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Abstract

This paper describes the problem of shape preserving approximation for
data with specified tolerances. Using the tool of generalized B-splines (GB-
splines for short), simple one- and three-point algorithms of shape preserving
local approximation with automatic choice of the tension parameters are de-
veloped. In the two-dimensional case, tensor products of one-dimensional
splines are employed. The results of numerical calculations are given.
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1. Introduction

The tool of generalized splines is widely used to solve shape preserving
interpolation problems (e.g., see Boor, 1978; Gregory, 1986; Sakai and Silanes,
1986; Beatson and Wolkowitz, 1989; Schaback, 1990). By introducing tension
parameters into the spline structure, one can preserve various characteristics
of the initial data including positivity, convexity, linear and planar sections.
Here the main challenge is to develop algorithms that choose these parame-
ters automatically. The currently available algorithms (Miroshnichenko, 1984;
Sapidis et al., 1988; McCartin, 1990) mainly make use of the piecewise rep-
resentation of splines. On the same basis, the problem of shape preserving
approximation (not interpolation) was treated in the work of Pruess (1978)
and Schmidt and Scholz (1990) as spline smoothing.

The method of local approximation (Lyche and Schumaker, 1975), com-
bined with recurrence algorithms for computing polynomial B-splines (Boor,
1978), was found to be efficient in practical applications. Such approximation
providing a variation diminishing property has many useful data shape pre-
serving properties (Schumaker, 1981). However it gives a curve which only
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approximates the data, but changes the data shape substantially. For solv-
ing the shape preserving approximation problem, this approach was used in
(Grebennikov, 1983) with rather theoretical algorithms for data refinement.

The method of local approximation can be based on GB-splines. Until
recently, local support bases for computations with generalized splines have
been available only for some special types of splines (Boor, 1972; Lyche and
Winther, 1979; Schumaker, 1982, 1983; Lyche, 1985; Dyn and Ron, 1988).
This limited the choice of methods when using generalized splines. In (Koch
and Lyche, 1989, 1991, 1993) exponential GB-splines were introduced and
their application to interpolation problems was considered. Hyperbolic GB-
splines with tension were obtained in (Mariisi¢, 1996). In (Kvasov, 1996a) the
author constructed GB-splines allowing the tension parameters to vary from
interval to interval.

In practical calculations we usually treat data with specified tolerances.
Therefore we should develop methods for constructing fair-shape-preserving
approximations which satisfy these tolerances and inherit geometric proper-
ties of the data. In this paper such a setting of the problem is formalized by
introducing the notion of a class of shape preserving functions. We develop
one- and three-point algorithms of shape preserving local approximation based
on GB-splines (Kvasov, 1996a) with automatic choice of the tension param-
eters. We choose the tension parameters to satisfy the given tolerances and
the monotonicity and convexity conditions for the initial data. These algo-
rithms generalize the preliminary results of (Kvasov 1996¢, 1998) for shape
preserving splines.

In the approximation of surfaces the initial data is assumed to be given
as a set of pointwise-assigned non-intersecting curvilinear sections of a three-
dimensional solid. First, using the shape preserving interpolation algorithm
of (Kvasov, 1996b), we construct a system of curves along the initial sections.
A two-dimensional surface spline is defined as the tensor product of one-
dimensional splines, generating a family of generalized local approximation
splines in the orthogonal direction. This yields a finite system of curvilinear
coordinate lines on the surface which form a regular grid. Along those lines
we can preserve various properties of the initial data including convexity,
monotonicity, rectilinear and planar sections.

2. The Problem of Shape Preserving Approximation

Let the grid A : a = xg < 21 < --- < xny = b be given on the interval [a, ]
together with a set of intervals F = {F;|i=0,...,N}, F; =[f; — i, [i + &,
where ¢; > 0 are given small numbers. We want to construct a smooth
approximating function S € C?[a, b], such that S(x;) € F;, i = 0,..., N, and,
in addition, S preserves the shape of the initial data.

To formalize the problem let us introduce the notation

A,S = (S(CEH_l) - S(CUZ))/h,Z, hz = Ti4+1 — T4, 1= 0, .. .,N - 1,
58 =MNS—A;,_1S, i=1,...,N—1



and use interval differences (Moor, 1966; Shokin, 1981)

AF =hi Y (Fipy — F) = [Aif —ei, Aif +ei], ei=h 7 (ei + i),
i=0,... N—1,

O F = NF — Ny F =[0;f — B, 6:f + E;], FE;=ei_1+ e,
i=1.... N—1,

[al, 0/2] — [bl, bz] = [a1 — bz, as — bl] > 0, provided that a1 > bs.

The initial data is non-negative (non-positive) on the interval [zg, zk],
K >R, if F; >0 (F; <0),i=R,...,K. The initial data is said to be
monotonically increasing (monotonically decreasing) on the interval [xg, k],
K > R, if AjJF > 0 (AF < 0), i =R,...,K —1. The data is called
convex downwards (upwards) in [zg,zk], K > R+ 1, if §;F > 0 (6;F < 0),
i=R+1,... K—1.

The intervals A; F', §; F are assumed to contain no zeros for any i, that
is, the initial data satisfies the constraints

(Asf)?>>e?, i=0,....,N—1; (5f)?*>E} i=1,....N—1. (1)

Geometrically, this means that neighbouring intervals do not intersect
(F;NF;y1 =0 for all i) and we cannot draw a straight line through any three
consecutive intervals F, j =4 —1,¢,s+1,4=1,...,N — 1.

If the inequalities (1) are satisfied in the entire interval [a,b], then the
initial data uniquely defines the conditions of convexity and monotonicity of
the approximating function S. If, for the values of a certain function S, we
have S(.T,) €eF;,,i=0,...,N, then A;S e A;F,i=0,....,N—1, 65 € 6, F,
t = 1,...,N — 1. Bearing in mind the constraints on the initial data, we
obtain

ASAN;f>0, i=0,...,N—1, 06;S6;f>0, i=1,...,N—1. (2)

Definition 1. A set of functions I(A, F) is called a class of shape preserv-

ing functions if, for any function S € I(A,F), the following conditions are

satisfied:

(i) S € C?%a,b;

(il) S(z:) € Fy,i=0,...,N;

(iii) S is monotone on [z;,x;+1], 1 = 1,...,N — 2, for A;_1 fA;f > 0 and
A;fA;r1f >0, monotone on [z, x1] for AgfA1f > 0 and on [xN_1,xN]
for AN _2fAn_1f > 0;
S’ has a change of sign on [x;—1,x;11],i=1,...,N=1, for A;_1 fA; f <O0;
the number of sign changes of S" on [a, b] is equal to the number of sign
changes in the sequence Aof, Avf,...,An_1[;



(iv) S"(x;)0;f > 0,4 = 1,...,N — 1; the number of sign changes of the
function S” on [a, b] is equal to the number of sign changes in the sequence

61f762fa"'75N—1f'

Remark 1. We do not give special consideration to the non-negative (non-
positive) approximation because we always obtain such data approximation
automatically just as a consequence of the approximation monotonicity.
Remark 2. One needs to choose the values of the parameters €; so as to
obtain a balance between the exactness of approximation and the smoothness
of the curve.

The search for a function S € I(A, F) is referred to as the problem of
shape preserving approrimation. A solution to this problem will be sought in
the form of a tension generalized spline.

3. Tension Generalized Splines

Let a partition A : a = 29 < 1 < -+ < xny = b of the interval [a, b]
be given to which we associate a space of functions S§' whose restriction to
the subinterval [z;,2;+1], ¢ = 0,..., N — 1 is spanned by the system of four
linearly independent functions {1, z, ®;, ¥;} and where every function in S§
has two continuous derivatives.

Definition 2. A tension generalized spline is a function S € S§ such that
(i) for any x € [z;,x;41],i=0,...,N—1

S(x) =[S (i) — ®i(x:)S" (x:)](1 — ) + [S(ir1) — Vi(wip1)S" (wiga)]t
+ @(2)S" (2;) + Ui(2)S" (wi41), (3)

where t = (x — x;)/h;, and the functions ®; and V; are subject to the
constraints

M (201) =T () =0, r=0,1,2; @ (z;) =V (2;31) = L;

7 7

(i) S € C2[a,b].

The functions ®; and ¥; depend on the tension parameters which influ-
ence the behaviour of S fundamentally. We call them the defining functions.
In practice, one takes

®i(x) = @i ()i = (pi, 1 - O)h3,

(4)
In the limiting case when p;,q; — oo we require that lim,, . ®;(p;,z) = 0,
x € (4, Tit1), and limg, o0 ¥i(gi,x) =0, © € [z;,2541), so that the function
S in formula (3) is a linear function. Additionally, we require that if p; =
q; = 0 for all i we get a conventional cubic spline with ¢;(t) = (1 —¢)3/6 and

hi(t) =% /6.



Let us consider a basis for the space S§ consisting of functions with
local supports of minimum length B;, : = —1,..., N+ 1, having the following
properties

B,(CE) >0, x¢€ (CUZ'_Q,.TH_Q),
Bi(x) =0, z¢ (xi—2,Tit2),
N+1

Y Bj(x)=1, =z€lab].

j=—1

It was shown in (Kvasov, 1996a) that such splines, called GB-splines,
have the form

(W, _o(2)B!(zi_1), =€ [Ti_2,2i 1),

TEIEL 4 i1 (2)BY (wim1) + Wi (2) B (w3),
Yi — Yi—1

T c [551—1,%),
Bila) = | B =T g 0 50 0) () B (). (5)
Yi+1 — Yi
x € [T, Tit1),

®ip1(2) B (xi41), © € [Tig1, Tiy2),
0, otherwise,

where
Zi ro_ r r r
=== 2 =2 () = U (@) - 2 (x5), r=0,1
J
and ' '
B;l(l'j) _ yz/—{—l Yi—1 j=i—T1,ii+1

Zwi 1 ()

with w;—1(z) = (£ — yi—1)(x — y:)(x — Yiy1)-
Using the results of (Kvasov, 1996a) we can write down any spline S € S§
as a linear combination of the GB-splines

N+1
S(x)= Y b;Bj(z) for =z € [a,b] (6)

j=-1

with certain constant coefficients b;.

In what follows we will only consider the case where the “averaged knots”
of GB-splines y; = x;—2;/%,,i =0, ..., N, coincide with the knots of the basic
grid A, that is, z; = U;_1(z;) — ®;(z;) =0,i=0,...,N, and z_; = g — ihy,
TN4+i =N +ihy_1,%=1,2,3. Then according to (5), expression (6) for the
spline S on the interval [z;, z;4+1] can be put in the form



where (Sjb = Ajb — Aj_lb, ] = ’i, T+ 1, Ajb = (bj—i-l — bj)/hj
Whence we have the formulae

S’ (i) = (2) THAD Y] (z5) — Ay_1b D(x5)], (8b)
8" (ws) = (2{) " 8ib, (8¢)
where .
g Vi) @)
Wy (w) Pi(x)
Conversely

bi—1 = S(x;) — hi—1S"(@;) + bi—15" (),
bi = S(.’El) — (I)l(ZL'l)SH(.’El), (9)
b1;_|_1 = S(CUZ) —f-h,Sl(.T,) —I—C_L?;S”(Cl?i), 1= 0,...,N

with the notation
a; = —P;(z;) — hi®i(z), bic1 = —Vi_1(z;) + hi1 Vi ().

The choice of the defining functions ®; and ¥; will be subject to the
conditions (4). In addition, we will assume that d"¢(q,t)/dt", r = 0,1,2 are
non-negative monotone functions of their arguments ¢ > 0, 0 < ¢ < 1, and

also 9(q,1) < ¢'(¢q,1) and ¥(q,1), ¥'(q,1)/¢(q, 1) are strictly monotonically
increasing functions of gq.

4. A One-Point Algorithm of Shape Preserving Approximation

Algorithm 1. Set b, = f;, i =0,..., N, in formula (6). The coefficients b_1,
bny1 can be computed in various ways, depending on the particular problem
to be solved. For instance, they can be found from the boundary conditions
(Beatson and Chacko, 1989): S’(z;) = f/, i = 0,N. To find b_y, by41 one
can also apply other types of standard boundary conditions (Zavyalov et al.,
1980).

The derivative values in the boundary conditions must be adjusted to the
behaviour of the data. Otherwise we can obtain an incompatibility with the
shape preserving restrictions. By this reason we will assume that they are
subject to the constraints

(Aof - f6)51f > 07 f(SAOf 2 07
(fn —An—1f)On—1f >0, fyAn_1f >0,

(by hypothesis, 61f # 0, dy_1f # 0)
By virtue of the condition z; = 0 or ¢(gi—1,1)h? | = ¥(p;, k2, i =
0, N, and the strict monotonicity of the function v (q, 1), it follows from the

(10)



equations h_; = hg, hy = hy—1 that ¢_1 = po, gv—1 = pn. Thus, adding
the first and third equations of (9), for i = 0, N, and taking into account the
boundary conditions we obtain

by = f1—2hofs, bny1=fn-1+2hn_1fn- (11)
First we choose values for the parameters ¢;_1, p;, t = 1,...,N — 1, so
that |S(.T1,) — f1,| <eg;.
According to the formulae (8a) and (4)

Y'(gi-1,1) 1 ' (p1) 170
S(z;) — fi 61f[1/)(%'—1,1) o + Do 1) hi] , 1=1,...,N—1. (12)
Since, when h;_; < h; the equation z; = 0 leads to the relation ¢;_1 < p;, and
when h;_1 > h;, we have ¢;—1 > p;, equation (12) provides a simple method
for choosing the parameters ¢;_1, p;. For h;_1 < h; due to the monotonicity
of the function ¢’(¢q,1)/1(q,1) in the variable ¢ we have

8t — £ < sl (- 1>£@iiq4§%

hi—1 h_z 1/)(%'—1,1)

Since for tension generalized splines the inequality v'(¢;—1,1)/%(qi-1,1) > 3
is valid, we can define ¢;_1 by putting

V' (qi-1,1) <|5,~f|h,-_1h,i 1 )

——— —3=max|{ —————3,0).
Y(gi—1,1) hi—1+h; €

One finds the value of p; from the condition z; = 0 or

W(gio, DhZ_ = (p;, A2, i=1,...,N—1.
The case h; < h;—1 is analysed in the same way when p; < g;_1.
Similarly applying formula (8a) for # = 0, N and using the boundary
conditions in the form of equations (11) for finding pg, gn_1 we have

( Po, ) _ h’O /

( o) —3—max<g|Aof—f0|—3,0>,

Y (gn-1,1) B hn—1

71/}@_1,1) —3—max( . _1f|—3,0>.

Lemma 1. If S"(z;)S"(z;+1) < 0 then the function S" changes its sign
exactly once on the interval [z;,z;+1], i = 0,...,N — 1. Otherwise, S” does
not change sign on [z;, z;y1] at all.

Proof: According to formulae (7) and (8¢) for x € [x;, 2;41]
§"(w) = 8"(2:) @7 (x) + §" (wig1) ¥ (2). (13)
By hypothesis, the function ®7 () > 0 is monotonically decreasing (¥ (z) > 0
is monotonically increasing) for « € [z;, x;41]. Hence for S”(z;)S" (zi+1) > 0,
according to (13), the sign of S”(z) remains unchanged for x € [z;,z;1].
When S”(z;)S" (z;4+1) < 0, since the derivative
d
() = () 8 0) + 8 (i) ()
T
is of constant sign, the function S” is monotone in [z;, z;y1]. Thus it changes
sign just once there. This proves the lemma.



Theorem 1. If the conditions (10) are satisfied then the tension generalized
spline S constructed by the one-point local approximation algorithm 1 will be
a shape preserving function.

Proof: According to (8¢), S"(z;) = (2})~'6;f,i=1,..., N —1. Since z; > 0
(Kvasov, 1996b), taking the conditions on the initial data (1) into account,
one has S”(z;)0;f >0,i=1,...,N — 1.

It follows from (8c) and (11) that S”(xo) = (20) 1dob = 2(2) (Ao f —
f§)- Thus by virtue of (11) we obtain S”(xg)S"” (z1) > 0. Similarly we have
S"(xn-1)S"(xn) > 0. Hence, it can be concluded on the basis of Lemma 1
that the number of sign changes of the function S” on [a, b] is equal to that in
the sequence 0;f, i = 1,..., N — 1. Thus, conditions (iv) of Definition 1 are
satisfied.

We now consider a grid v : a = vy < v1 < -+ < vy41 = b. Here for
S"(x;)S" (xi41) > 0,i=0,...,N—1, we put v;41 = &1 € (x4, 2;41) accord-
ing to the equation S(wiy1) —S(x;) = 5" (§i41) (wit1 — ;). For §7(2;)S" (wi41)
< 0 we choose v; 1 = z* from the condition S”(z*) =0, * € (2, T;41).

By construction, S”(v;)S"(z;) > 0, j = 4,i+ 1. From the conditions
on the initial data (1) and (8c) we have S"(z;) # 0, i = 0,...,N. Thus,
by Lemma 1, S” does not change sign, and S’, accordingly, is monotone in
[vi,vi41], 1 = 1,...,N — 1. In [vg,v1] and [vn,vn41], the monotonicity of
S" follows from the inequalities S”(z;)S” (zi+1) > 0, ¢ = 0, N — 1 and from
Lemma 1.

We will now show that the inequality S’(z*)A;f > 0 holds at any inflec-
tion point z* € [z;,z;y1], 4 =1,..., N — 2. By hypothesis, 6; fd;11f < 0 and
there are two possibilities: either d; fA;f < 0 or 6; fA;f > 0.

By (7), for x € [z;, z;4+1]

S'(x) = Aif + (2) 710 f (@) + (#i40) " dir [T (),

where ®}(z) < 0 and ¥(z) > 0.

Hence for 6, fA; f < 0, allowing for the signs of the functions ®, and W,
we have S’(z)A;f > 0 and, therefore, S'(v;41)A;f = S'(z*)A;f > 0.

Now let &; fA;f > 0. Consider the case §;f > 0. Since the derivative
has an extremum at a point of inflection, we have A;S < S’(z*). From the
relation A;SA;f > 0 of (2), we again arrive at the inequality S’(z*)A;f > 0.
The case 6; f < 0 is analysed in a similar way.

Obviously by construction S’(v;+1)A;f > 0 when S”(z;)S" (z
i =0,...,N —1. Thus, at the nodes of v we have S"(v;11)A;f
0,...,N—1.

We have proved that S’ is monotone on [vj,vjy1], j = 4,4 + 1, and
S"(vit1)Aif > 0. Thus S’ is monotone on [v;, viy2]. Now if A;jfA;1f >0,
j=1—1,i, then S"(v;)S"(v;12) > 0. Thus, the sign of S’ remains unchanged
on [v;,v;41] and, in particular, on [z;, z;11]. Hence, under this assumption S
is monotone on [z;, x;11],i=1,...,N — 1.

If AgfA1f > 0 then a function S’ which is monotone on [vq,vs] will
be of constant sign there. Thus S’'(z1)Agf > 0. We have already shown

i+1)207
> 0,1 =



that S’(x) is monotone on [zg, x1]. According to (11), f{Aof > 0 and since
S’ (x1)Aof > 0, S is monotone on [zg,z1]. The case of the interval [xn_1,zN]
is considered in a similar manner.

Since S/(Zl?())A()f > 0, S/(Ui+1)Aif >0,:=0,...,N—1, S/(.TN)AN_lf
> 0 and S’ is monotone on [v;,v;11], ¢ = 0,..., N, the function S" changes
sign on [v;, v;1+1] and, therefore, on [z;—1,z;41], i =1,...,N —1,if A;_1f X
A;f < 0. The number of sign changes of the function S’ on [a, b] is equal to
that in the sequence Agf, A1f,...,An_1f. This proves the theorem.

5. A Three-Point Algorithm of Shape Preserving Approximation

Algorithm 2. The coefficients in (6) are computed using formulae (9) where
S"(x;) is approximated by the second divided difference:

bi = fl — Q(hi_l + hz)_IQJI(xz)&f, 7 = 1, ceey N — 1. (14)

The coefficients b;, ©+ = —1,0, N, N 4+ 1 are found by using boundary
conditions S*)(z;) = fi(k), i=0,N, k=0,1. One can also use other types
of expanded standard boundary conditions (Zavyalov et al., 1980).

To adjust the values of the derivative in the boundary conditions with the
behaviour of the data, that is, with shape preserving restrictions, we subject
them to the constraints

S1f (Dof = fo) > |01flerhg ', folof >0,

15
On—1f(fnN — AN—1f) > |On—1flen—1hn"1, [NAN—1f >0. (15)

These conditions are more severe in comparison to the restrictions (10).

Using the boundary conditions, we can write out the explicit expressions
for the coefficients b;, i = —1,0, N, N + 1. According to the formulae (8) and
(9) we obtain

b_1 = by — 2hofy,
Jo+ hofy— b1

bo = f - 3
S T (po. D/Y (o, 1)
/ (16)
1= ¢ (gn-1,1)/¥(an-1,1)’
bni1 =bn_1+2hn_1fN-
The parameters p;, ¢;, ¢ = 0,..., N — 1 are determined from the shape

preserving conditions of Definition 1 in two steps. First, according to (14)
from the constraints

we find p; and compute ¢;_1 from the relation z; = 0.



The quantities pg, gv—1 are chosen from the inequalities

|f0 + hofo — b1

bo — fol = <e
| T 0G0, /0. ) »
by — ful = |fN = hn—1fn — bn-1] <en
11— (gn-1,1)/t(an-1,1)| —
using (16).
Finally, we find p;, ¢; from the constraints
|S($l)—fl|§6l, i:O,...,N.
From (8a) and (14) we have
_ 20,1 (xi—1) 2‘I)z+1($z+1)
Swi:i+Hi1{_ Oi1f — 0
(@) =/ (s + by ™ Bl + hagn) (19)
B W) — 0]
hi—_1h; hi—1 4+ h; Y

For tension generalized splines we have by virtue of the condition z; = 0

U1 (x;) = D)

IN

hi—lhﬂi?

N = O =

0 < Wi (z;) — ()

IN

(h/i—l + hi)

independently of the relations between h;_; and h;. Thus, using the estimate
(17), we obtain from (19)

1S () — fil < H;7'0; <ey,

where 91, = 81;_1hi__11 + %|51f| + €i+1h’¢_1
For h;_1 < h; therefore, as in the algorithm 1, we find ¢;_; from the
relation

We compute p; from the condition z; = 0.
For i = 1, N —1, bearing (16) and (18) in mind, we define the parameters
qo and py_1 similarly. In particular, for hg < h; and hAxy_1 < hy_o we have

, ~
V) g (ol G g)
h0+h181

"(pN_1,1 hy_ohn_1 On_
1/)(pN 1’)—3:max< N-2AN_1 N1_370>,

hn—o+hn_1en-1



where

[Aof — fol +eihg’
11— 4/ (po, 1) /¢(po, 1)|’
|An_1f = fyl+eno1hys,
11— (gn—1,1) /(g1 1)|

~ 4
91 = €2h1_1 -+ §|(51f| +

~ _ 4
ON_1=cen_ahy" |+ §|5N—1f| +

Theorem 2. If the conditions (15) are satisfied then the tension generalized
spline S constructed by the three-point local approximation algorithm 2 will
be a shape preserving function.

Proof: By virtue of the conditions on the initial data (1) and (2), the esti-
mates (17) and (18) imply the relations

AbAF>0, i=0,...,

N-1,
, (21)
(Azb—A,_lb)51f > 0, 1= 1,...,N— 1.
Whence, according to (8¢c), S”(z;)d;f > 0,i=1,...,N —1. From (8¢) and
(16) we also have

" =1 N _ 32 bl_fo_hof(l))
§7(w0) = (z0) ™ (Bob = Arb) = = oo, 1)

If §f > 0, then according to (15) f§ < Agf — e1hy'. Thus, taking into
account (17) we obtain

b1 — fo—hofy > b1 — fo — holAof +e1=b1 — f1 + 1.

As for tension generalized splines the estimate ¢ (q,1) < 1'(q,1) is valid for
all ¢ > 0 then S”"(z¢) > 0, that is, S”(x0)S”(x1) > 0. The same inequality
applies in the case §; f < 0. The estimate S”(xn_1)S" (zn) > 0 is established
in the same way. Now applying Lemma 1, we find that conditions (iv) of
Definition 1 for shape preserving functions are satisfied.

Since inequalities (21) are satisfied, the conditions of part (iii) of Defini-
tion 1 can be verified as in the corresponding proof of Theorem 1. This proves
the theorem.

Remark 3. For f(xz) =1, f(x) = z, we find in both the one-point algorithm
1 and the three-point algorithms 2 by direct verification that, respectively,
bi =1, b; =x;,i=—1,...,N + 1 and, therefore, according to (7), a shape
preserving spline S recovers straight lines.

Remark 4. For p; = ¢; = 0 for all ¢« the equations z; = 0,2 =1,..., N—1 are
only possible for a uniform grid A. In that case, by (14) we obtain the well-
known three-point scheme for local approximation by cubic splines (Zavyalov
et al., 1980).



6. Shape Preserving Surface Approximation

Let the domain G : [¢,d] x [0,1] in the WU plane be divided into N
rectangular subdomains by the straight lines w = w;, ¢« = 0,..., N, of the
grid Ay, : ¢ =wg < wy < --- < wy = d. Suppose that on each of the lines
w = w; the grid AY : 0 = v} < u} < -+ < U?\/[Z =1,:=0,...,N, is given.
The number of nodes and their position for the grids A?, i = 0,..., N, are
independent of one another. At nodes u;-, j=0,....M;,i=0,...,N, the
values f;; of a certain function f are given with allowable deviations €;;.

The algorithms of local spline approximation of Sections 3 and 4 can
be generalized so that a surface of class C*?(@G) passing through the points
Pz'j = (wi,u;, fij), where fz'j S [ ij —Eij, ¢j+€¢j], j = 0, .. .,Mi, 1= O, .. .,N,
can be constructed. As well as being efficient, these algorithms preserve the
shape of the data.

The surface is sought in the form of the function

N+1

S(w,u) = Y bi(u)B;(w),

1=—1

where the GB-splines B; are the same as in (6). The functions b;, i =
—1,..., N+1, generalize the formulae of local approximation of Sections 3 and
4 (Algorithms 1 and 2), being linear combinations of one-dimensional shape
preserving interpolating splines S;, i = 0,..., N (Kvasov, 1996b) which fix
the curves along sections w = w;, ¢ = 0,..., N, and pass through the points
(’U,;-, fij), j = O, cey Mi.

Formally, the required formulae (Algorithms 3 and 4) are obtained by
replacing the quantities f}k) in Algorithms 1 and 2, respectively, by the func-

tions S J(.k), k =0,1,2. The boundary conditions are changed similarly. In the
case of the “one-point” scheme we use the boundary conditions: -2 S(w;, u) =

% f(w;,u), i =0, N. For the “three-point” scheme these boundary conditions

must be supplemented by the conditions S(w;,u) = S;(u), i = 0, N. Since
the formulae for the functions b;, ¢ = —1,..., N + 1, are a direct generaliza-
tion of the local approximation formulae of Sections 3 and 4, we will confine
our analysis to a short description of the algorithms. We use the notation

gi(u) = %f(wi,u), i=20,N.
Algorithm 3. The one-point scheme:

b—1(u) = Si(u) — 2hogo(u),
bz(u):Sz(u), iZO,...,N, (22)
bni1(u) = Sn_1(u) + 2hn_1g9n(u).
Algorithm 4. The three-point scheme:
b_1(u) = b1(u) — 2hogo(u),

So(u) + hogo(u) — by (u)
bolu) = Solw) = = D boer 1)




bz(u) = SZ(U) — Q(hi_l + hl)_léz(wl)élS(u), 1= 1, .. .,N — 1,

~ Sn(u) —hy-1gn(u) — by—1(u)
L—4'(qn-1,1)/¢(gn—-1,1)

bni1(u) = bn_1(u) + 2hn_19n(u),

where

bn(u) = Sn(u)

(23)

(SZS(U) = AZS(’U,) — Ai_lS(u),
AjS(u) = [Sjta(w) = Sj(w)l/hj, 5 =i-1,i.
The boundary conditions can be computed using second- and third-degree

one-parameter Lagrange interpolating polynomials. Corresponding to the
shape preserving constraints (10), (15) (Kvasov, 1996b), we set

(2 Lyo(wo,u) if 2L o(wo,u)AeS(u) >0, 015 (u) # 0,
g0(w) = § 2 Lao(we,u) if 2 Lao(wo,u)AeS(u) > 0, 615(u) = 0,

L 0, otherwise,

( %Lz,N_z(wN,u) if %Lz,N_z(wN,u)AN_ls(u) >0, (24)
On—1S(u) #0,

gn(u) = % 2Ly n_s(wn,u) if 2%Lsn_s(wn,u)An_15(u) >0,

InN—15(u) =0,

\ 0, otherwise,

where
La i(w,u) = Si(u) + (w — w;)[A;S(u) + (w — wiy1)i418 (w) /(w2 — wi)],
Lz i(w,u) = [Lai(w,u) (wits — w) + Laiy1(w, u)(w — w;)]/(wiys — w;).

Instead of g;, = 0, N, we could consider the interpolating shape preserv-
ing splines (Kvasov, 1996b) constructed from given values of 9 f(w;,u})/0w,
j=0,...,M;,i=0,N.

In practice, it is often necessary to adjust the assigned values of f;; on
an initial irregular grid to the nodes of a regular grid in domain G, that is,
to points (Wy, Um), m = 0,.. . M, n=0,...,N. In that case it is sufficient
to know the quantities g;(t,,), m =0,..., M, j =0, N, which can be found
from formulae (24).

The shape preserving spline S possesses the following data shape pre-
serving properties.

Property 1. Let the functions S;, j =¢—1,...,¢0+2,1 <1 < N — 2,
be monotone and/or convex in the interval [, @my,11]. Then the generalized
spline S constructed by Algorithm 3 for any fixed W € [w;,w;4+1] will be
monotone and/or convex on [ty , Uy+1]-

Property 2. Let the functions S;, j =4¢—1,...,¢4+2,1 <¢ < N—1, be
monotone and/or convex in the interval [, , @, 11] and satisfy the conditions

SMe <0, jA0N, P <o, j=0N,



where, respectively, ¥ = 1 and/or k = 2. Then the generalized spline S
constructed by Algorithm 4 for any fixed @ € [w;, wiy1], 2 <i < N — 3, will
be monotone and/or convex on [, Umt1].

These assertions can be proved by using the formulae

ak N+1
5 5w, u) = ST P w)Bi(w), k=1,2,
t=—1

employing expressions (22) and (23) for the coefficients b; and taking into
account the fact that GB-splines are finite: B;(w) > 0 for w € (w;_2, w;42)
and B;(w) =0 for w & (w;—2, Wit2).

Property 3. Suppose that for any S;(u) for which A;S(u), 6;S(u) do not
change sign for any u € [0, 1], the choice of parameters p;, ¢;, i = =2, ..., N+2,
of the generalized spline S, gives

where E; are given functions. Then for any fixed w the spline S, (w) = S(w, u)
is a shape preserving function.

The proof follows from the arguments for one-dimensional local approxi-
mation splines given above.

The values of the spline S are computed most efficiently, in the sense
that the minimum number of arithmetic operations are performed, when the
regular resultant grid mentioned above is used. In that case we first find
the coefficients b;(@,), ¢ = —1,..., N + 1, and then the values S(wy,, tn,),
n=0,...,N,m=0,...,M using the formulae for GB-splines.

A non-single-valued shape preserving surface, assigned pointwise in the
form of a family of, generally speaking, curvilinear non-intersecting sections
can be constructed by introducing the standard parametrization:

r=58%w,u), y=5S%w,u), z==5%(w,u). (25)

In this case the initial pOiIltS Tij = («Tija Yij, Zij), j = 0, ey Mi, 1= 0, ey N,
are assumed to belong to the parallelepiped [[;; = {Xi;l|[Xij — xij| < €5},
where for each of the coordinate functions (25) we have put x;; = x(w;, u;),
and 6% is the allowable error with respect to the corresponding variable. The
resultant surface will be obtained as a triple of shape preserving splines con-
structed using the above algorithm.

The algorithms given here can be classed as Gordon type algorithms
(Faux and Pratt, 1979; Gordon, 1969), with the essential difference, however,
that instead of the functions b;, : = 0,..., N, being “blended” there with the
help of fundamental splines, a local approximation of those functions is used
and the surface is constructed in the space of shape preserving splines.



7. Numerical Examples

The approximating generalized splines were proved to be shape preserv-
ing under constraints (1) on the initial data which are required in order to
have unique monotonicity and convexity conditions. In fact, the algorithms
work well with more general data, as the examples below show. The reason
is as follows. Using the algorithms we always satisfy the given tolerances.
If the algorithms fail in the data monotonicity and/or convexity on some
intervals then we have to increase the values of the corresponding tension pa-
rameters or to vary the tolerance parameters ;. This provides the properties
of monotonicity and convexity for any data. However in the first case the
resulting curve can be rather “angular”. To avoid this situation it is often
better to increase the values of the parameters €; which control the shape of
the resulting curve and apply the algorithms repeatedly. This permits us to
influence the “smoothness” of the resulting curve and yet remain within the
given tolerances.

The use of tension generalized splines in the approximation of pointwise
given curves and surfaces is illustrated in the figures. The defining functions
were taken in the form (4) with

P(git) = Qit’ /1 + qit(1—1)], Q7' =2(1+¢:)(3+ ¢:)

which corresponds to rational splines with quadratic denominator. Other
examples of defining functions for rational, exponential, hyperbolic splines
and splines with additional knots can be found in (Kvasov, 1996a).

The more exact three-point formulae of local approximation (Algorithms
2 and 4) were used in each case. To find ¢;—; we apply the formula (20) which

takes the form
. ( hi—1h; 0; 5 0)
i—1=max|—— —3,0).
9i-1 hi—l + hl E;

Since we suppose h;_1 < h;, then the relation z; = 0 gives us

pi=—-2+ [1 + (1 +qi-1)(3+ qz’—1)(h?_i1>]l/2 > 0.

For comparison, the standard cubic spline interpolation of (Zavyalov et al.,
1980) was used on the same data (in our case with p; = ¢; = 0 for all 7). The
derivatives at the endpoints were computed using second-degree Lagrange
polynomials: S’(xo) = Ly o(0), S'(zn) = Iy y_o(xn), and then corrected
in accordance with the shape preserving conditions (15) (for surfaces, (23)).
The tolerance from the initial data was 10%. The solid and dashed curves in
the figures 1-8 denote the graphs of a rational spline S and a cubic spline S3.
The crosses indicate the initial points.

Figure 1a illustrates the approximation of the single pulse function f(z) =
max (0, 1—4|x—1.75]) from points z; = 140.25¢, ¢ = 0,...,6. The cubic spline
here is typified by the presence of oscillations. At the same time, the shape



(a) (b)

Fig. 1. Profiles of interpolation and shape preserving splines. (a) Appro-
ximation of a unit-pulse function; (b) data obtained by Spath (1969).

preserving spline is insensitive to these bursts. The “radius of curvature” of
the corners can be influenced here by changing ¢;.

The data for Figs. 1b and 2 (Tables 1 and 2) are taken from (Spéth, 1969,
1974). The cubic spline in Fig. 1b has superfluous points of inflection in the
first, third, fourth and eighth intervals. The shape preserving spline does not
have these oscillations. Figures 2 reflect the same general tendencies in the
behaviour of the splines S3 and S. By reducing €; where necessary the curve
can be further “fitted” to the data (Fig. 2b), but becomes more “angular”.

Table 1. Data for Figure 1b:

T 0.0 1.0 |15 |25 |40 |45 |55 |60 |80 |10.0
fi 110.0 | 8.0 | 5.0 | 4.0 |35 |34 |60 |71 |80 /| 85

Table 2. Data for Figure 2:

i |0 12025 35|55 |60 |7 ]85 |10
fi 1212545 |50 |45 |15 |1]05 ] 0

The next test used a function with a discontinuous derivative obtained by
joining intervals of a straight line and a semicircle: f(z) = 1+[1— (z—4)?]Y/?2
for [t — 4| < 1 and f(x) = 1 otherwise. From a geometrical point of view
the curve of the interpolating cubic spline is invalid, whereas here the shape
preserving spline gives a perfect profile (Fig. 3a).

The case of a quarter circle combined with a straight-line segment is
considered in Fig. 3b. Here the curvature at the join is discontinuous. The
vertical tangent at the left-hand boundary was approximated by the value
S’(a) = 50. From the geometric point of view again the cubic interpolant is
far from satisfactory, whereas even here the shape preserving spline gives no
oscillations, automatically correcting the boundary conditions.

In many studies of shape preserving interpolation, tests are made using
the data of Akima (1970):



(a) (b)

Fig. 2. Data obtained by Spath (1974). Variation of the shape
preserving curve with decreasing tolerance parameters ¢;.

(a) (b)
Fig. 3. Joining of a part of the circle with line segments.
(a) Semicircle; (b) one quadrant of a circle.
Table 3. Data for Figure 4a:

Ti 0} 2| 3] 5| 6| 8 9 11 |12 | 14 | 15
fi 110 110 |10 | 10 | 10 | 10 | 10.5 | 15 | 56 | 60 | 8

The profiles of the splines S3 and S obtained for this data are shown in
Fig. 4a. On the “high gradient” interval, the tolerance from the initial data
was increased to the maximum: €7 = 10, g = €g = €9 = 5 with ¢; = 1 at all
other points.

Figure 4b shows the results for the data taken from (Fritsch and Carlson,
1980): {x;} = {7.99,8.09,8.19,8.7,9.2,10,12,15,20}, { f;} = {0,2.76429F —5,
4.37498F — 2, 0.169183, 0.469428, 0.943740, 0.998636, 0.999916, 0.999994 }.
Here ¢; = 0.1 for all 4.
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Fig. 4. Typical behaviour of interpolation and shape preserving
splines, given fast- and slow-change sections of data. (a) Data obtained
by Akima (1970); (b) data obtained by Fritsch and Carlson (1980).

As a numerical test of the two-dimensional algorithm 4 of shape preserv-
ing approximation, we tried to reconstruct the surface of a “Viking boat”.
The initial data, which the author obtained from Professor Tom Lyche of
Oslo University, was defined pointwise in the form of the envelopes of the
sides and the keel of the boat, as well as six ribs. Three-dimensional view of
the data is given in Figure 5. After partial selection of the data, a system of
non-intersecting, generally speaking curvilinear, pointwise assigned loft sec-
tions was constructed from this data. Each section, except the sections for
ribs, contained 4 points.

Fig. 5. Three-dimensional view of the data.



Fig. 6. Resulting shape preserving surface.



First, using the shape preserving interpolation algorithm of (Kvasov,
1996b) we construct a system of space curves along the selected sections.
A two-dimensional spline is defined as the tensor product of one-dimensional
splines, generating a family of generalized local approximation splines in the
orthogonal direction by algorithm 4. This yields a finite system of curvilinear
coordinate lines on the surface which form a regular grid. Properties of the
initial data such as convexity, monotonicity, the presence of linear and plane
segments, angles and non-smoothness are preserved along those lines.

The Euler coordinates of the multi-valued shape preserving surface were
computed by the standard parametrization (25). In Figure 6 the resulting
shape preserving surface is given with a mesh of lines 100 x 100.
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