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STUDY ON THE PHOTOSYNTHESIS CHANGES OF CROP UNDER CLIMATIC
CONSTRAINTS

Pn=QBe -~ R | o @

(Hall and Long 1993)

Y=a+BX 2

(Gomez and Gomez 1984)

Y = a + BX + BXpt. . BX | @
(Gomez and Gomez 1984) ............................

INTRODUCTION

Climatic constraints on crop production relate to meteorological phenomena (Monteith
and Elston 1993). This resulted in physiological interaction between many physiological
processes of the plant and / or genetically of the plant. Adaptation of crop in order to
survive in environmental stress has prolonged for such a long time. This resulted in crop

population dynamics and finally to crop distribution of the world.

Impact of individual environmental constraints on crop have well studied in many part of
the world. These are radiation, r;infall, temperature, saturation deficit and so on (Ernest
1993). Crop productivity is of éur interest apart from growth and development. Crop
productivity however, is the final product of photosynthesis. Therefore, the studying on
the photosynthesis changes of crop under climatic constraints will let us to understand
which climatic factor is the most limited factor, and how crop adap themselves to survive

in such conditions.

The objective of this study is to assess the photosynthetic rate of crop under constraints.

And the practical use of photosynthetic instrument.



MATERIALS AND METHODS

10 even plants of corn (or any crop) which grow under dry condition and other 10 even
plants of corn which grown under optimum are measured for photosynthetic rate. Biomass
in term of dry matter of the two category crops are then weighted and compared. The
photosynthetic rate is also compare and analyze for critical factor of stresses that

determine their productivities.

The factors that photosynthetic instrument can measure are as follow:
1. Amount of CO; use.

2. PAR

3. Humidity (% RH)

4. Temperature

All students will study together, complete measuring all factors (parameters) every day for
a week, then the dry matter will plot against each parameter and all parameters. The best

R2, hopefully, can tell us which factor is the most critical for photosymthetic rate of corn,.”



CHAPTER 7
Regression and correlation analyses

7.1 INTRODUCTION

The interactions among plant characters, among environmental factors, and
among combinations of both are important in determining the behavior of
biological organisms. We already discussed in chapter 4 the interaction
among treatments (or in the present context among environmental factors)
and how the effect of such interaction on a single plant character can be mea-
sured by using factorial experiments. But this interaction is only one of the
many interactions encountered in agricultural research. One or more environ-
mental factors can influence not only one but several plant characters simul-
taneously. Each plant character in turn interacts with other characters such
that changes in one can substantially change the others. Consequently, the
~ relationships among plant characters and their relationships to environmental
factors are of major interest to most agricultural researchers. We will give
four examples of commonly conducted experiments whose objectives reflect
the need to measure interaction, or association, among plant characters and
environmental factors.

EXAMPLE 1. Besides identifying superior treatments, many researchers also

want to pinpoint the cause or causes of improved performance. For example,
in evaluating the effectiveness of various insecticide treatments, a researcher
wants to determine if the increased rice yield was due to the control of stem
borers, whorl maggots, brown planthoppers, green leafhoppers, or a combi-
nation of two or more of these insects.
_ EXAMPLE 2. Yield, generally a criterion for judging treatment performance,
1s a product of several plant characters, each of which is, in turn, affected by
the treatments applied. Therefore, the researcher wants to know how the
effects of treatments on these plant characters are finally reflected in the yield.
For example, in a trial to evaluate the response of rice yield to several planting
densities, is the increase in grain yield at a certain density associated with more
tillers per hill, more grains per panicle, heavier grains, or a combination of
these components?

EXAMPLE 3. “Widely different treatments are sometimes applied to induce.
Variation in plant characters, such as plant height and leaf area index, or in
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environmental factors such as weed population and insect or disease incidences,
so that relative changes among the variables could be examined. In such
experiments the primary interest is not to compare treatment differences
“(already known to exist) but rather to assess how changes in one variable
affect one or more of the others. For example, plant spacing is sometimes
used to induce variation in both leaf area index and grain yield so that the
relationship between these two characters can be assessed.

EXAMPLE 4. Treatment performance is at times measured as a weighted
average (whose weights may or may not be known) of two or more characters
rather than of a single character. Consequently, superior treatments cannot be
identified by merely making treatment comparisons based on each character
separately. The association among these characters must also be evaluated.
For example, in breeding for high-protein rice, both high protein content and
high grain yield must be maintained, and hence, it is desirable to identify
selections with high protein content that also have high grain yield. Infor-
mation concerning the association between the two characters would make
such identification easier. For example, it would be desirable for the rice
breeder to know if high-yielding rice varieties tend to have low protein content.

In the previous chapters we have been concerned primarily with procedures
for comparing treatments based on a single character. And although single-
character analyses are adequate for many experimental objectives, they are
not adequate in the four examples just described since not only is more than
one character usually measured for each experimental plot but also an experi-
mental objective is to examine the relationship or association between two or
more variables. Thus, in this chapter, we shall discuss two of the more common-
ly used statistical procedures—regression and correlation analyses—for
handling such cases.

Regression analysis describes the effect of one or more characters (designated
as indenendent variables) on a single character (designated as the denendent
variahle) by expressing the latter as a function of the former. In regression,
the character of major importance, say, grain yield, usually becomes the
dependent variable and the factors or characters that influence grain yield
become the independent variables. The classification into dependent and
independent variables is not always obvious but sometimes requires previous
‘knowledge or logical inference about the direction of the causal relation among
the variables. For instance, in the relation between a plant character, say
yield, and the treatment levels, say, nitrogen rates, yield is obviously the depen-
dent variable and nitrogen rate is the independent variable. In an insecticide
trial, however, we must make a logical assumption that higher grain yield is
a consequence of reduced insect population. And, therefore, grain yield is
designated as the dependent variable and the insect populations as independent
variables.

Correlation analysis differs from regression in that it measures-the degree
of association between variables without specifying a priori which is the cause
and which is the consequence. hus, in correiation analysis, there is no dis-
tinct ditferentiation made between dependent and independent variables. The
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previous example on grain yield and protein content (Example 4) illustrates
the applicability of this procedure since it is difficult to specify, a priori, if
protein is a consequence of grain yield, or vice versa. Thus, until more is
known about the biological and chemical relationships between grain yield
and protein content, an analysis that does not assume specific directional
cause and effect is desirable.

Regression and correlation analyses, while different in some ways, have
many similarities, particularly in the computational procedures. By putting
the two topics in the same chapter we can present techniques common to both
procedures only once and discuss more clearly the basic differences between
the two methods. We can thus effectively point out how and why these proce-
dures have been and can be easily misused. We have also included in this
chapter a specific section on the common misuses and pointers on interpreting
regression and correlation analysis in agricultural research (section 7.4).

7.2 REGRESSION ANALYSIS

Regression analysis can be classified according to (1) the number of independent
variables or (2) the form of the functional relationship between the dependent
variable and the independent variables. Thus, regression analysis is termed
as “simple” when there is one independent variable and *“multiple” when
there is more than one independent variable. Based on the second category,
a regression analysis is termed “linear”” when the relationship between the
dependent variable, Y, and an independent variable, X, is linear; that is, when
the change in Y is constant for every unit change in X. When this relationship
does not hold, regression analysis is termed *‘nonlinear.” We have thus defined
four types of regression analysis, namely:

1. Simple linear regression,

2. Multiple linear regression,

3. Simple nonlinear regression, and

4. Multiple nonlinear regression.

The succeeding discussions are organized along this classification, but we
have emphasized simple linear regression because of its simplicity and wide
use in agricultural research.

-7.2.1 Simple linear regression
Simple linear regression involves only one independent variable, and the
relationship between the dependent variable, Y, and the independent variable,
X, is known or assumed linear ; that is, the rate of change in Y remains the same
for each unit change in X. Figure 7.1a illustrates a linear relationship where
Y increases two units for each unit change in X throughout the whole range
of X values considered. Thus, simple linear regression is the simplest of the
four types of regression analysis discussed earlier. It is also the most commonly
used regression technique in agricultural research for the following reasons:
1. The computational and analytical procedures are simple.
2. The interpretation of results is straightforward.
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Fig. 7.1 Illustration of (a) a linear and (b) a nonlinear relationship.

3. Although in reality, the assumption of linear relationship among char-
acters in biological materials seldom holds, a linear model is usuaily adequate
for a relatively small range in the values of the independent variable. For
example, let's examine the commonly observed nonlinear relationship of
plant growth over time illustrated in figure 7.1b. As is typical of biological
materials, the growth rate is rapid when the organism is young and declines
considerably as the organism becomes older. Thus, the relationship between
growth and age of plant is not linear over the whole life cycle, but within some
limited region, for example, the range of X values from 0 to 1 or from 1 to 2
in figure 7.1b, it can be adequately described by a linear relationship or straight
line.

4. Even though one independent variable is usually not sufficient to char-
acterize the variation in a certain dependent variable, a problem is greatly
simplified and easier to understand if only one independent variable is studied
at a time. Hence, a simple regression analysis is usually applied to data from
controlled experiments where many factors are deliberately kept constant
while only the one or two factors being investigated are allowed to vary. In
a nitrogen fertilizer trial, for example, all other factors that can affect yield,
such as phosphorus and potassium application, plant population, variety,
weed control, and all other management inputs, are carefully controlled
throughout the experiment. Only nitrogen rate is varied. Consequently, the
assumption that nitrogen level is the major determinant of yield is satisfied.
In contrast, if data on grain yield and rates of nitrogen application were col-
lected from an experiment where other production factors are also allowed to
vary, or through a farm survey, which also includes uncontrolled factors (see
section 7.4 for further discussion), using a simple regression would be in-
appropriate.
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A simple linear relationship between a dependent variable, Y, and an
independent variable, X, can be expressed mathematicaily as

Y=a+ X, 7.1

where a is the intercept of the line on the Y-axis, and § is the slope of the line
indicating the change in Y.for each unit change in X. f is usually referred to as
the linear tegression coefficient.

Thus, « and f are the two parameters of the regression equation (7.1), and
once their values are specified, the value of the dependent variable, Y, is specified
for any given value of the independent variable, X. In most agricultural re-
searches, the objective is to determine the response in Y as a result of changes
in X. Hence, the parameter of major interest is usually the regression coeffi-
cient, §. Since if # = 0, the implication is that Y does not depend on X. -

- In a simple linear regression, therefore, we usually test the hypothesis that
B = 0. This hypothesis is called the null hypothesis and is written H,:f = 0.
In some special cases, however, the researcher may wish to make tests con-
cerning the value of the intercept, a, which is the value of Y at X = 0. One
such special case may concern the question of whether the line passes through
the origin, in which case the hypothesis is that & = 0.

7.2.1.1 Estimation procedure

Given a set of data with n pairs of Y and X values, the simple linear regression
equation (7.1) can be estimated based on the method of least squares! as
follows:

Y =a+ bX, (1.2

where Y is the estimated value of the dependent variable, Y, and a and b are
estimates of « and f respectively. The values of @ and b are computed as:

Si-XYi- 1) Sa

b = izl =

PR S
a=7Y - bX, v (7.4)

where X and ¥ are the arithmetic means of the variables X and Y; and X; and
Y; are the i™ pair of X and Y values, respectively. 3 x2 is usually referred to as
the corrected sum of squares of X, and Y xy as the corrected sum of cros
products of X and Y. '
Graphical representation of the estimated regression line, equation (7.2),
can be made by, first, computing two values of ¥, one corresponding to the
smallest value of X(X i) and another corresponding to the largest value of

and (7.3)

' The least squares method is the simplest and the most widely used method for estimating a regression equation,
We shall not discuss its many desirable properties in this book. Interested readers are advised to consult any of
the many statistical books that carry this subject. :
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Fig. 7.5 Estimated linear relationships between grain yield and
tiller number of three rice varieties and selections: JR1514A-E666,
IRS, and Peta.

and finally,

(2,794)?
10.72
step 4. From formula (7.14), compute
F= (3,848,739 ~ 2,218,017)/(3 - 1)

2,218,017[(5 + 5 + 5) — 203)]

G = 4,576,951 — = 3,848,739

=3.31.

Since the computed F-value of 3.31 is smaller than the tabulated F-value (2and 9
d.f.) at 5% level of significance of 4.26, there is no sufficient evidence for rejecting the
hypothesis that the three regression coefficients are homogeneous.

7.2.2 Muitiple linear regression

The siniple linear regression analysis described in the previous section can
accommodate only one independent variable, X, which must be the major, if
not the only variable, affecting the dependent variable, Y. Hence, where more
than one variable is involved, simple linear regression is clearly inappropriate.
But more and more factorial experiments are being conducted in agricultural
research because of the usually observed interdependence among factors of
production and the recent development of experimental designs that can
accommodate several factors simultaneously (i.e., multi-factor designs). There
is, therefore, an increasing need for regression procedures that can handle
more than one independent variable, particularly for researchers involved in
survey data where it is extremely difficult and at times impossible to control
the number of variables affecting the dependent variable.
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The multiple linear regression analysis, where the requirement for a single
independent variable is relaxed, can very often satisfy these needs. In this
procedure, any number of independent variables suspected to. affect the
dependent variable, Y, can be included in the regression equation. Note,
however, that even though the single independent variable requirement is
relaxed, the requirement for linearity still holds. Thus, for k& independent

variables, X,, X,, Xj, ... X,, the functional form of the multiple linear re-
gression model is o
Y=a+ﬂ1X1 +ﬂ2X2 +ﬂ3X3 + ... +ﬂka, (7.15)

where the s are the partial regression coeflicients associated with each X;
and « is, as before, the Y-intercept (the value of Y when all X;’s have zero
values).

7.2.2.1 Estimation

Similar to the simple linear regression, the parameters «, B,, B,, ... , B of
equation (7.15) can be estimated by using the least squares method. Consider
the general case where the dependent variable, Y, is a function of k indepéndent
variables: X,, X,,..., Xi. Consider further that the variables Y, X, X,,
..., X, are measured simultaneously from each of the n experimental (or
sampling) units. (To apply the least squares method, the number of units, n,
must exceed the number of independent variables, k.) The data are in the form
shown below.

Dependent Independent variables
variable
X, X, CX, R X,
Y, Xy X X3, I ’ Xy
Y, X2 Xy, X3, R Xz
Yu Xx L] Xz. Xa,, « e Xk,.

The general procedure for estimating the multiple linear regression equation
(7.15) is as follows:

sTEp 1. Compute the corrected sums of squares and cross products for all
possible pair-combinations of the k + 1 variables as follows:

Y X, X, C X
X, Txy > x,? XX, e Xy Xk

X2 Xxy X%, Tx,? B oxgxk

ba Swy T TEn Tom L a2
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Carbon metabolism
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Anintegrated picture of photosynthetic carbon metabolism in leaves. Elcectron transport in‘th‘?_
thylakoids provides ATP and NADPH to power the Calvin cvcle and the CO,-concentrating mechanism:
ot C; photosynthesis. 1t also provides reductant, via thioredoxin, for the light-activation of enzymes:
Triose-P generated in the Calvin cvcle can be used for product synthesis (starch in the chioroplast of
sucrose in the cvtosol): this releases inorganic phosphate (P;) which is then returned to the chloroplast t0-
be used in photophosphorviation. Carbon is also utilised in biosynthesis to make organic acids, amind,
acids, lipids etc., either in the chloroplast or in the cytosol. Carbon exported to the cytosol can entef
glvcolvsis and be respired by the mitochondria or be converted, via PEP carboxylase, to malate anc.
aspartate. RuBP can also be oxygenated, generating P-glycollate. This carbon leaves the chloroplast as
glveollate and the process of photorespiration regenerates glycerate-3-P which can re-enter the Calvint:
cvele. However, photorespiratory glycine decarboxylation (which occurs in the mitochondria) results I
a loss of ammonia and one-quarter of the carbon in glveollate (Chapter 20). Note that this diagram 15
highlv simplified and contains no indication of compartmentation.
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