant solutiof). For the invariant solutiot6) the functions{+x)~'v andu are functionally
dependent:

(@4 0 = (40 0 = 420 (40— 2pg - ’;) o0

Hence g=2pg+h/2 and

2
Sinceuy=U, v, =V and(9), one obtains

h h\’
vx=2pq+2+(x+t)<2pq+> Uy.

oo h N (v
- =2pg+ = N(2pg+=) (—= .
2+vp pq—|—2+(x+ )(pq—l—z)( 2+v q)

After substituting(11), (12), andx +t= (2pq+h/2)~tv into the last equation, it becomes
(24 — h)(2q —v*) = 0.

Sincev = (x +t)g(x? — t?) andq = q(f(x? — t?)) the last equation leads ¢p= /2. In this case = 0 and(10)
gives the conditiom’ =0, which contradicts the assumption abb(it).
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Since the main problem is to find a solution of syst@) it is shown here how to find it through an
invariant solution9). The construction of this solution can be done as follows. First one finds the initial
values for the functiong(x, t) andv(x, 1), for example, along a particular characteristic ket = const.
These values can be found by the quadratute of

P v~ 1q,
wherev=exp( [(kh/2g) du). In fact, along these characteristics
Z:u,+ux=v+2U=2v_lq, (;1;=v,+vx=h.
or
dv h
= vz.

After that in order to obtain a solution one needs to integrate along another set of characteristics
x+t=const. Along these set of characteristics
du dv

=U;— U, =, v,—vxzh—2V=—2v2p,

dr dr
or
% = —2vp = _v2q/ — h.
du 2q
Thus the functionu(x, t) is found by integrating the equation
du
a

wherev = gt exp (f = du).

5. Pion Meson equation

The equation describing a one-dimensional motion of a Pion Meson particle in an atom is the foflowing:
Uy — Uyx +m2u 4+ 2u® =0, (13)

wherem is the mass of the Pion Meson, and the cubic terrflB) describes the Pion self-interaction
with the effective coupling constait For this equation

h = —m?u — u®.

3 Itis assumed that the functiafu), which is a solution of Eq(12), is known.
4 See, for exampl{l4—16]
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One class of solutions of E¢L2)is

. et mPu?
=74 7 2
whereag is an arbitrary constant. Note that . In this case exQf (h/2g) du) = a1,/q, wherea, is the
constant of integration. Hence, along the characteristicdingé = const.

+ ao,

du 2
ar = ;1 q,
and along another set of characteriskes = const.,
du ay
A

6. Conclusion

One more method of using technique of invariant solutions for constructing exact solutions of partial
differential equations is presented in the article. The method allows constructing new solutions.

Acknowledgments

The author (AH) thanks the Thailand Research Fund for financial support.

References

[1] L.V. Ovsyannikov, Group Analysis of Differential Equations, Nauka, Moscow, 1978 (English translation, Academic Press,
New York, 1982).

[2] S. Lie, Collected Works, B.G. Teubner/H. Aschehoug, Leipzig/Oslo, 1922.

[3] G.W. Bluman, J.D. Cole, The general similarity solution of the heat equation, J. Math. Mech. 18 (1969) 1025-1042.

[4] N.H. Ibragimov (Ed.), CRC Handbook of Lie Group Analysis of Differential Equations, vol. 1, CRC Press, Boca Raton,
FL, 1994;
N.H. Ibragimov (Ed.), CRC Handbook of Lie Group Analysis of Differential Equations, vol. 2, CRC Press, Boca Raton,
FL, 1995;
N.H. Ibragimov (Ed.), CRC Handbook of Lie Group Analysis of Differential Equations, vol. 3, CRC Press, Boca Raton,
FL, 1996.

[5] N.N. Yanenko, Compatibility theory and methods of integration of systems of nonlinear partial differential equations, in:
Proceedings of the Fourth All-union Mathematics Congress, 1964, p. 613.

[6] S. Lie, Diskussion der differentialgleichurzg, =f(z), Arch. Math. 6 (1) (1881) 112-124.

[7] A.V. Zhiber, A.B. Shabat, Klein—Gordon equations with a nontrivial group, Dokl. Akad. Nauk. SSSR 247 (1979) 1103-1107.

[8] A.V. Zhiber, N.H. Ibragimov, A.B. Shabat, Equations of the Houville type, Dokl. Akad. Nauk. SSSR 249 (1979) 26-29.

[9] N.H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Nauka, Moscow, 1983.

[10] N.H. Ibragimov, S.V. Khabirov, Contact transformation group classification of nonlinear wave equations, Nonlinear Dyn.

22 (2000) 61-71.



A. Hematulin, S.V. Meleshko / Mathematics and Computers in Simulation 69 (2005) 282-289 289

[11] S.V. Meleshko, Group classification of the equations of two-dimensional motions of a gas, J. Appl. Math. Mech. 58 (1995)
629-635.

[12] S.V. Meleshko, Generalization of the equivalence transformations, J. Nonlinear Math. Phys. 3 (1996) 170-174.

[13] A.C. Hearn, REDUCE: User’s and Contributed Packages Manual, Version 3.7, Rand Corp., California, 1999.

[14] A. Das, T. Ferbel, Introduction to Nuclear and Particle Physics, Wiley, New York, 1994.

[15] M.E. Peskin, D.V. Schvoedev, An Introduction to Quantum Field Theory, Addison-Wesley, New York, 1994.

[16] S.K. Kenneth, Introductory Nuclear Physics, Wiley, New York, 1987.



	A new approach related with group analysis and hodograph type transformation for constructing exact solutions
	Introduction
	The wave equation
	Group classification of system (7)
	Group of equivalent transformations
	Admitted Lie group of transformations

	Invariant solutions
	Pion Meson equation
	Conclusion
	Acknowledgments
	References


