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Abstract

The method suggested in the manuscript uses the idea of the hodograph transformation method, which exchanges
the independent and dependent variables. Here a change of the independent variables into dependent variables is
applied to first derivatives. For the derivatives one obtains a system of differential equations. Group analysis is
applied to this system. New invariant solutions, which are not invariant for the original equations, are obtained.
The approach is illustrated by the semi-linear wave equation. For example, for Pion Meson equation one obtains a
solution, which is reduced to quadrature.
© 2005 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The manuscript is concerned with the methodology of group analysis[1] for finding exact solutions
of partial differential equations. Group analysis provides three types of solutions: invariant[2], partially
invariant[1] and solutions related with conditional (weak) symmetries[3]. Applications of group analysis
are discussed in numerous articles. Many of these results are collected in[4]. An approach for obtaining
exact solutions by using invariant solutions of system which is related with original is suggested in the
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article. The idea of the method is also related with the method of differential constraints[5]. An application
of the suggested approach is illustrated by the semi-linear wave equation.

2. The wave equation

The semi-linear wave equation1

utt − uxx = h(u) (1)

is used for modeling many nonlinear wave phenomena. Since in the caseh′(u) = 0 Eq. (1) is reduced
to the classical wave equationutt −uxx= 0, the restrictionh′(u) �= 0 is assumed in the manuscript. There
are complete classifications of contact[6] and Lie–B̈acklund[7–9] symmetries of Eq.(1). The kernel of
admitted Lie algebras is three-dimensional and consists of the generators

X1 = ∂t, X2 = ∂x, X3 = x∂t + t∂x. (2)

The group of equivalence transformations is infinite and corresponds to the generators

X1
e = ∂u, X2

e = u∂u + h∂h, X3
e = (φ + ψ)∂x + (φ − ψ)∂t + 2h(φ′ + ψ′)∂h,

whereφ =φ(x+ t) andψ =ψ(x− t) are arbitrary functions.
Eq.(1) can be reduced to the equivalent system of first order quasilinear equations2

ut − ux = v, vt + vx = h(u). (3)

By the first equation of system(3), any infinitesimal symmetry of system(3)provides a contact symmetry
of Eq. (1). Since contact symmetries of Eq.(1) are prolongations of the point symmetries[6], there is a
simple correspondence between the group(2) admitted by Eq.(1) and the group admitted by system(3).
Therefore the Lie algebra admitted by system(3) is spanned by the generators

X1 = ∂t, X2 = ∂x, X̃3 = x∂t + t∂x + v∂v. (4)

An optimal system of subalgebras of the Lie algebra(4) consists of the subalgebras

{X1, X2, X̃3}, {X1, X2}, {X1, X̃3}, {X̃3}, {X1}.
All invariant solutions (up to transformations of the admitted group) are exhausted by these two repre-
sentations

u = f (x), v = g(x) (5)

and

u = f (x2 − t2), v = (x+ t)g(x2 − t2). (6)

Let u=u(x, t) andv = v(x, t) be a solution of system(3). If u(x, t) andv(x, t) are functionally dependent,
then this solution is reduced to a well-known class of invariant solutions: travelling waves. Therefore one
needs to study only functionally independent solutions of system(3).

1 There is also another representation of this equation,zxy=F(z).
2 It should be noted here that the method used in[10] cannot be applied to Eq.(1).
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If u(x, t) and v(x, t) are functionally independent, then any autonomous homogeneous system of
quasilinear equations can be linearized by a hodograph transformation. The hodograph transformation
applied to system(3) does not simplify it. There is another way of using the variablesu andv as the
independent variables. For solutions with functionally independentu andv the derivativesux andvx can
be expressed as

ux = U(u, v), vx = V (u, v).

Substituting them into system(3), and using the integrability conditions (ux)t = (ut)x, (vx)t = (vt)x, one
obtains the system

−vUu + (2V − h)Uv + V = 0, −(2U + v)Vu − hVu + h′U = 0. (7)

This manuscript is devoted to the group classification of system(7)and constructing its invariant solutions.

3. Group classification of system(7)

Group classification of system(7) is regarded with respect to an arbitrary functionh(u). The first step
in the group classification is the step of obtaining a group of equivalence transformations. An equivalence
transformation is a nondegenerate change of the dependent and independent variables, and arbitrary
elements, which transforms a system of differential equations of a given class to a system of equations of
the same class. These transformations allow using the simplest representation of the given equations. The
next step in the group classification is searching an admitted group of transformations, which is admitted
for all arbitrary elements. This group is called a kernel of admitted groups. Note that an admitted group
depends on specialization of arbitrary elements. A specialization of the arbitrary elements can extend the
admitted group.

3.1. Group of equivalent transformations

For the calculation of equivalence transformations we follow to the approach developed in[11,12]. In
this approach all coefficients of the generator

Xe = ξu∂u + ξv∂v + ζU∂U + ζV ∂V + ζh∂h

are assumed dependent on all involved variables (u,v,U,V,h). The coefficients of the prolonged generator

X̃e = X+ ζUu∂Uu + ζUv∂Uv + ζVu∂Vu + ζVv∂Vv + ζhu∂hu · · ·
are defined by the formulae

ζUu = De
uζ
U − UuD

e
uξ
u − UvD

e
uξ
v, ζUv = De

vζ
U − UuD

e
vξ
u − UvD

e
vξ
v,

ζVu = De
uζ
V − VuD

e
uξ
u − VvD

e
uξ
v, ζVv = De

vζ
V − VuD

e
vξ
u − VvD

e
vξ
v

and

ζhU = ζhU − huξ
u
U, ζhV = ζhV − huξ

u
V , ζhu = ζhu − huξ

u
u, ζhv = ζhv − huξ

u
v .
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Here

De
u = ∂u + Uu∂U + Vu∂V + hu∂h, De

v = ∂v + Uv∂U + Vv∂V ,

and the property that the functionh(u) only depends onu is used. The coefficientsζhU , ζhV , ζhv are also
needed since the equations

hU = 0, hV = 0, hv = 0 (8)

have to be invariant with respect to the equivalence group. All necessary calculations were carried on
a computer using the symbolic manipulation program REDUCE[13]. The calculations showed that
the group of equivalence transformations of system(7) and(8) corresponds to a Lie algebra with the
generators

Xe1 = −u∂u + V∂V + h∂h, Xe2 = ∂u, Xe3 = 2u∂u + v∂v + U∂U,

Xe4 = −v∂v + (U + v)∂U + (h− 2V )∂V .

The transformations corresponding to the generatorsXe2 andXe3 do not change the functionh(u). Thus they
belong to the kernel of admitted Lie groups. The generatorXe4 shows the importance of the assumption
that all coefficients of the generator of an equivalence group must be considered as dependent on all
variables, including arbitrary elements. Without this assumption the generatorXe4 would be lost.

3.2. Admitted Lie group of transformations

A generator of the admitted Lie group has the form

X = ξu∂u + ξv∂v + ζU∂U + ζV ∂V ,

where the coefficients of the generatorXare functions of the variables (u, v,U,V). Calculations yield the
following results.

The kernel of principal Lie algebras is empty. The generator

Yh = −v∂v + (U + v)∂U + (h− 2V )∂V ,

plays a role of an operator from the kernel: it is admitted for any functionh(u), but it also depends on
h(u). This symmetry is induced by the transformations corresponding to the generatorX̃3.

An extension of the kernel of principal Lie algebras occurs by specializing the functionh(u). It occurs
for the functions (up to equivalence transformations):h(u) =uβ andh(u) =eu.

If h(u) =uβ there is the additional symmetry

Y1 = 2u∂u + (β + 1)v∂v + (β + 1)U∂U + 2βV∂V .

If h(u) =eu (the Liouville equation) there is the additional symmetry

Y2 = 2∂u + v∂v + U∂U + 2V∂V .
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4. Invariant solutions

Here the general case of the functionh(u) is studied. In this case system(3) only admits the generator
Yh.

Invariants of the generatorYh are

u, v

(
U + v

2

)
,

(
V − h

2

)
v−2.

Thus, an invariant solution has the representation

U = −v
2

+ v−1q(u), V = h

2
+ v2p(u). (9)

After substituting the representation of an invariant solution one obtains that the functionsp(u) andq(u)
have to satisfy the equations

4qp′ + 4hp− h′ = 0, 2q′ + 4pq− h = 0. (10)

From the second equation of(10)one can define

p = h− 2q′

4q
. (11)

After substituting it into the first equation of(10)one has

2qq′′ − 2(q′)2 + 3hq′ − 2qh′ − h2 = 0. (12)

Since the symmetryYh is induced by the transformations corresponding to the generatorX̃3, one may
think that the invariant solution(9) also corresponds to the solution of system(3), which is invariant with
respect toX̃3. This is not right. Let us show that the class of invariant solutions of system(7) defined
by (9) is not an invariant solution of the original equation(1). Assume that a solution of(9) and(10)
gives an invariant solution(6). For the invariant solution(6) the functions (t+x)−lv anduare functionally
dependent:

((t + x)−1v)tux − ((t + x)−1v)xut = (t + x)−1v

(
(t + x)−1v− 2pq− h

2

)
= 0.

Hence,g= 2pq+h/2 and

vx = 2pq+ h

2
+ (x+ t)

(
2pq+ h

2

)′
ux.

Sinceux =U, vx =V and(9), one obtains

h

2
+ v2p = 2pq+ h

2
+ (x+ t)

(
2pq+ h

2

)′ (
−v

2
+ v−1q

)
.

After substituting(11), (12), andx+ t= (2pq+h/2)−1v into the last equation, it becomes

(2q′ − h)(2q− v2) = 0.

Sincev= (x+ t)g(x2 − t2) andq=q(f(x2 − t2)) the last equation leads toq′ =h/2. In this casep= 0 and(10)
gives the conditionh′ = 0, which contradicts the assumption abouth(u).
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Since the main problem is to find a solution of system(3), it is shown here how to find it through an
invariant solution(9). The construction of this solution can be done as follows. First one finds the initial
values for the functionsu(x, t) andv(x, t), for example, along a particular characteristic linex− t= const.
These values can be found by the quadrature of3

du

dt
= 2v−1q,

wherev= exp
(∫

(h/2q) du
)
. In fact, along these characteristics

du

dt
= ut + ux = v+ 2U = 2v−1q,

dv

dt
= vt + vx = h.

or

dv

du
= v

h

2q
.

After that in order to obtain a solution one needs to integrate along another set of characteristics
x+ t= const. Along these set of characteristics

du

dt
= ut − ux = v,

dv

dt
= vt − vx = h− 2V = −2v2p,

or

dv

du
= −2vp = −v2q′ − h

2q
.

Thus the functionu(x, t) is found by integrating the equation

du

dt
= v,

wherev = q−1 exp
(∫

h
2q du

)
.

5. Pion Meson equation

The equation describing a one-dimensional motion of a Pion Meson particle in an atom is the following:4

utt − uxx +m2u+ λu3 = 0, (13)

wherem is the mass of the Pion Meson, and the cubic term in(13) describes the Pion self-interaction
with the effective coupling constantλ. For this equation

h = −m2u− λu3.

3 It is assumed that the functionq(u), which is a solution of Eq.(12), is known.
4 See, for example[14–16].
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One class of solutions of Eq.(12) is

q = −λu
4

4
− m2u2

2
+ a0,

wherea0 is an arbitrary constant. Note thath=q′. In this case exp
(∫

(h/2q) du
) = a1

√
q, wherea1 is the

constant of integration. Hence, along the characteristic linex− t= const.

du

dt
= 2

a1

√
q,

and along another set of characteristicsx+ t= const.,

du

dt
= a1√

q
.

6. Conclusion

One more method of using technique of invariant solutions for constructing exact solutions of partial
differential equations is presented in the article. The method allows constructing new solutions.
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