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Abstract

Lig’s group classification of ODEs shows that the second-order equations can possess one, two, three or eight infinites-
imal symmetries. The equations with eight symmetries and only these equations can be linearized by a change of variables.
Lie showed that the latter equations are at most cubic in the first derivative and gave a convenient invariant description of
all linearizable equations. Qur aim is te provide a similar description of the equations with three symmetries. There are
four different types of such equations. We present here the candidates for all four types. We give an invariant test for exis-
tence of three symmetries for one of these candidates.
© 2006 Elsevier B.V, All rights reserved.
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1. Introduction

According to Lie’s classification [1]in the complex domain, any ordinary diflerential equation of the second
order

}/” :f(x»yayl) } (1)

admitting a three-dimensional Lie algebra belongs to one of four distinctly different types. Each of these four
types is obtained by a change of variables from the following canonical representatives (see, e.g., [2, Section
8.47):
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Y+ =0, (2)

Y+ ce =0, (3)

y.'f e Cyf(k-—Z)/(kul) — O, (4)
’ C 372 12

y!f+2y + xy_y+y :O, (5)

where & # 0, 1/2, 1, 2 in (4), and C = const,
Eqgs. (2)~(5) admit non-similar three-dimensional Lie algebras L; spanned by the operators

8 0 by 0 0
_ = X = -— - 2,1—— -
XI axa 2 Qxax+y6y: X3 X ax+xyay: (6J
g G ) &}
X e Xz—‘@, X3~Xa+(y“x)a;» (7)
o 5} o by
X = Xz—aa Xz—x-a;fkkyé;, (8}
and
o 0 5} ) d
X =--+— Xy=x—-+y— Xy=x" o+ =
1 ax+ay1 2 xax+yay1 3 x ax+y ayw (9)

respectively (see, e.g., (2, Section 8.4]),

2. Candidates for equations with three symmetries

=y,  u=yy), {10)

where ¢ is a new independent variable and u is a new dependent variable. Then we obtain from (2)—(5) the
equations of the form

W' bl + 352145’2 + 3byu + by =0, {11
bow' + b
wwmw+mw+%ﬂ+m+@w+mw+%w+wapiﬂiﬂ-:& (12)
by + by
Bott' + b1 {(k=2)/(k~1}
w+mwﬁdmﬂ+amw+m+wwﬂ+%wﬁ+%m%w@G;;:EJ =0, (13)
1 2
and
i /A P ; " P p o' + big
U + b1u + 352?4!' + 353?,{ + b4 + (bjlt + 35,51{ + 3b71{ + bg) m = 0, (14)
1 12

respectively, where b, = b(t,u), i=1,...,12. Bgs. (11)(14) are the candidates for the equations with three
Symimetries,
All candidates can be encapsulated in the formula

'+ b
'+ by + 3byu + 3bsu - by + (bt 3bgu” 4 3bad + by f (M) =0,
b“u +b12

Namely, Egs. (11)-(14) are obtained by letting
f(Z) =0, f(z) =, f(Z) = z(k—Z)/(kwl), f(Z) =77

Using the usual formula for the transformation of derivatives under the change of variables (10}, we obtain
the following statement.
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Theorem 1. Any equation of the form

'
u’ + b]Mr3 + 31)2”’2 + 3By’ + by +- (b5uf3 -+ 3b6Mr2 + 3h7d + by )f (_m_bgu + bm) =10
b +bny

is transformed by the change of variables (10) into an equation of the same form:

Yt @y 4+ 3ay o 3a3y - ag + (asy” F3asy® + 3y + a)f (____a.;ylﬁ- aw) =0,
any +an

Here a; and b; are functions of x, y and t, u, respectively, and are connected by
ar = A7V o, b, — @0, + baw) + 332, + 3byp, U7 + i),
ay = A7 by, 07 + byo, (2040, + @) + bl (00, + 20,0,
+ byl + (0, — @ — 2040, + 20,8,,)/3],
ay = 47 [bap20, + by (0, + 20,40} + b (200, + @,4,)
+ O, + (0¥ — Ol — 200, +20,4,)/3],
ag = 47! bsg} + 303000, +3b200% + b — Qi + G,
as = A7 b} + 3br0, + 3bep V! + bsiprl],
a5 = 47 b3, 0] + 010,200, + @) + b, (@, + 20,0) + bsbl,
ar = A7 |bs0lo, -+ bro (o, + 200,) + b (20,0, + 005) + by,
as = 47 [be@} + 30,070, + 3bso W7 + bsyl),
as = bygp, + bat,
a = b, + bayy,,
ai = b, + by,
ap = bue, +buy,,
where
4= (¥, — o) #0
is the Jacobian of the change of variables (10).

3. Equations equivalent to Eq. (2)

In this paper, we will dwell on the first candidate, i.e., on equations of the form (11). Other candidates will
be considered elsewhere.
We know that all equations obtained from Eq. (2),

V' 4+ Ky =0 (K =const #0), (15)
by the change of variables (10) are contained in the family of the equations of the form (11):
" + b]M,:s + 33)211’2 + 3b3ui + b4 = 0.

We also know from Theorem 1 that any Eq. (11) is transformed by the change of variables (10} inte an equa-
tion of the same form:

Vo ay? 4 3agy? + 3agy 4+ ag =0, (16)
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and that the coefficients of Eqgs. (11) and (16) are related by the following equations:
ar = A7 o, — 9,0, + bal + 3b:0%, + 3ba % + by,
ay = 47 [bap, 0} + bap, 200, + o,4,) + by (0, -+ 20.4,)
F Db+ (@, — @ — 20,0, +20,4,)/3],
as = 47 [ba@lo, + by (o, + 204,) + bV, (20,9, + 0,4,)
+ b, + (@ — 0, — 20,0, + 20.0,)/3),
as = A7 [bag] + 353000, + 30200 + by — 0o, + 9.

We will use the following information about invariants of Eqgs. (11). Lie [1] showed that any second-order
equation obtained from the linear equation y” = 0 by the change of variables (10} belongs to the family of Eqs.
(11) and obtained the necessary and sufficient conditions for Egs. (11) to be equivalent to the linear equation.
Lie’s linearization test can be expressed by means of the equations L) = 0, L, = 0 (see, e.g., [3]). These equa-
tions are invariant with respect to the change of variables (10). Therefore the quantities L, and L, are called
relative invariants for Eq. (11). They involve the coefficients of Eq. (11) and their derivatives of up to second
order and can be readily calculated by means of the infinitesimal method [4]. We will write them, using nota-
tion from [5], in the following form:

oil;; 8l

(17)

L= —— = — byl — byI1, +2b3H12,
du ot (18)
oMy Ol
Ly = ———+-—=— bl — bslly + 2b,11,
Ou ot
where
Iy = 2(b} — baba) + by, — by,
My = 2(b} - 3b1b3) + bi — b, (19)

Ty = baby — biby + b3 — B3y,

The change of variables (10) converts the quantities (18) into the following relative invariants for Eq. (11):

Ly = A(Lig, + Lap,), Ly = MLig, + Lo, (20)
For Eq. (15), the relative invariants (20) are writfen
Ly =12Ky"  L,=0. (21)

Hence, the following statement is valid.

Lemma 1. For all Eq. (11) obtained from Eq. (15) by a change of variables, at least one of the relative invariants
L., L, does not vanish, and the corresponding change of the variables (10} obeys the equation

Lig, + Ly, = 0. (22)

We will use the following relative invariants of higher order given in [5-7):

vs = Ly (L1 Ly, — LoLy,) -+ Li(LoLy, — Lilay) — BB + 3b2L3Ly — 3bsL\ 13 + bul3 (23)

wi = L7~ L3 Ly ~ HLy) + R(LY), — iRy, + LiR\ (B3Ly — baly)), (24)
and

I = 3R\ 4 Loy~ Ly, (25)
where

R[ = Lngr - LZLIJ -+ sz% - 2b3L1L2 -+ b4L§
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If the relative invariant I, # 0, there is the set of absolute invariants
Tom = Dply™ (> 1),
where
Fapez = L 52 L2 D (0 L)
_The similar relative invariants for Eq. (16) are denoted by ¥s, Wy, I, and J4. For Eq. (15}, invoking Egs. (21),
we obtain:
Vs =0, =0, T,=060Ky5  J;=4/5 (26)

Hence, we have the following necessary conditions for Eqs. (11} obtained from Eq. (15} by a change of
variables:

U5 = O, W = 0, 12 75 O, J4 = 4/5 (27)
We will obtain now the necessary and sufiicient conditions.

One has to find the conditions for the coefficients by(#, 1), bof1, u), ba(#, 1) and ba(t, 1) that guarantee the exis-
tence of the functions ¢{x, y) and y(x, ¥) such that the change of variables (10) transforms the coefficients of
Eq. (11) into

a; =0, ar =0, @ =10, ay =Ky,
whete ay, &y, a3, a4 are defined by formulae (17). Thus, we have to investigate the consistency of the following
over-determined system:

Py — Oty + bagy + 3b307W, + 3bag W + by = 0, (28)
3bsp, @2 + 6b39, 0,0, + 3b3@op, + 320, + 620,41,

+ 30— 20,0, + 00, — O+ 20,0, =0, (29)
3bagle, + 33020, + 6bsp. o, + 6b2 W, + 30200, 1

+ 3By, 20,0, — P, + 20,0, + @, =0, (30)
Y} (ba@? + 30302, + 3b20 0 + by ~ @+ @) — KA =0, (31)

Remark 1. For Eq. (11) equivalent to Eq. (15) one of the values, either L; or L,, is not equal to zero. Notice
that if L; =0 and L, # 0, then the change

t= Vs U=—x
leads to the change
El = Lz' zz = Ll) a = b4s dy = *b4: a3 = bZi a4 = "_bl-
Further without loss of generality it is assumed that I, # 0.
Lemma 2. Let Eg. (11) which is equivalent to Eq. (15) has L, # 0. Then ¢, = 0 if and only if L, = 0.

Proof. The statement follows from Lemma 1. [J

Theorem 2. Eg. (11) with L, =0 is equivalent to Eq. (15) if and only if its coefficients satisfy the following
equations:

by =0, ba, — 20y =0, (32)
& 54 25

Lig — =—(Li,)’ +—3-53L1: — 15b4bsLy + Baly — SbhayLy + 6By, Ly + DL — L] =0, (33)
5L[ 5 5 312
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6 6
Izr_EIZL“ ~§-‘53]z =0, (34)
6
Loy — Gboly + —51—115 =0, (35)
Let Egs. (32)-(35) be satisfied Then Eq. (11) is mapped ro Eq. (15) by the change of variables (10) of the form
= (P(x), U= |,[1(X,y), (36)
where @(x) is determined by the equation
12K7T
2 2
= 37
P S (37)
and \y(x,y) by the following integrable system:
5L,
i) 3
b= (33)
Vo = s (SO 21y — 1SL)) + S@.KLy (25T ~ 126403 = My KB(Ly + 6Libr)l. (39)
25¢,L,1y"

Remark 2. The left-hand sides of Eqs. (32)«35) are relative invariants with respect to the transformation (36).
The equations vs = 0, w; = 0 (see (27)) are Eqgs. (32), the equation J4 = 4/5 is Eq. (35). In these equations, the
variable & is given by I, = 36,0, — Ly,

Theorem 3. Eg. (11) with L, 5 0 is equivalent to Eq. (15) if and only if its coefficients satisfy the following
equarions:

5Ly — 612(Ly, ~ bela + bsly) =0, (40
LAy, — byL3 4 3b3L L2 — 3b,L3L, + by L + Ly L} — LiJaLy — LydaLy = 0, (41)
SL2L5, — 615(4b4L5 — 9bsL Lo + 5b2Li — 4Ly, Ly + SLaLy — IaLy) = 0, (42)
151,11 Ly — 6362012 4 126bybsly Ly Ly — 225b4by oL + 8154103l — 90baLiol Ly + 1504051,

+ 162631513 + 9baLydsLy — 15bgdolLy — T5baulsL? + 90by Iy L2 — 18L31, — 12511 = 0, (43)
DALy + A3 — 3babsli L2 4 3bybal Ly — bybi L3 — 3baly (L3 + 3baLoLiLy + 3b3L1Lidy — 3b3Ly LY

+ b\ L3 + bagL3Ly — 3b3, I}y — ba L} + 25,17 — DngliLy + 205, Ly — 2Ly LoLy) = 0. (44)

Let Egs. (40)-(44) be satisfied. Then Eq. (11) is mapped to Eq. (15) by the change of variables (10) with
@, # 0. The functions @(x,y) and Y(x,y) are determined by the following integrable system:

Lig, +Laty =0, (43)
S (@uda + ¥ La) —~ 12KT, = 0, (46)
5Ly
== 47
Uy =7 Y (47)
SL2yr, = Y2 (=15h4L2 + 30b3L, Ly — 15b,LF + 101y, Ly — 10Lo Ly + 215L4)
+ 24, A yTIK (6b4l; — 6b3Ly — L) + Ky ™11 (—=128415 + 25L3). (48)

Remark 3. The left-hand sides of Eqs. (40)—(44) are relative invariants with respect to the general change of
variables (10). The equations vs = 0, w; = 0 (see (27)) are Egs. (41) and (44), the equation J4 = 4/5 is Eq. (42).

Remark 4. The conditions of Theorem 2 are particular cases of the conditions of Theorem 3 provided that
Lz =1,
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4. Proof of Theorem 2

We use the method similar to that employed in [8,9]. Routine calculations were made by means of the sys-
tem for symbolic calculations Reduce [10].
According to Lemma 2, L, =0 implies ¢, = 0. Since 4 # 0, one obtains ¢., # 0. Egs. (28)(31}) yield

bl = 0: lpyy = _3[!/)2;!)2? lrbxy = (Zgox)_[(wy(pxx - 3¢3Lbyb3 - 6qoxl//xlﬁyb2)>
Ve = 0 WP — 0306 = 3p0bs — 3y + 37K

Equating the mixed derivatives (¥,). = (¥xx)y and (), = (), one has

@*(4by, — 6b3, + 12b4by — 953) + 624 (by, — 2b2) + 120%7*K + 20,0, — 307, =0 (49)
and

by, = 2ba. (50)

The derivative @, is found from Eq. (49). The equation (@), =0 gives

P Ly = 12Ky, (51}
Differentiating this equation with respect to x and y, one obtains

@*(3bsLy — 2L1) + 20,4, (38:L; — Ly,) — S¢,L =0, (52)

W, v(3bsLy — Lyy) ~ S0y = 0. (53)
Since L, # 0, one has (35210, — Ly,) # 0. Using Eqs. (51) and (53), one finds

e 50 _ 2 12K(3byL0 — L1}

" y(3baLy — L)’ o 5Ly

Substituting them into (52), one obtains
109,34, Ly (3b,Ly — Ly,) + 12(3b,L1 — Ly, )K(3b3Ly — 2Ly} — 259, Liy* = 0. (54)
Since ¢, = 0, the equation (¢?), = 0 gives
SLiLy = 3(=12b5L% + 3By Ly Ly + 5Bo, L7 4 212 ). (55)
Using Eq. (54) one can find the derivative ¢,
@y = 2(355L1 — L1,) (S0 L3 + 6K (3b;L; — 2L1,))/(25L35°).
By considering the equations
(¢0)n = 2(0% + 0100a) =0, (56)
(97), — 20,04 =0, (57)
one can obtain conditions for the coefficients by, b,, b3, bs. For example, Eq. (57} gives
SLiLyy = 3(~6b3bsL? + 2b3 L Ly — baLy, Ly + 5byLi + 2Ly, Ly,).
Invoking that (¢.,), = 0 and using the equation 2¢,¢,, — (¢?), = 0 one obtains
Lig = 3Ly (2Ly, — BsL0) [ (SL1) + 15baboLy — baly + 5hauly — 63, Ly — 54b3L1 /5 + 2513/ (311),
where the relative invariant 7, (25) becomes
Iy =3bL) — L.

Eqgs. (56) and (¥,)xe — (¥xx), = 0 are satisfied. Summing up the above results, we complete the proof of The-
orem 2,
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5. Proof of Theorem 3
We deal now with the case Ly # 0, and hence ¢, # 0. Using Eqs. (28)(31), one finds the derivatives v,
s Yoons P!
Wy, = @5 (@,W, — ¥by) — 30y — 3U,bs, — bagpl,
2y = (9) 20400, — 40, + bl (00, ~ 3,0,))
= 3@, + V0,) — 20,10, — 6, by,
Vi = 0, (=20,0.0,0, + 200,90, + 0.0,07 + 40,0,
— b, (03 — 30,0, + 31 0l)) — @ibs — 30,bs — 3y,
Pee = 00,2040, = 0.0, + OI01 = 200,b10,) + Wby + 0, Ky,

Furthermore, the equations (W) = (¥x)y and (¥,), = (¥,), determine the derivatives @y, and @,,,,
respectively,

20, = 0,2 (40, 0,0, — 0,00, + @UIB — W ble,) + 20,470 (by — 3b1b)
+ 40,0, (2by — by, — 2bab1) + @, @6y, — Aby, — 12baby + 953)
+ 20,0 by, —~ 6byb1) + 4,0, (b1 — 3bsby) + 2,03 2By, — by, — 2baby),
20, = 0, (302, — 3iB]) + 22 (—6byby + br,) + 64, (—3bsby + b,)
+ 6,02(2by, — 2b4by — by,) + @)(6by ~ 12bsby -+ 9B — 4by,).
The equations (@), = (@yy)x A0d (@xyy)y = (@xx)yy vield:
VAL, + ¥.0,) +2L10,0,) — 120, K = 0. (58)

Eq. (22) and the condition 4 # 0 yield that Loy, # 0 and Ly, + Ly, # 0. By virtue of Eq. (22), Eq. (58)
becomes

Y (@oLt + 1, L2) — 12KL = 0. (59)

Differentiating (22) with respect to x and y, and substituting the derivatives Y., ¥, ¥, and @, one obtains

— @ L@l + L) -+ 40 {2041 — 353 L1 L3 + b1 L] — 2Ly, L5 + 2La, L1 La)
+ Yo, (36313 — 6b;L L5 + 36\ LiLy — 2Ly L3 + 2L0,LiL;) = O, (60)

Byl - 33Dy L2 — 3oLy - By L} + Lydd — LyulaLly — LodaLs + Lo L? = 0. (61)
Eq. (60} yields:

@, = L7 Ly + W L2) ™ (0 W2 (2baL] — 3b3La L3 + by L] — 2Ly, L3 + 2Lnula L)

F YW (3b3L2 — 6byLaLy + 3b,L7 — 2Ly, Ly + 2L o).

Furthermore, Eq. (61) determines La,:

Loy = L7 (bald = 3b3L413 + 35,000 — b1l — LiL + Lo Ly + LaLa La). (62)

Using Eq. (59), one obtains the equation (¢.,), — (®.x), = 0. Notice that the equations (¢,),, — @,,, = 0 and
(@y)xy — @xpy = 0 are also satisfied. Now we find @2 from Eq. (59) and substitute it into the equation
@xyy — (@yy)x = 0. This leads to the following expression for Ly

Loy = L7 =b3L3 -+ 3b4bs L1 L5 — 3babaLiLy -+ baby L} + 3baLy L3 — 3b4Lo L1 Ly — 3b3L4, L1 Ly
4 3b3 Loy L — by L\ L3 — by LPLy + 3b3,L3Ly + by L3 — 203, L3 + L, Ly Ly — 203 Ly + 2Ly Ly Ly).  (63)
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Differentiating (59) with respect to x and p, one finds ¢, and v, respectively,

W, = 5Ly (Ly) ",
Oy = 12K(SL2y° (@, Ly + W, L)) " [6L1,Ly — 6b4L3 + 6b3L1 Ly — SLaL |
4 (LAY T 10B,LE — 15bs Ly L2 + 55\ L3 1O0Ly I3 + 10Lg,Li Ly — ToLiLy).

The equations (), = v, and (¢?), = 2p,¢,, vield:
SI31,, = 61,(8byL} — ObsLiLy -+ 5boL? — ALy Ly + 5Lyl — ILy), (64)
ST = 6[2{1;1, — byly + bng). (65)

Now the equations (¥,). = ¥, and (¢y,), = (¢,,), are satisfied.
The equation (@xy)x = (Pxx}, vields:

Liw = (63D201,L2 — 126b4byJ 2L Ly + 225bsby 22 — 81b4LydaLy + 90b4LodyLy — 15h4I2 L) — 162851, L}
= ObsLy Dol + 15ba DLy Ly + T5by DLy — 90bs I L3 + 1813 I, + 125L7)/(151:L,). (66)

Notice that the equations (), = ¥, and (¥,), = ,, are satisfied.
Summing up the above results, we complete the proof of Theorem 3.
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