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Abstract


This work introduces a modified meta-heuristic algorithm for solving Location- Routing Problems 
 
(LRP). It presents the most relevant steps towards the implementation of LRP, involving servicing a
 
set of customers from a set of specific capacitated depots by using a set of identical vehicles. The 
 
objective of LRP is to minimize the total location and distribution costs. Since LRP is non-
 
deterministic polynomial-time (NP) hard combinatorial problem, the heuristic is an appropriate 
 
approach to solve this problem. In this study, a heuristic based on the Max-Min Ant System 
 
(MMAS) is proposed and a 2–opt/ Move-Swap algorithm is applied. This approach aims to integrate 
 
2 levels of decision making (location-routing) in a computationally efficient manner. Simulations are 
 
performed using problem instances available from literature. The results show that the modified 
 
MMAS performs efficiently in solving LRP.


Keywords:	 Location-Routing Problems, metaheuristic, max-min ant system, local search


Introduction

The concept of integrated logistics systems 
 
has given rise to a new management philosophy 
 
which aims to increase distribution efficiency. 
 
Such a concept recognizes the interdependence 
 
among the location of the facilities, the allocation 
 
of suppliers and customers to the facilities, 
 
and the vehicle route structure around the 
 
depots. The design of logistics systems requires 
 
a number of different types of strategic decisions. 
 
One of the higher level decisions that must be 
 
addressed involves the location of the facilities 
 
from which the activity of the system will be 
 
managed. Facilities must be located so as to
 

minimize the operating costs of the system, so 
 
it is necessary to consider the facility location 
 
and distribution decision simultaneously. The 
 
combined location-routing model solved the 
 
joint problem of determining the optimal set 
 
of vehicle schedules and locations. Each 
 
location has a fixed operating cost and a capacity, 
 
and the traveling costs between any 2 points. 
 
The goal is to determine the number and 
 
locations of the facilities to be opened and 
 
design multiple routes from each selected 
 
location in such a way that each customer 
 
belongs to exactly 1 route, capacity constraints 
 

Industrial Technology, Rajamangala University of Technology Isan, Kalasin Campus, Kasetsomboon Rd. 
 
	 Muang Kalasin 46000, Thailand. Tel: +660-4381-1128; Fax: +660-4381-3170; E-mail: suphan_sodsoon@
 
	 hotmail.com

*	Corresponding author


Suranaree J. Sci. Technol. 17(4):321-334




Max-Min Ant System for Location-Routing Problems
322

on the facilities are satisfied, and the total costs 
 
are minimized. There are a number of related 
 
papers involving combinations of LRP. Several 
 
different types of solution methods have been 
 
used for solving LRP. 

	 These are exact algorithms and heuristics. 
 
Laporte and Norbert (1981), and Laporte et al 
 
(1983; 1986) developed a branch and bound 
 
algorithm that solves related sub-problems, 
 
adds upper bounds on variables, and branches 
 
on non-integer variables. They are able to
 
solve some randomly generated symmetric 
 
instances of the Multi-Depot Vehicle Routing 
 
Problems (MDVRP) with as many as 25 
 
problem nodes (including depots nodes). 
 
Laporte et al. (1988) solved some asymmetric 
 
MDVRP by performing a graph extension and 
 
then creating constrained assignment problems 
 
which they were able to solve through the 
 
branch and bound method. Using this method 
 
they solved problem instances with up 80 
 
nodes, so long as the number of depots was 
 
small (2-3 depots), since location-allocation 
 
problems and the Vehicle Routing Problems 
 
(VRP) are NP-hard combinatorial problems 
 
which are difficult to solve by exact 
algorithms. 

	 Clarke and Wright (1964), originated the 
 
saving and insertion heuristics to solve vehicle 
 
routing. These heuristics are efficient for 
 
forming good clusters for the customer nodes 
 
and depot nodes. 

	 Chien (1993), proposed an approximate 
 
approach for the Multi-Depot Location Routing 
 
Problem (MDLRP), in which route length 
 
estimators are used in constructing vehicle 
 
routes.

	 Nagy and Salhi (1996) adopted the 
 
concept of the nested method to treat the routing 
 
element as a sub-problem within the larger 
 
problem of location. While still few in number, 
 
more papers have been written concerning 
 
heuristic approaches to the MDLRP. Gillet 
 
and 

	 Johnson (1976) proposed an assignment 
 
sweep approach which is an extension of the 
 
sweep heuristic, and solved the MDLRP in 2 
 
states: customers were first assigned to depots 
 
to compact and disjointed clusters and then 
 

independent single-depot VRP were solved 
 
using the sweep heuristic. 

	 Raft (1982) presented a 2-phase heuristic 
 
that starts with a route assignment phase. 
 
After having estimated the number of vehicles 
 
needed, the algorithm constructs clusters of 
 
customers, each assigned to 1 vehicle. These 
 
clusters are not assigned any depot and are 
 
constructed to provide a small-expected 
 
length. In the next phase, each route is 
 
assigned to a depot, and then a 2-Opt exchange 
 
procedure is applied to each route.

	 Chao et al. (1993) provided a review of 
 
the previous heuristics in the operations 
 
research literature, and also introduced a new 
 
heuristic. The most important element in this 
 
new heuristic is the improvement procedure, 
 
which allows total distance to increase with 
 
the hope that a solution with an overall decrease 
 
may be found further along in the improvement 
 
process. The authors applied their new heuristic 
 
on data sets taken from the literature and 
 
found that the new heuristic yielded better 
 
solutions than were previously known.

	 Renaud et al. (1996) and Pathumnakul 
 
(1996) applied a Tabu Search (TS) heuristic to 
 
MDVRP. The algorithm contains 2 parts: 
 
construction of an initial solution by assigning 
 
customers to its nearest depots and then using 
 
a heuristic to find the best route selection and 
 
using a TS to improve the solution. 

	 Ha (1998) presented a hybrid genetic 
 
approach for the MDVRP, that applied a 
 
genetic algorithm to cluster the MDVRP into 
 
VRP and then used a hybrid 2-Opt/Or Opt 
 
heuristic to solve single-depot VRP.

	 Madsen (1983) applied the TS, Tuzun 
 
and Burke (1999) presented a 2-phase TS for 
 
the MDLRP and compared the 2-phase 
 
algorithm with other heuristics, and Wu et al. 
 
(2002) applied simulated annealing, and 
 
threshold accepting and simulated annealing. 

	 Sodsoon and Sindhuchao (2007) the 
 
MMAS and the Swap-Move/*2-Opt algorithm 
 
to solve the MMAS. The heuristic starts with 
 
customers assigned to each depot and vehicle 
 
routes constructed simultaneously using 
 
MMAS. After an ant colony has constructed 
 
all the routes completely the Swap-Move/
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*2-Opt is applied to each route. 

	 This paper focuses on the study of 
 
MMAS and solution improvement procedures 
 
(2–opt/ Move-Swap algorithm) for solving the 
 
LRP with multiple depots, multiple routes, 
 
homogeneous fleet (only one type of vehicles) 
 
and limited capacity of vehicles and the time 
 
window is not considered in this case. This 
 
paper is organized as follows: the model is 
 
formulated in section 2; in section 3, the 
 
MMAS and solution improvement are presented; 
 
computational experiments are discussed in 
 
section 4; and finally, conclusions are provided 
 
in section 5.


Location-Routing Problem

The location-routing problem was first 
 
defined by Perl and Daskin (1985). In this 
 
research, the formulation is closely related to 
 
Wu et al. (2002). The following information is 
 
known; number of candidate depots, number 
 
of customers, deterministic demand of each 
 
customer, vehicle capacity, dispatching cost 
 
for vehicles, and depot establishment cost. 
 
Each customer is served by exactly 1 vehicle. 
 
The total demand on each route is less than or 
 
equal to the capacity of the vehicle assigned 
 
to that route, and each route begins and ends 
 
at the same depot. Each vehicle is identical. 
 
The following indices, parameters, and decision 
 
variables are used in the mathematical model:


Notations and Decision Variables


I	 set of all potential depot sites


J	 set of all customers


K	 set of all vehicles


N	 number of customers


Cij	 distance between points i and j, 


	 i, j ∈ I ∪ J  


Gi	 fixed costs of establishing depot i 


Fk	 fixed costs of using vehicle k 


Vi	 maximum throughput at depot i 


dj	 demand of customer j


Qk	 capacity of vehicle (or route) k


Xijk = 1	 if point immediately precedes point j
 
	 on route k (i, j ∈ I ∪ J); 0 = Otherwise


yi= 1 	 if depot i is established; 0 otherwise


Zij= 1 	 if customer j is allocated to depot i; 
 
	 0 = Otherwise


Ulk	 auxiliary variable for sub-tour 
 
	 elimination constraints in route k


Mathematical Model


	 (1)


Subject to


	 (2)

	


	 (3)


	 (4)


	 (5)	


	  (6)	


	 (7)


	 (8)	 


	 (9)	


	 (10)


	 (11)


	  (13)

	

	 The objective function minimizes the 
 
sum of the fixed depot-establishing cost, 
 
delivery cost, and dispatching cost for the 
 
vehicles assigned, respectively. Constraints 
 
Equation (2) require that each customer be 
 
assigned to a single route. Constraints Equation 
 
(3) are the capacity constraint set for vehicles. 
 
Constraints Equation (4) are the new sub-tour 
 
elimination constraint set. Flow conservation 
 
constraints are expressed in Equation (5).
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Constraints Equation (6) assure that each route 
 
can be served at most once. Capacity constraints 
 
for the depots are given in Equation (7). A 
 
constraint (8) specifies that a customer can be 
 
assigned to a depot only if there is a route 
 
from that depot going through that customer. 
 
Constraint sets Equations (9), (10), and (11) 
 
are the binary requirements on the decision
 
variables. The Ulk, auxiliary variables taking
 
positive values are declared in Equation (12).


Heuristic for LRP


	 Let a set of customers and potential depots 
 
be presented by points on the plane. Each 
 
customer has a certain demand. The location 
 
has an installation cost of each site and the 
 
unitary cost of distribution. The vehicles 
 
routes and the potential depots have a certain 
 
capacity. The purpose of LRP is, then, to 
 
choose the depots that must be opened and to 
 
draw the routes from these depots to the 
 
customers, having an objective of minimizing 
 
the total location and distribution costs. The 
 
summarized algorithm is shown in Figure 1.


	 Grouping Phase


	 At this stage, finding a heuristic algorithm 
 
giving rapid approximations to the optimum 
 
seems to be more appropriate than well-
 
developed methods which typically consume 
 
too much time. Hence, the grouping procedure 
 
assumes that all the potential depots are opened 
 
and each customer is assigned its nearest 
 
depot. The total demands of each group of 
 
customers do not exceed the depot capacity. 
 
We are dealing with the signal ratio which is 
 
the measurement of connection between 
 
customers and depot locations. The sector 
 
grouping algorithm is illustrated as follows:

	 1)	 Assume that all the candidate depots 
 
are opened

	 2)	 Assign customers to the nearest 
 
depots. The total demands of each group of 
 
customers for each depot must not be greater 
 
than the depot capacity. 

	 3)	 Compute the signal ratio of each 
 
group. The signal ratio is the sum of the ratio 
 
between the demand load of a customer and 
 
the distance from that customer to a depot
 

location according to Equations (2) and (3)

	 4)	 Sort the signal ratio (R

1
, R2,.....RM)
 

of all the depots in descending order for 
 
generating initial vehicle routes by MMAS

	 5)	 An ant constructs the routes

	 For this grouping algorithm, we rank the 
 
depot locations for opening while maintaining 
 
sufficient coverage to the customer area and 
 
each customer can be satisfied. The first 
 
location in the list is the best one to open first. 
 
Based on the concept of proximity between 2 
 
elements, some measures of proximity among 
 
groups and the depot locations have been 
 
proposed: single linkage (nearest-neighbor). 
 
The distances (Cij) between customers and 
 
depot locations are simply computed as 
 
Euclidean distances by Equation (14)




	 	
(14)




where, xi, yi are coordinates of node i and j,
 
respectively. In Equation (15), the signal
 

Figure 1. MMAS implemented
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ratio at customer j and location i is assigned to
 
the customer demand (dj) divided by distances 
 
(Cij):

	 Ratio : (R1, R2,....., RM)


	 	 (15)


	 subject to:  	 (16)



where, n is number of customers assigned to 
 
depot i , Vi is the maximum throughput at the 
depot i, and dj is the demand of the customer 
 
j. The total demand of each group of customers 
 
must be less than or equal to the maximum 
 
throughput at the depot i.


	 Route Construction Phase

	 The MMAS algorithm is based on an 
 
Ant System (AS) algorithm developed by 
 
Dorigo and Gambardella (1997). In AS, m 
 
ants are initially positioned on n vertices 
 
according to an a priori assignment procedure. 
 
Each ant builds a tour by repeatedly applying 
 
a probabilistic nearest-neighbor heuristic. The 
 
MMAS introduced by Stützle and Hoos, 
 
(2000) is an improvement of the AS algorithm. 
 
In the MMAS, the pheromone trail is updated
 
only on the global best and/or local best 
 
solution, instead of on solutions created by 
 
every ant, thus promoting a better exploitation 
 
of the search space. Another peculiarity is the 
 
inclusion of upper and lower bounds to the 
 
pheromone level τmin and τmax to help avoid 
 
stagnation. Initially the pheromone level of all 
 
trails is set to the upper bound in order to 
 
favor exploration. Therefore, the upper bound 
 
is initially chosen to construct a tour. Then, an 
 
ant modifies the pheromone level on the 
 
visited edges by applying a local updating 
 
rule.


Pheromone Trails Initialization

	 The pheromone level of each edge has 
 
lower and upper limits τmin and τmax. The initial 
 
pheromone, τ0 , the upper limit, τmax, and the 
 
lower limit, τmin , are set as in Equation (17)



	 τ0 

 	 =	 τmax 


	 τmax	
=  	M 


	 τmin	
=  	τmax/(2*(N+M))	 (17)




where, M is the number of depots and is the 
 
number of nodes in the graph, respectively.


Tour Construction


	 In this research, we adopt the concept 
 
similar to the elitist ant or ranked ant of 
 
Bullnheimer et al. (1999) and Dang (2003) of 
 
ant colonies constructing vehicle routes by 
 
alternating the motion of each ant from each 
 
depot. An ant selects the next customer to be 
 
served, compatible with capacity constraints. 
 
We used the number of ant colonies equal to 
 
the number of depots to construct routes. Each 
 
ant is put at a depot and each ant will choose 
 
the next nodes to move from the present node 
 
i to the next node j according to the state 
 
transition rule given by Equation (18).


	
 (18)




where, Uk is the set of nodes that remain to be 
 
visited by an ant positioned on node i,τij is 
 
pheromone level on edges (i,j), and ηij is the 
 
inverse of the length of edges (i,j). Thus, 
 
ηij = 1/dij where dij denoted the distance between
 
nodes i and j, and β is the parameter that 
 
determines the relative influence of the 
 
pheromone. We used 2 < β < 5 in the MMAS
 
algorithm.


Local Pheromone Trail Update


	 Additionally to the global updating rule, 
 
in MMAS the ants use a local update rule that 
 
they apply immediately after having crossed 
 
an arc during the tour construction:



	 	 (19)



where, ξ; 0 < ξ < 1 and τ0 are 2 parameters
 
to the MMAS algorithm. In this way the 
 
exploration of not yet visited arcs is increased. 
 
The value of τ0 is set to be the same as 
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the initial value for the pheromone trails. 
 
Experimentally, a good value for ξ was found
 
to be 0.1, while a good value for τ0 was found
 
to be 1/n.Lm, where n is the number of cities
 
in the LRP instance and Lm is the length of the 
 
nearest-neighbor tour.


Update of Pheromone Trails


	 The MMAS to update pheromone the 
 
trails includes iteration-best and global-best 
 
solutions to avoid search stagnation. The 
 
allowed range of the pheromone trails strength 
 
is limited to the interval [τmax, τmin] and τij is 
 
τmin < τ ij  <  τmin. The pheromone trails are
 
initialized to the upper trail limits. After all 
 
ants have constructed solutions, the pheromone 
 
trails are updated according to Equation (20).


	                   (20)



where ρ is a parameter called the evaporation
 
coefficient, 0 < ρ < 1 and  
 
where t is scheduled for the fre quency and
 
Cbest is the best so far tour. The ant which is
 
allowed to add pheromone trails may construct 
 
an iteration-best tour and global-best tour. 
 
All edges (i,j) belonging to the so far best
 
solution (objective value) are considered to 
 
increase the intensity of pheromone trails by 
 
an amount . If edges (i,j) do not belong
 
to the so far best solution, the intensity of the 
 
pheromone will be reduced. Heuristic approaches 
 
to the tour obtained by ants can be classified 
 
as tour constructive heuristics. Tour constructive 
 
heuristics usually start by selecting randomly 
 
a customer point and building the feasible 
 
solution piece by piece by adding new 
 
customers’ points chosen according to the 
 
selected heuristic rule. Thus, the complete 
 
algorithm together with the flow for the method 
 
of study is summarized as shown in Figure 2.


Route Construction


	 In the stage of initialization, there are 
 
steps to generate a feasible initial solution. In 
 
order to apply MMAS to solve LRP, a modified 
 
MMAS is proposed. Each ant builds the solution 
 
by the state transition rule. An ant selects the 
 
next customer to be served, compatible with 
 

capacity constraints and limited route length 
 
constraints. This heuristic assigns customers 
 
to each depot and constructs vehicle routes 
 
simultaneously. If the accumulative loading of 
 
the ant exceeds the capacity constraints, it will 
 
return to the depot. This is called a complete 
 
vehicle route. Thus, we will focus on our 
 
heuristic to improve the original algorithm 
 
according to Equation (5). The section of route 
 
constructing is illustrated in Figures 3 and 4.


Initialize

Loop //Each loop called an iteration


	 Each ant is placed on a starting customer’s 
 

	 point


	 Loop //Each loop called a step


		  Each ant constructs a solution by 
 

		  applying a state transition rule and a 
 

		  local pheromone updating


	 until all ants have constructed a complete 
 

	 solution.


	 Each ant is brought to a local minimum by a 
 

	 tour


	 improvement heuristic


	 A global pheromone updating rule is applied.


until stopping criteria are met


Figure 2. Pseudocode of MMAS


Figure 3. An ant constructing routes


Source Node
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Improvement Solutions


	 After an ant has constructed its solution, 
 
we apply a local search algorithm to improve 
 
the solution quality, called the solutions 
 
improvement procedure. In particular, we apply 
 
Swap, Move operator, and 2-Opt to the solution. 
 
To understand the Local Search algorithm 
 
clearly, an example with 2 depots and 12 
 
customers is considered, which is illustrated 
 
in Figures 5, 6, 7, and 8. The Local Search 
 
aims to improve the solution by exchanging a 
 
customer i of 1 route with a customer of j
 
another route. The Swap operator aims to 
 
improve the solution by exchanging a 
 
customer i of 1 route with a customer j of
 
another route. The Move-Operators may
 
interchange a customer within the same route 
 
and intra-route improvement or within the 
 
same depot and intra-depot improvement. 
 
Additionally, we also swap a customer from 1 
 
route to another route, that is, inter route 
 
improvement or from 1 depot to another depot 
 
improvement. Given a solution S to an instance 
 
of the optimization problem, if there is no 
 
better solution the algorithm terminates with 
 
the current solution as the local optimum. 


Numerical Analysis


	 In this section, we present the development 
 
of the MMAS program for solving LRP by 
 

using Microsoft Visual C++ 6.0 and executed 
 
on a PC with a 3.07 GHz Intel Pentium[R] 4 
 
CPU and 224 MB of RAM. The customers’ 
 
locations are in the form of a Cartesian coordinate 
 
where each point appears uniquely in a plane 
 
through 2 numbers, called the x-coordinate 
 
and y-coordinate while demands of customers 
 
which are known are recorded in a range form. 
 
Since there is no open source data for LRP, 
 
the data is adopted from a set of data modified 
 
from the well known problem in Wu et al. 
 
(2002) and Wang (2005) as in Table 1. 	
	 The numerical analysis was performed 
 
on set of benchmark problems that consists of 
 
3 instances containing between 12 and 85 
 
customers and 2 -15 depots. All instances 
 
have data of constrained capacity of the depot 
 
(unit), capacity of vehicle (unit), fixed cost for 
 
establishing the depot ($), transportation cost 
 
($/mile), and fixed cost for using vehicles ($/
 
unit). Table 1 contains the data for the 3 
 
problem instances.


Parameter Testing


	 To see the effect of the parameters of the 
 
MMAS on the distance traveled, an experimental 
 
design was carried out in the case studies. To 
 
reach reliable fixed conclusions, an ANOVA 
 
statistical test was applied and used to study 
 
the relationship that exists between a dependent 
 

Figure 4. MMAS constructing routes
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variable (variables response) and 1 or more 
 
independent variables (called factors) and 
 
thus, to learn whether the difference in the 
 
response depending on the variation of 1 of 
 
the factors was a random result. The theoretic
 
F distribution value was calculated for a 
 

significance level of 95%. In these case problems, 
 
the LRP have a very limited capacity; we 
 
used, β = 3.5, ρ = 0.99 and n=300 as shown 
 
in Figure 9. We have used those values of β 
 
and  to run the experiments. The results of a
 
good solution in P03 are shown in Figure 10.


 Figure 5. Swap operators


Figure 6. Move operators


Figure 7. 2-opt algorithm


Figrue 8. Best solutions
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Table 1. Location-routing problem instances




Name 
instances


References

Number 

of 
depot


Number 
of 

customer

Vehicle 
capacity


Depot 
capacity


Fixed 
cost to 
open 
depot


($)


Transpor
tation 
cost


($/per 
miles)


Fixed 
cost for 
using 

vehicle

($/Unit)


P01:12x2
 Perl and Daskin

(1985)


02
 12
 140
 280.0
 100.0
 0.75
 0.74


P02:55x15
 Perl and Daskin 
(1985)


15
 55
 120
 550.0
 240.0
 1.00
 0.74


P03:85x7
 Perl and Daskin 
(1985)


07
 85
 160
 850.0
 372.0
 1.00
 0.74


Figure 9. Effect of the parameters of MMAS
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Table 2.	 Best solution results for the test P01




103.97: Total distances                                           


                                                                                                                        355.58: Total cost


Depots
 Distances of 
route


Load of 
route
 Sequence of customers
 Customers 

served

Run Time 
CPU (sec):


1

44.344
 140
 13 7 3 2 1 6 8 9 13


12
 0.063s

59.6327
 100
 13 10 12 11 5 4 13


Problem: P01, customer=12, Depot=2, Capacity Depot= 280, Vehicle capacity=140


Table 3.	 Best solution results for the test P02



4,100.05: Total distances                                        


5,634.05: Total cost


Depots

Distances of 
route x 10


Load of 
route


Sequence of customers

Customers 

served

Run Time 
CPU (sec):


2

56.3764
 120
 57 14 27 54 39 38 16 57
 
 


44.4048
 120
 57 12 28 23 19 17 22 57
 12
 



 
 
 
 
 



 
 
 
 
 



 
 
 
 
 51.656s


10


06.0645
 040
 65 13 11 65
 
 


51.2828
 120
 65 44 46 40 55 43 8 65
 
 


69.4971
 120
 65 52 50 53 47 37 10 65
 26
 


16.3891
 120
 65 5 1 2 42 4 9 65
 
 


40.434
 120
 65 34 45 32 33 30 3 65	 
 
 


12


30.7321
 100
 67 15 7 31 29 18 67
 
 


39.4966
 120
 67 36 26 24 35 48 25 67
 17
 


55.3281
 120
 67 49 51 21 20 41 6 67
 
 


Problem: P02, customer=55, Depot=15, Capacity Depot= 550.0, Vehicle capacity=120


Computational Tested 


	 From the parameters testing section, we 
choose  β = 5, and  = 0.98 to test the MMAS
 
with a Local Search to solve the LRP. We test 
 
our heuristic with 3 problems from literature 
 
and to investigate the effectiveness of this 
 
heuristic the number of iterations is n*2 for
 

each problem and is solved 5 times. The results 
 
are provided in Tables 2-4 in terms of the
 
distance of route, and load of route value after 
 
the solution improvement phases. It can be 
 
observed from Table 5 that the proposed 
 
method is able to find the optimal solution for 
 
test problem P01 in only 0.063s. For problem 
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Table 4.	 Best solution results for the test P03




5,266.4: Total distances                                           


7,640.4: Total cost


Depots
 Distances of 
route x 10


Load of 
route


Sequence of customers
 Customers 
served


Run Time 
CPU (sec):


2

46.8265
 160
 87 63 14 70 71 73 74 12 72 87
 
 


6.32456
 020
 87 33 87
 33
 



 43.9812
 160
 87 30 19 29 23 75 28 17 22 87
 
 



 44.9048
 160
 87 16 27 69 68 66 65 61 62 87
 
 



 57.6393
 160
 87 54 59 58 39 38 2 45 32 87
 
 



 
 
 
 
 156.52s


4


48.6981
 160
 89 47 53 50 81 80 52 64 11 89
 
 


59.6847
 160
 89 44 46 40 57 56 55 43 1 89
 23
 


29.7136
 140
 89 9 4 42 3 34 8 5 89
 
 



 34.2665
 160
 91 24 20 21 78 37 77 10 60 91
 
 


6
 69.1820
 160
 91 13 82 83 67 79 51 76 49 91
 29
 



 27.9814
 160
 91 25 36 85 15 41 91
 
 



 057.4370
 160
 91 48 35 26 84 18 31 7 6 91
 
 


Problem: P03, customer=85, Depot=7, Capacity Depot= 850.0, Vehicle capacity=160


P02 in Table 6, the proposed method 
 
outperformed both Perl and Daskin’s (1985) 
 
and Wang et al’s (2005) results in terms of 
 
total costs. Notice that Hansen et al’s (1994) 
 
method results in less distance because 1 more 
 
distribution center (DC) is established than in 
 
the proposed method. The proposed method 
 

still provides a better solution than Perl and 
 
Daskin’s (1985) and Wu et al’s (2002) studies 
 
in test problem P03 as shown in Table 7; 
 
however, Hansen et al’s (1994) method gives 
 
even fewer costs and distances than the proposed 
 
method. We summarize the computational 
 
results that include the best known solutions, 
 

Table 5.	 Results for comparison of test problem P01




Methods

Depot 

established

Number of 

routes

Sum total 
distances


Total costs

CPU 


run time 
(Sec)


Optimum
 1
 2
 103.97
 355.58
 N/A


Perl and Daskin (1985)
 1
 2
 103.97
 355.58
 N/A


Hansen et al. (1994)
 1
 2
 103.97
 355.58
 N/A


Wu et al. (2002)	 
 1
 2
 103.97
 355.58
 N/A


Wang- et al. (2005)	
 1
 2
 103.97
 355.58
 N/A


Proposed Method
 1
 2
 103.97
 355.58
 0.063s
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Table 7.	 Comparison of test problem P03



Methods
 Depot 
established


Number of 
routes


Sum total 
distances
 Total costs


CPU 

run time 

(Sec)

Perl and Daskin (1985)
 2, 4, 5
 11
 5415.96
 7789.96
 N/A

Hansen et al. (1994)
 2, 4, 6
 11
 5177.61
 7551.61
 N/A

Wu et al. (2002)
 2, 4, 6
 12
 5407.21
 7781.21
 N/A

Wang- et al. (2005)
 2, 4, 6
 11
 5265.69
 7639.46
 N/A

Proposed Method
 2, 4, 6
 12
 5266.40
 7,640.40
 156.52


Table 6.	 Comparison of test problem P02



Methods
 Depot 
established


Number of 
routes


Sum total 
distances
 Total costs


CPU 

run time 

(Sec)

Perl and Daskin (1985)
 2, 10, 12
 10
 4261.32
 5795.62
 N/A

Hansen et al. (1994)
 2, 7, 12,13
 10
 3843.67
 5617.67
 N/A

Wu et al. (2002)	 
 5, 10, 12
 10
 3998.28
 5532.28
 N/A

Wang- et al. (2005)	
 2, 10, 12
 10
 4198.72
 5732.13
 N/A

Proposed Method
 2,10,12
 10
 4100.05
 5634.05
 51.656s


Table 8.	 Relative percentage deviation of total traveled distance and total cost



Instances
 Researcher
 Total 
Distances
 (%)RPD
 Total Cost
 (%)RPD


P01
 Perl and Daskin (1985)
 103.97*
 00.00
 355.58*
 0.00



 Hansen et al. (1994)
 103.97*
 00.00
 355.58*
 0.00


 Wu et al. (2002)
 103.97*
 00.00
 355.58*
 0.00


 Wang- et al. (2005)
 103.97*
 00.00
 355.58*
 0.00


 Proposed Method
 103.97*
 00.00
 355.58*
 0.00


P02
 Perl and Daskin (1985)
 4261.32*
 10.87
 5795.62*
 4.76


 Hansen et al. (1994)
  3843.67*
 00.00
 5617.67*
 1.54


 Wu et al. (2002)
 3998.28*
 04.02
 5532.28*
 0.00



 Wang- et al. (2005)
 4198.72*
 09.24
 5732.13*
 3.49


 Proposed Method
 4100.05*
 06.67
 5634.05*
 1.84


P03
 Perl and Daskin (1985)
 4261.32*
 10.87
 7789.96*
 3.16


 Hansen et al. (1994)
 3843.67*
 00.00
 7551.61*
 0.00


 Wu et al. (2002)
 3998.28*
 04.02
 7781.21*
 3.04


 Wang- et al. (2005)
 4198.72*
 09.24
 7639.46*
 1.16


 Proposed Method
 4100.05*
 06.67
 7713.54*
 2.14


In that table, the following notation is used: 

BT  = solution of  algorithm

BKS = the best known solution from heuristic algorithm

(%)RPD = ((BT- Obj.-BKS)/BKS)*100%
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literature, solutions obtained by MMAS and 
 
the deviations of total traveled distance, and 
 
the total cost from the best known solutions 
 
(Relative Percentage Deviation (RPD) in 
 
Tables 8.


Conclusions


In this paper, we have proposed a MMAS 
 
with a Local Search for LRP. The proposed 
 
algorithm can obtain the solution of LRP 
 
within a reasonable time. It can be used for 
 
redesigning the logistics network as well as 
 
improving the planning of the distribution
 
network. The proposed method was compared 
 
with other heuristic approaches on 3 test 
 
problems and the results indicate that this 
 
method performs well in terms of the solution 
 
quality and run time consumed. For further 
 
study, we may develop a hybrid metaheuristic 
 
scheme that combines the strength of trajectory 
 
methods like Very-Large Scale Neighborhood 
 
Search and Ant Colony Optimization in order 
 
to increase the effectiveness in getting the 
 
optimal solution
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