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Abstract

This paper describes the problem of shape preserving approximation for
data with speci�ed tolerances� Using the tool of generalized B�splines �GB�
splines for short�� simple one� and three�point algorithms of shape preserving
local approximation with automatic choice of the tension parameters are de�
veloped� In the two�dimensional case� tensor products of one�dimensional
splines are employed� The results of numerical calculations are given�
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�� Introduction

The tool of generalized splines is widely used to solve shape preserving
interpolation problems �e�g�� see Boor� �	
�� Gregory� �	��� Sakai and Silanes�
�	��� Beatson and Wolkowitz� �	�	� Schaback� �		
�� By introducing tension
parameters into the spline structure� one can preserve various characteristics
of the initial data including positivity� convexity� linear and planar sections�
Here the main challenge is to develop algorithms that choose these parame�
ters automatically� The currently available algorithms �Miroshnichenko� �	���
Sapidis et al�� �	��� McCartin� �		
� mainly make use of the piecewise rep�
resentation of splines� On the same basis� the problem of shape preserving
approximation �not interpolation� was treated in the work of Pruess ��	
��
and Schmidt and Scholz ��		
� as spline smoothing�

The method of local approximation �Lyche and Schumaker� �	
��� com�
bined with recurrence algorithms for computing polynomial B�splines �Boor�
�	
��� was found to be e�cient in practical applications� Such approximation
providing a variation diminishing property has many useful data shape pre�
serving properties �Schumaker� �	���� However it gives a curve which only

� The author is on leave from the Institute of Computational Technologies� Russian
Academy of Sciences� Novosibirsk ������� Russia� E�mail	 boris
math�sut�ac�th



approximates the data� but changes the data shape substantially� For solv�
ing the shape preserving approximation problem� this approach was used in
�Grebennikov� �	��� with rather theoretical algorithms for data re�nement�

The method of local approximation can be based on GB�splines� Until
recently� local support bases for computations with generalized splines have
been available only for some special types of splines �Boor� �	
�� Lyche and
Winther� �	
	� Schumaker� �	��� �	��� Lyche� �	��� Dyn and Ron� �	����
This limited the choice of methods when using generalized splines� In �Koch
and Lyche� �	�	� �		�� �		�� exponential GB�splines were introduced and
their application to interpolation problems was considered� Hyperbolic GB�
splines with tension were obtained in �Mar�usi�c� �		��� In �Kvasov� �		�a� the
author constructed GB�splines allowing the tension parameters to vary from
interval to interval�

In practical calculations we usually treat data with speci�ed tolerances�
Therefore we should develop methods for constructing fair�shape�preserving
approximations which satisfy these tolerances and inherit geometric proper�
ties of the data� In this paper such a setting of the problem is formalized by
introducing the notion of a class of shape preserving functions� We develop
one� and three�point algorithms of shape preserving local approximation based
on GB�splines �Kvasov� �		�a� with automatic choice of the tension param�
eters� We choose the tension parameters to satisfy the given tolerances and
the monotonicity and convexity conditions for the initial data� These algo�
rithms generalize the preliminary results of �Kvasov �		�c� �		�� for shape
preserving splines�

In the approximation of surfaces the initial data is assumed to be given
as a set of pointwise�assigned non�intersecting curvilinear sections of a three�
dimensional solid� First� using the shape preserving interpolation algorithm
of �Kvasov� �		�b�� we construct a system of curves along the initial sections�
A two�dimensional surface spline is de�ned as the tensor product of one�
dimensional splines� generating a family of generalized local approximation
splines in the orthogonal direction� This yields a �nite system of curvilinear
coordinate lines on the surface which form a regular grid� Along those lines
we can preserve various properties of the initial data including convexity�
monotonicity� rectilinear and planar sections�

�� The Problem of Shape Preserving Approximation

Let the grid � � a � x� � x� � � � � � xN � b be given on the interval �a� b�
together with a set of intervals F � fFi j i � 
� � � � � Ng� Fi � �fi � �i� fi � �i��
where �i � 
 are given small numbers� We want to construct a smooth
approximating function S � C��a� b�� such that S�xi� � Fi� i � 
� � � � � N � and�
in addition� S preserves the shape of the initial data�

To formalize the problem let us introduce the notation

�iS � �S�xi���� S�xi���hi� hi � xi�� � xi� i � 
� � � � � N � ��

�iS � �iS ��i��S� i � �� � � � � N � �
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and use interval di�erences �Moor� �	��� Shokin� �	���

�iF � h��i �Fi�� � Fi� � ��if � ei��if � ei�� ei � h��i ��i � �i����

i � 
� � � � � N � ��

�iF � �iF ��i��F � ��if �Ei� �if �Ei�� Ei � ei�� � ei�

i � �� � � � � N � ��

�a�� a��� �b�� b�� � �a� � b�� a� � b�� � 
� provided that a� � b��

The initial data is non�negative �non�positive� on the interval �xR� xK ��
K � R� if Fi � 
 �Fi � 
�� i � R� � � � �K� The initial data is said to be
monotonically increasing �monotonically decreasing� on the interval �xR� xK ��
K � R� if �iF � 
 ��iF � 
�� i � R� � � � �K � �� The data is called
convex downwards �upwards� in �xR� xK �� K � R � �� if �iF � 
 ��iF � 
��
i � R� �� � � � � K � ��

The intervals �iF � �iF are assumed to contain no zeros for any i� that
is� the initial data satis�es the constraints

��if�
� � e�i � i � 
� � � � � N � �� ��if�

� � E�
i � i � �� � � � � N � �� ���

Geometrically� this means that neighbouring intervals do not intersect
�Fi �Fi�� � � for all i� and we cannot draw a straight line through any three
consecutive intervals Fj � j � i� �� i� i� �� i � �� � � � � N � ��

If the inequalities ��� are satis�ed in the entire interval �a� b�� then the
initial data uniquely de�nes the conditions of convexity and monotonicity of
the approximating function S� If� for the values of a certain function S� we
have S�xi� � Fi� i � 
� � � � � N � then �iS � �iF � i � 
� � � � � N � �� �iS � �iF �
i � �� � � � � N � �� Bearing in mind the constraints on the initial data� we
obtain

�iS�if � 
� i � 
� � � � � N � �� �iS �if � 
� i � �� � � � � N � �� ���

De�nition �� A set of functions I��� F � is called a class of shape preserv�
ing functions if� for any function S � I��� F �� the following conditions are
satis�ed�

�i� S � C��a� b��

�ii� S�xi� � Fi� i � 
� � � � � N �

�iii� S is monotone on �xi� xi���� i � �� � � � � N � �� for �i��f�if � 
 and
�if�i��f � 
� monotone on �x�� x�� for ��f��f � 
 and on �xN��� xN �
for �N��f�N��f � 
�
S� has a change of sign on �xi��� xi���� i � �� � � � � N��� for�i��f�if � 
�
the number of sign changes of S� on �a� b� is equal to the number of sign
changes in the sequence ��f���f� � � � ��N��f �



�iv� S���xi��if � 
� i � �� � � � � N � �� the number of sign changes of the
function S�� on �a� b� is equal to the number of sign changes in the sequence
��f� ��f� � � � � �N��f �

Remark �� We do not give special consideration to the non�negative �non�
positive� approximation because we always obtain such data approximation
automatically just as a consequence of the approximation monotonicity�
Remark �� One needs to choose the values of the parameters �i so as to
obtain a balance between the exactness of approximation and the smoothness
of the curve�

The search for a function S � I��� F � is referred to as the problem of
shape preserving approximation� A solution to this problem will be sought in
the form of a tension generalized spline�

�� Tension Generalized Splines

Let a partition � � a � x� � x� � � � � � xN � b of the interval �a� b�
be given to which we associate a space of functions SG� whose restriction to
the subinterval �xi� xi���� i � 
� � � � � N � � is spanned by the system of four
linearly independent functions f�� x��i��ig and where every function in SG�
has two continuous derivatives�

De�nition �� A tension generalized spline is a function S � SG� such that
�i� for any x � �xi� xi���� i � 
� � � � � N � �

S�x� ��S�xi�� �i�xi�S
���xi����� t� � �S�xi�����i�xi���S

���xi����t

��i�x�S
���xi� � �i�x�S

���xi���� ���

where t � �x � xi��hi� and the functions �i and �i are subject to the
constraints

�
�r�
i �xi��� � �

�r�
i �xi� � 
� r � 
� �� �� ���i �xi� � ���i �xi��� � ��

�ii� S � C��a� b��

The functions �i and �i depend on the tension parameters which in�u�
ence the behaviour of S fundamentally� We call them the de�ning functions�
In practice� one takes

�i�x� � �i�t�h
�
i � 	�pi� �� t�h�i �

�i�x� � 	i�t�h
�
i � 	�qi� t�h

�
i � 
 � pi� qi �	�

���

In the limiting case when pi� qi 
 	 we require that limpi�� �i�pi� x� � 
�
x � �xi� xi���� and limqi���i�qi� x� � 
� x � �xi� xi���� so that the function
S in formula ��� is a linear function� Additionally� we require that if pi �
qi � 
 for all i we get a conventional cubic spline with �i�t� � ��� t���� and
	i�t� � t����
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Let us consider a basis for the space SG� consisting of functions with
local supports of minimum length Bi� i � ��� � � � � N ��� having the following
properties

Bi�x� � 
� x � �xi��� xi����

Bi�x� � 
� x �� �xi��� xi����

N��X
j	��

Bj�x� � �� x � �a� b��

It was shown in �Kvasov� �		�a� that such splines� called GB�splines�
have the form

Bi�x� �

�����������������
����������������

�i���x�B
��

i �xi���� x � �xi��� xi����

x� yi��
yi � yi��

� �i���x�B
��

i �xi��� � �i���x�B
��

i �xi��

x � �xi��� xi��

yi�� � x

yi�� � yi
� �i�x�B

��

i �xi� � �i�x�B
��

i �xi����

x � �xi� xi����

�i���x�B
��

i �xi���� x � �xi��� xi����


� otherwise�

���

where

yj � xj �
zj
z�j
� zrj � z

�r�
j �xj� � �

�r�
j���xj�� �

�r�
j �xj�� r � 
� �

and

B��i �xj� �
yi�� � yi��
z�j


�

i���yj�
� j � i� �� i� i� �

with 
i���x� � �x� yi����x� yi��x� yi����
Using the results of �Kvasov� �		�a� we can write down any spline S � SG�

as a linear combination of the GB�splines

S�x� �
N��X
j	��

bjBj�x� for x � �a� b� ���

with certain constant coe�cients bj �
In what follows we will only consider the case where the �averaged knots 

of GB�splines yi � xi�zi�z�i� i � 
� � � � � N � coincide with the knots of the basic
grid �� that is� zi � �i���xi���i�xi� � 
� i � 
� � � � � N � and x�i � x�� ih��
xN�i � xN � ihN��� i � �� �� �� Then according to ���� expression ��� for the
spline S on the interval �xi� xi��� can be put in the form

S�x� � bi ��ib�x� xi� � �z�i�
���ib�i�x� � �z�i���

���i��b�i�x�� �
�



where �jb � �jb��j��b� j � i� i� �� �jb � �bj�� � bj��hj �
Whence we have the formulae

S�xi� � bi � �ibH
��
i � ��a�

S��xi� � �z�i�
����ib�

�

i���xi���i��b�
�

i�xi��� ��b�

S���xi� � �z�i�
���ib� ��c�

where

Hi �
��i���xi�

�i���xi�
�

��i�xi�

�i�xi�
�

Conversely

bi�� � S�xi�� hi��S
��xi� � !bi��S

���xi��

bi � S�xi�� �i�xi�S
���xi��

bi�� � S�xi� � hiS
��xi� � !aiS

���xi�� i � 
� � � � � N

�	�

with the notation

!ai � ��i�xi�� hi�
�

i�xi��
!bi�� � ��i���xi� � hi���

�

i���xi��

The choice of the de�ning functions �i and �i will be subject to the
conditions ���� In addition� we will assume that dr	�q� t��dtr� r � 
� �� � are
non�negative monotone functions of their arguments q � 
� 
 � t � �� and
also 	�q� �� � 	��q� �� and 	�q� ��� 	��q� ���	�q� �� are strictly monotonically
increasing functions of q�

�� A One�Point Algorithm of Shape Preserving Approximation

Algorithm �� Set bi � fi� i � 
� � � � � N � in formula ���� The coe�cients b���
bN�� can be computed in various ways� depending on the particular problem
to be solved� For instance� they can be found from the boundary conditions
�Beatson and Chacko� �	�	�� S��xi� � f �i � i � 
� N � To �nd b��� bN�� one
can also apply other types of standard boundary conditions �Zavyalov et al��
�	�
��

The derivative values in the boundary conditions must be adjusted to the
behaviour of the data� Otherwise we can obtain an incompatibility with the
shape preserving restrictions� By this reason we will assume that they are
subject to the constraints

���f � f �����f � 
� f ����f � 
�

�f �N ��N��f��N��f � 
� f �N�N��f � 
�
��
�

�by hypothesis� ��f �� 
� �N��f �� 
�
By virtue of the condition zi � 
 or 	�qi��� ��h

�
i�� � 	�pi� ��h

�
i � i �


� N � and the strict monotonicity of the function 	�q� ��� it follows from the
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equations h�� � h�� hN � hN�� that q�� � p�� qN�� � pN � Thus� adding
the �rst and third equations of �	�� for i � 
� N � and taking into account the
boundary conditions we obtain

b�� � f� � �h�f
�

�� bN�� � fN�� � �hN��f
�

N � ����

First we choose values for the parameters qi��� pi� i � �� � � � � N � �� so
that jS�xi�� fij � �i�

According to the formulae ��a� and ���

S�xi�� fi � �if

�
	��qi��� ��

	�qi��� ��

�

hi��
�
	��pi� ��

	�pi� ��

�

hi

�
��

� i � �� � � � � N � �� ����

Since� when hi�� � hi the equation zi � 
 leads to the relation qi�� � pi� and
when hi�� � hi� we have qi�� � pi� equation ���� provides a simple method
for choosing the parameters qi��� pi� For hi�� � hi due to the monotonicity
of the function 	��q� ���	�q� �� in the variable q we have

jS�xi�� fij � j�if j

��
�

hi��
�

�

hi

�
	��qi��� ��

	�qi��� ��

�
��

� �i�

Since for tension generalized splines the inequality 	��qi��� ���	�qi��� �� � �
is valid� we can de�ne qi�� by putting

	��qi��� ��

	�qi��� ��
� � � max

�
j�if jhi��hi
hi�� � hi

�

�i
� �� 


�
�

One �nds the value of pi from the condition zi � 
 or

	�qi��� ��h
�
i�� � 	�pi� ��h

�
i � i � �� � � � � N � ��

The case hi � hi�� is analysed in the same way when pi � qi���
Similarly applying formula ��a� for i � 
� N and using the boundary

conditions in the form of equations ���� for �nding p�� qN�� we have

	��p�� ��

	�p�� ��
� � � max

�
h�
��
j��f � f ��j � �� 


�
�

	��qN��� ��

	�qN��� ��
� � � max

�
hN��
�N

jf �N ��N��f j � �� 


�
�

Lemma �� If S���xi�S
���xi��� � 
 then the function S�� changes its sign

exactly once on the interval �xi� xi���� i � 
� � � � � N � �� Otherwise� S�� does
not change sign on �xi� xi��� at all�

Proof� According to formulae �
� and ��c� for x � �xi� xi���

S���x� � S���xi��
��

i �x� � S���xi����
��

i �x�� ����

By hypothesis� the function ���i �x� � 
 is monotonically decreasing ����i �x� � 

is monotonically increasing� for x � �xi� xi���� Hence for S���xi�S

���xi��� � 
�
according to ����� the sign of S���x� remains unchanged for x � �xi� xi����
When S���xi�S

���xi��� � 
� since the derivative

d

dx
S���x� � S���xi��

���

i �x� � S���xi����
���

i �x�

is of constant sign� the function S�� is monotone in �xi� xi���� Thus it changes
sign just once there� This proves the lemma�



Theorem �� If the conditions �	
� are satis�ed then the tension generalized
spline S constructed by the one�point local approximation algorithm 	 will be
a shape preserving function�

Proof� According to ��c�� S���xi� � �z�i�
���if � i � �� � � � � N � �� Since z�i � 


�Kvasov� �		�b�� taking the conditions on the initial data ��� into account�
one has S���xi��if � 
� i � �� � � � � N � ��

It follows from ��c� and ���� that S���x�� � �z���
����b � ��z���

�����f �
f ���� Thus by virtue of ���� we obtain S���x��S

���x�� � 
� Similarly we have
S���xN���S

���xN � � 
� Hence� it can be concluded on the basis of Lemma �
that the number of sign changes of the function S�� on �a� b� is equal to that in
the sequence �if � i � �� � � � � N � �� Thus� conditions �iv� of De�nition � are
satis�ed�

We now consider a grid � � a � v� � v� � � � � � vN�� � b� Here for
S���xi�S

���xi��� � 
� i � 
� � � � � N � �� we put vi�� � �i�� � �xi� xi��� accord�
ing to the equation S�xi����S�xi� � S���i����xi���xi�� For S���xi�S���xi���
� 
 we choose vi�� � x� from the condition S���x�� � 
� x� � �xi� xi����

By construction� S���vj�S
���xi� � 
� j � i� i � �� From the conditions

on the initial data ��� and ��c� we have S���xi� �� 
� i � 
� � � � � N � Thus�
by Lemma �� S�� does not change sign� and S�� accordingly� is monotone in
�vi� vi���� i � �� � � � � N � �� In �v�� v�� and �vN � vN���� the monotonicity of
S� follows from the inequalities S���xi�S

���xi��� � 
� i � 
� N � � and from
Lemma ��

We will now show that the inequality S��x���if � 
 holds at any in�ec�
tion point x� � �xi� xi���� i � �� � � � � N � �� By hypothesis� �if�i��f � 
 and
there are two possibilities� either �if�if � 
 or �if�if � 
�

By �
�� for x � �xi� xi���

S��x� � �if � �z�i�
���if�

�

i�x� � �z�i���
���i��f�

�

i�x��

where ��i�x� � 
 and ��i�x� � 
�
Hence for �if�if � 
� allowing for the signs of the functions ��i and ��i�

we have S��x��if � 
 and� therefore� S��vi����if � S��x���if � 
�
Now let �if�if � 
� Consider the case �if � 
� Since the derivative

has an extremum at a point of in�ection� we have �iS � S��x��� From the
relation �iS�if � 
 of ���� we again arrive at the inequality S��x���if � 
�
The case �if � 
 is analysed in a similar way�

Obviously by construction S��vi����if � 
 when S���xi�S
���xi��� � 
�

i � 
� � � � � N � �� Thus� at the nodes of � we have S��vi����if � 
� i �

� � � � � N � ��

We have proved that S� is monotone on �vj � vj���� j � i� i � �� and
S��vi����if � 
� Thus S� is monotone on �vi� vi���� Now if �jf�j��f � 
�
j � i� �� i� then S��vi�S

��vi��� � 
� Thus� the sign of S� remains unchanged
on �vi� vi��� and� in particular� on �xi� xi���� Hence� under this assumption S
is monotone on �xi� xi���� i � �� � � � � N � ��

If ��f��f � 
 then a function S� which is monotone on �v�� v�� will
be of constant sign there� Thus S��x����f � 
� We have already shown
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that S��x� is monotone on �x�� x��� According to ����� f ����f � 
 and since
S��x����f � 
� S is monotone on �x�� x��� The case of the interval �xN��� xN �
is considered in a similar manner�

Since S��x����f � 
� S��vi����if � 
� i � 
� � � � � N � �� S��xN ��N��f
� 
 and S� is monotone on �vi� vi���� i � 
� � � � � N � the function S� changes
sign on �vi� vi��� and� therefore� on �xi��� xi���� i � �� � � � � N � �� if �i��f �
�if � 
� The number of sign changes of the function S� on �a� b� is equal to
that in the sequence ��f���f� � � � ��N��f � This proves the theorem�

	� A Three�Point Algorithm of Shape Preserving Approximation

Algorithm �� The coe�cients in ��� are computed using formulae �	� where
S���xi� is approximated by the second divided di�erence�

bi � fi � ��hi�� � hi�
���i�xi��if� i � �� � � � � N � �� ����

The coe�cients bi� i � ��� 
� N�N � � are found by using boundary

conditions S�k��xi� � f
�k�
i � i � 
� N � k � 
� �� One can also use other types

of expanded standard boundary conditions �Zavyalov et al�� �	�
��
To adjust the values of the derivative in the boundary conditions with the

behaviour of the data� that is� with shape preserving restrictions� we subject
them to the constraints

��f���f � f ��� � j��f j��h
��
� � f ����f � 
�

�N��f�f
�

N ��N��f� � j�N��f j�N��h
��
N��� f �N�N��f � 
�

����

These conditions are more severe in comparison to the restrictions ��
��
Using the boundary conditions� we can write out the explicit expressions

for the coe�cients bi� i � ��� 
� N�N � �� According to the formulae ��� and
�	� we obtain

b�� � b� � �h�f
�

��

b� � f� �
f� � h�f

�

� � b�
�� 	��p�� ���	�p�� ��

�

bN � fN �
fN � hN��f

�

N � bN��
�� 	��qN��� ���	�qN��� ��

�

bN�� � bN�� � �hN��f
�

N �

����

The parameters pi� qi� i � 
� � � � � N � � are determined from the shape
preserving conditions of De�nition � in two steps� First� according to ����
from the constraints

jbi � fij � �h�i �hi�� � hi�
��	�pi� ��j�if j � �i� i � �� � � � � N � � ��
�

we �nd pi and compute qi�� from the relation zi � 
�



The quantities p�� qN�� are chosen from the inequalities

jb� � f�j �
jf� � h�f

�

� � b�j

j�� 	��p�� ���	�p�� ��j
� ���

jbN � fN j �
jfN � hN��f

�

N � bN��j

j�� 	��qN��� ���	�qN��� ��j
� �N

����

using �����
Finally� we �nd pi� qi from the constraints

jS�xi�� fij � �i� i � 
� � � � � N�

From ��a� and ���� we have

S�xi� � fi �H��
i

	
�

��i���xi���

�hi�� � hi���hi��
�i��f �

��i���xi���

hi�hi � hi���
�i��f

�

�
� � �

�i�xi�

hi��hi
� �

��i���xi�� ��i�xi�

hi�� � hi

�
�if



�

��	�

For tension generalized splines we have by virtue of the condition zi � 


�i���xi� � �i�xi� �
�

�
hi��hi�


 � ��i���xi�� ��i�xi� �
�

�
�hi�� � hi�

independently of the relations between hi�� and hi� Thus� using the estimate
��
�� we obtain from ��	�

jS�xi�� fij � H��
i 
i � �i�

where 
i � �i��h
��
i�� �

�
� j�if j� �i��h

��
i �

For hi�� � hi therefore� as in the algorithm �� we �nd qi�� from the
relation

	��qi��� ��

	�qi��� ��
� � � max

�
hi��hi

hi�� � hi


i
�i
� �� 


�
� i � �� � � � � N � �� ��
�

We compute pi from the condition zi � 
�
For i � �� N��� bearing ���� and ���� in mind� we de�ne the parameters

q� and pN�� similarly� In particular� for h� � h� and hN�� � hN�� we have

	��q�� ��

	�q�� ��
� � � max

�
h�h�

h� � h�

"
�
��
� �� 


�
�

	��pN��� ��

	�pN��� ��
� � � max

�
hN��hN��

hN�� � hN��

"
N��
�N��

� �� 


�
�
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where

"
� � ��h
��
� �

�

�
j��f j�

j��f � f ��j� ��h
��
�

j�� 	��p�� ���	�p�� ��j
�

"
N�� � �N��h
��
N�� �

�

�
j�N��f j�

j�N��f � f �N j� �N��h
��
N��

j�� 	��qN��� ���	�qN��� ��j
�

Theorem �� If the conditions �	�� are satis�ed then the tension generalized
spline S constructed by the three�point local approximation algorithm � will
be a shape preserving function�

Proof� By virtue of the conditions on the initial data ��� and ���� the esti�
mates ��
� and ���� imply the relations

�ib�if � 
� i � 
� � � � � N � ��

��ib��i��b��if � 
� i � �� � � � � N � ��
����

Whence� according to ��c�� S���xi��if � 
� i � �� � � � � N � �� From ��c� and
���� we also have

S���x�� � �z���
�����b����b� � �h���

b� � f� � h�f
�

��

	�p�� ��� 	��p�� ��
�

If ��f � 
� then according to ���� f �� � ��f � ��h
��
� � Thus� taking into

account ��
� we obtain

b� � f� � h�f
�

� � b� � f� � h���f � �� � b� � f� � ���

As for tension generalized splines the estimate 	�q� �� � 	��q� �� is valid for
all q � 
 then S���x�� � 
� that is� S���x��S

���x�� � 
� The same inequality
applies in the case ��f � 
� The estimate S���xN���S

���xN � � 
 is established
in the same way� Now applying Lemma �� we �nd that conditions �iv� of
De�nition � for shape preserving functions are satis�ed�

Since inequalities ���� are satis�ed� the conditions of part �iii� of De�ni�
tion � can be veri�ed as in the corresponding proof of Theorem �� This proves
the theorem�

Remark �� For f�x� � �� f�x� � x� we �nd in both the one�point algorithm
� and the three�point algorithms � by direct veri�cation that� respectively�
bi � �� bi � xi� i � ��� � � � � N � � and� therefore� according to �
�� a shape
preserving spline S recovers straight lines�

Remark �� For pi � qi � 
 for all i the equations zi � 
� i � �� � � � � N�� are
only possible for a uniform grid �� In that case� by ���� we obtain the well�
known three�point scheme for local approximation by cubic splines �Zavyalov
et al�� �	�
��




� Shape Preserving Surface Approximation

Let the domain G � �c� d� � �
� �� in the WU plane be divided into N
rectangular subdomains by the straight lines w � wi� i � 
� � � � � N � of the
grid �w � c � w� � w� � � � � � wN � d� Suppose that on each of the lines
w � wi the grid �i

u � 
 � ui� � ui� � � � � � uiMi
� �� i � 
� � � � � N � is given�

The number of nodes and their position for the grids �i
u� i � 
� � � � � N � are

independent of one another� At nodes uij � j � 
� � � � �Mi� i � 
� � � � � N � the
values fij of a certain function f are given with allowable deviations �ij �

The algorithms of local spline approximation of Sections � and � can
be generalized so that a surface of class C����G� passing through the points
Pij � �wi� u

i
j�

"fij�� where "fij � �fij��ij � fij��ij �� j � 
� � � � �Mi� i � 
� � � � � N �
can be constructed� As well as being e�cient� these algorithms preserve the
shape of the data�

The surface is sought in the form of the function

S�w� u� �
N��X
i	��

bi�u�Bi�w��

where the GB�splines Bi are the same as in ���� The functions bi� i �
��� � � � � N��� generalize the formulae of local approximation of Sections � and
� �Algorithms � and ��� being linear combinations of one�dimensional shape
preserving interpolating splines Si� i � 
� � � � � N �Kvasov� �		�b� which �x
the curves along sections w � wi� i � 
� � � � � N � and pass through the points
�uij � fij�� j � 
� � � � �Mi�

Formally� the required formulae �Algorithms � and �� are obtained by

replacing the quantities f
�k�
j in Algorithms � and �� respectively� by the func�

tions S
�k�
j � k � 
� �� �� The boundary conditions are changed similarly� In the

case of the �one�point scheme we use the boundary conditions� �
�wS�wi� u� �

�
�wf�wi� u�� i � 
� N � For the �three�point scheme these boundary conditions
must be supplemented by the conditions S�wi� u� � Si�u�� i � 
� N � Since
the formulae for the functions bi� i � ��� � � � � N � �� are a direct generaliza�
tion of the local approximation formulae of Sections � and �� we will con�ne
our analysis to a short description of the algorithms� We use the notation
gi�u� �

�
�wf�wi� u�� i � 
� N �

Algorithm �� The one�point scheme�

b���u� � S��u�� �h�g��u��

bi�u� � Si�u�� i � 
� � � � � N�

bN���u� � SN���u� � �hN��gN �u��

����

Algorithm �� The three�point scheme�

b���u� � b��u�� �h�g��u��

b��u� � S��u��
S��u� � h�g��u�� b��u�

�� 	��p�� ���	�p�� ��
�



p p g pp

bi�u� � Si�u�� ��hi�� � hi�
���i�wi��iS�u�� i � �� � � � � N � ��

bN �u� � SN �u��
SN �u�� hN��gN �u�� bN���u�

�� 	��qN��� ���	�qN��� ��
�

bN���u� � bN���u� � �hN��gN �u��

����

where
�iS�u� � �iS�u���i��S�u��

�jS�u� � �Sj���u�� Sj�u���hj � j � i� �� i�

The boundary conditions can be computed using second� and third�degree
one�parameter Lagrange interpolating polynomials� Corresponding to the
shape preserving constraints ��
�� ���� �Kvasov� �		�b�� we set

g��u� �

���
��

�
�wL����w�� u� if �

�wL����w�� u���S�u� � 
� ��S�u� �� 
�
�
�w

L����w�� u� if �
�w

L����w�� u���S�u� � 
� ��S�u� � 
�


� otherwise�

gN �u� �

�������
������

�
�wL��N���wN � u� if �

�wL��N���wN � u��N��S�u� � 
�

�N��S�u� �� 
�
�
�wL��N���wN � u� if �

�wL��N���wN � u��N��S�u� � 
�

�N��S�u� � 
�


� otherwise�

����

where

L��i�w� u� � Si�u� � �w � wi���iS�u� � �w � wi����i��S�u���wi�� � wi���

L��i�w� u� � �L��i�w� u��wi�� � w� � L��i���w� u��w � wi����wi�� � wi��

Instead of gi� i � 
� N � we could consider the interpolating shape preserv�
ing splines �Kvasov� �		�b� constructed from given values of �f�wj� u

i
j���w�

j � 
� � � � �Mi� i � 
� N �
In practice� it is often necessary to adjust the assigned values of fij on

an initial irregular grid to the nodes of a regular grid in domain G� that is�
to points � "wn� "um�� m � 
� � � � � "M � n � 
� � � � � "N � In that case it is su�cient
to know the quantities gj�"um�� m � 
� � � � � "M � j � 
� N � which can be found
from formulae �����

The shape preserving spline S possesses the following data shape pre�
serving properties�
Property �� Let the functions Sj � j � i � �� � � � � i � �� � � i � N � ��
be monotone and#or convex in the interval �"um� "um���� Then the generalized
spline S constructed by Algorithm � for any �xed "w � �wi� wi��� will be
monotone and#or convex on �"um� "um����
Property �� Let the functions Sj � j � i � �� � � � � i � �� � � i � N��� be
monotone and#or convex in the interval �"um� "um��� and satisfy the conditions

S
�k�
j �

�k�
j f � 
� j �� 
� N� S

�k�
j g

�k�
j � 
� j � 
� N�



where� respectively� k � � and#or k � �� Then the generalized spline S
constructed by Algorithm � for any �xed "w � �wi� wi���� � � i � N � �� will
be monotone and#or convex on �"um� "um����

These assertions can be proved by using the formulae

�k

�uk
S�w� u� �

N��X
i	��

b
�k�
i �u�Bi�w�� k � �� ��

employing expressions ���� and ���� for the coe�cients bi and taking into
account the fact that GB�splines are �nite� Bi�w� � 
 for w � �wi��� wi���
and Bi�w� � 
 for w �� �wi��� wi����

Property �� Suppose that for any "Sj�u� for which �i
"S�u�� �i "S�u� do not

change sign for any u � �
� ��� the choice of parameters pi� qi� i � ��� � � � � N���
of the generalized spline S� gives

j "Sj�u�� Sj�u�j � Ej�u�� j � 
� � � � � N�

where Ej are given functions� Then for any �xed u the spline Su�w� � S�w� u�
is a shape preserving function�

The proof follows from the arguments for one�dimensional local approxi�
mation splines given above�

The values of the spline S are computed most e�ciently� in the sense
that the minimum number of arithmetic operations are performed� when the
regular resultant grid mentioned above is used� In that case we �rst �nd
the coe�cients bi�"um�� i � ��� � � � � N � �� and then the values S� "wn� "um��
n � 
� � � � � "N � m � 
� � � � � "M using the formulae for GB�splines�

A non�single�valued shape preserving surface� assigned pointwise in the
form of a family of� generally speaking� curvilinear non�intersecting sections
can be constructed by introducing the standard parametrization�

x � Sx�w� u�� y � Sy�w� u�� z � Sz�w� u�� ����

In this case the initial points Tij � �xij� yij � zij�� j � 
� � � � �Mi� i � 
� � � � � N �
are assumed to belong to the parallelepiped

Q
ij � f"�ij jj"�ij � �ij j � ��ijg�

where for each of the coordinate functions ���� we have put �ij � ��wi� uj��
and ��ij is the allowable error with respect to the corresponding variable� The
resultant surface will be obtained as a triple of shape preserving splines con�
structed using the above algorithm�

The algorithms given here can be classed as Gordon type algorithms
�Faux and Pratt� �	
	� Gordon� �	�	�� with the essential di�erence� however�
that instead of the functions bi� i � 
� � � � � N � being �blended there with the
help of fundamental splines� a local approximation of those functions is used
and the surface is constructed in the space of shape preserving splines�
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�� Numerical Examples

The approximating generalized splines were proved to be shape preserv�
ing under constraints ��� on the initial data which are required in order to
have unique monotonicity and convexity conditions� In fact� the algorithms
work well with more general data� as the examples below show� The reason
is as follows� Using the algorithms we always satisfy the given tolerances�
If the algorithms fail in the data monotonicity and#or convexity on some
intervals then we have to increase the values of the corresponding tension pa�
rameters or to vary the tolerance parameters �i� This provides the properties
of monotonicity and convexity for any data� However in the �rst case the
resulting curve can be rather �angular � To avoid this situation it is often
better to increase the values of the parameters �i which control the shape of
the resulting curve and apply the algorithms repeatedly� This permits us to
in�uence the �smoothness of the resulting curve and yet remain within the
given tolerances�

The use of tension generalized splines in the approximation of pointwise
given curves and surfaces is illustrated in the �gures� The de�ning functions
were taken in the form ��� with

	�qi� t� � Qit
���� � qit��� t��� Q��i � ��� � qi��� � qi�

which corresponds to rational splines with quadratic denominator� Other
examples of de�ning functions for rational� exponential� hyperbolic splines
and splines with additional knots can be found in �Kvasov� �		�a��

The more exact three�point formulae of local approximation �Algorithms
� and �� were used in each case� To �nd qi�� we apply the formula ��
� which
takes the form

qi�� � max
� hi��hi
hi�� � hi


i
�i
� �� 


�
�

Since we suppose hi�� � hi� then the relation zi � 
 gives us

pi � �� �
h
� � �� � qi����� � qi���

� hi
hi��

�i���
� 
�

For comparison� the standard cubic spline interpolation of �Zavyalov et al��
�	�
� was used on the same data �in our case with pi � qi � 
 for all i�� The
derivatives at the endpoints were computed using second�degree Lagrange
polynomials� S��x�� � IL�����x��� S

��xN � � IL���N���xN �� and then corrected
in accordance with the shape preserving conditions ���� �for surfaces� ������
The tolerance from the initial data was �
$� The solid and dashed curves in
the �gures �%� denote the graphs of a rational spline S and a cubic spline S��
The crosses indicate the initial points�

Figure �a illustrates the approximation of the single pulse function f�x� �
max�
� ���jx���
�j� from points xi � ��
���i� i � 
� � � � � �� The cubic spline
here is typi�ed by the presence of oscillations� At the same time� the shape



�a� �b�

Fig� �� Pro�les of interpolation and shape preserving splines� �a� Appro�
ximation of a unit�pulse function� �b� data obtained by Sp&ath ��	�	��

preserving spline is insensitive to these bursts� The �radius of curvature of
the corners can be in�uenced here by changing �i�

The data for Figs� �b and � �Tables � and �� are taken from �Sp&ath� �	�	�
�	
��� The cubic spline in Fig� �b has super�uous points of in�ection in the
�rst� third� fourth and eighth intervals� The shape preserving spline does not
have these oscillations� Figures � re�ect the same general tendencies in the
behaviour of the splines S� and S� By reducing �i where necessary the curve
can be further ��tted to the data �Fig� �b�� but becomes more �angular �

Table �� Data for Figure �b�

xi 
�
 ��
 ��� ��� ��
 ��� ��� ��
 ��
 �
�


fi �
�
 ��
 ��
 ��
 ��� ��� ��
 
�� ��
 ���

Table �� Data for Figure ��

xi 
 ��
 ��� ��� ��� ��
 
 ��� �


fi � ��� ��� ��
 ��� ��� � 
�� 


The next test used a function with a discontinuous derivative obtained by
joining intervals of a straight line and a semicircle� f�x� � ����� �x��������

for jx � �j � � and f�x� � � otherwise� From a geometrical point of view
the curve of the interpolating cubic spline is invalid� whereas here the shape
preserving spline gives a perfect pro�le �Fig� �a��

The case of a quarter circle combined with a straight�line segment is
considered in Fig� �b� Here the curvature at the join is discontinuous� The
vertical tangent at the left�hand boundary was approximated by the value
S��a� � �
� From the geometric point of view again the cubic interpolant is
far from satisfactory� whereas even here the shape preserving spline gives no
oscillations� automatically correcting the boundary conditions�

In many studies of shape preserving interpolation� tests are made using
the data of Akima ��	

��
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�a� �b�

Fig� �� Data obtained by Sp&ath ��	
��� Variation of the shape
preserving curve with decreasing tolerance parameters �i�

�a� �b�

Fig� �� Joining of a part of the circle with line segments�
�a� Semicircle� �b� one quadrant of a circle�

Table �� Data for Figure �a�

xi 
 � � � � � 	 �� �� �� ��

fi �
 �
 �
 �
 �
 �
 �
�� �� �� �
 ��

The pro�les of the splines S� and S obtained for this data are shown in
Fig� �a� On the �high gradient interval� the tolerance from the initial data
was increased to the maximum� �
 � �
� �� � �� � �
 � � with �i � � at all
other points�

Figure �b shows the results for the data taken from �Fritsch and Carlson�
�	�
�� fxig � f
�		� ��
	� ���	� ��
� 	��� �
� ��� ��� �
g� ffig � f
� ��
���	E���
���
�	�E � �� 
���	���� 
���	���� 
�	��
�
� 
�		����� 
�				��� 
�					�g�
Here �i � 
�� for all i�



�a� �b�

Fig� �� Typical behaviour of interpolation and shape preserving
splines� given fast� and slow�change sections of data� �a� Data obtained
by Akima ��	

�� �b� data obtained by Fritsch and Carlson ��	�
��

As a numerical test of the two�dimensional algorithm � of shape preserv�
ing approximation� we tried to reconstruct the surface of a �Viking boat �
The initial data� which the author obtained from Professor Tom Lyche of
Oslo University� was de�ned pointwise in the form of the envelopes of the
sides and the keel of the boat� as well as six ribs� Three�dimensional view of
the data is given in Figure �� After partial selection of the data� a system of
non�intersecting� generally speaking curvilinear� pointwise assigned loft sec�
tions was constructed from this data� Each section� except the sections for
ribs� contained � points�

Fig� �� Three�dimensional view of the data�
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Fig� �� Resulting shape preserving surface�



First� using the shape preserving interpolation algorithm of �Kvasov�
�		�b� we construct a system of space curves along the selected sections�
A two�dimensional spline is de�ned as the tensor product of one�dimensional
splines� generating a family of generalized local approximation splines in the
orthogonal direction by algorithm �� This yields a �nite system of curvilinear
coordinate lines on the surface which form a regular grid� Properties of the
initial data such as convexity� monotonicity� the presence of linear and plane
segments� angles and non�smoothness are preserved along those lines�

The Euler coordinates of the multi�valued shape preserving surface were
computed by the standard parametrization ����� In Figure � the resulting
shape preserving surface is given with a mesh of lines �
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