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Abstract. Hyperbolic tension splines are defined as solutions of dif-
ferential multipoint boundary value problem. For computations we use a
difference approximation of that problem. This permits to avoid calcula-
tions of hyperbolic functions, however, the extension of a mesh solution
will be a discrete tension spline. We consider the basic computational
aspects of this approach.
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1. Introduction

In the theory of splines mainly two approaches are used: algebraic and vari-
ational. In the first approach [5] splines are understood as piecewise defined
functions with a uniform structure. In the second approach [3] splines are so-
lutions of some minimization problems for linear functionals with restrictions
of equality and/or unequality type. But a third approach is also known [2]
where splines are defined as solutions of differential multipoint boundary value
problems. In some important cases all three approaches give the same solu-
tions. However the third approach has substantial computational advantages
which are illustrated here by the example of hyperbolic tension splines.

For the numerical treatment of differential multipoint boundary value
problems we replace the differential operator by its difference approximation.
This permits us to avoid calculating hyperbolic functions and to find easily
mesh solution whose extension will, however, be a discrete tension spline with
continuous differences instead of derivatives.
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2. Problem formulation

Let the data
(.Ti,fi), t=0,...,N+1, (2.1)

be given, where: a =9 < z1 < --- < zny1 =0b. Let us put
h¢:l'7;+1—.’17¢, i:O,...,N.

Interpolating tension spline S(x) with a set of tension parameters
{pi > 0]i=0,...,N} is a solution of the differential multipoint bound-
ary value problem

dts N\ 2 d2s . :
% — (%) w =0, 1in each ($i,$i+1), 1 =20,...,N, (2-2)
S c 02[a7b]7 (23)

with the interpolation conditions
S(z;)=fi, i=0,...,N+1 (2.4)
and the end constraints
S"(a)=fy and S"(b) = fyi1- (2.5)

For practical purposes it is often more interesting to know the values of
the solution over a given tabulation of [a, b] than its global analytic expression.
In this paper we do not consider directly a tabulation of S but we study a
natural discretization of the previous problem. We prove that the discretized
problem has a unique solution, called mesh solution, and we study its prop-
erties. Of course it turns out that the mesh solution is not a tabulation of S
but it can be extended on [a, b] to a function u, with properties very similar to
those of S and which approaches S as the discretization step goes to zero. Due
to these properties we will refer to u as discrete tension spline interpolation
of the data (2.1).

Let us assume that each h; is an integer multiple of the same tabulation
step, 7. Putting n; = h;/7, we look for a mesh solution v = {u;; | j =
—1,...,n;+1, ¢=0,..., N}, satisfying the difference equations:

N\ 2
[Az_(%> A:|’U,Z-,j:0, jzla---vni_la i1=0,...,N, (26)

where
Ui j—1 — 25 + Ui j+1

T2

Auiyj =
The smoothness condition (2.3) is changed for the equations

Ui 1,p;_; = U4,0,
izlnia—1 7 %i-lmiat1 _ Uil — ui’_l, 1=1,...,N, (2.7)
2T 2T

Aui—l,’ni,1 - Au’i,07




which are equivalent to

Ui—lns_14j = Uij, J=—1,0,1. (2.8)
The interpolation conditions (2.4) take the form
wio = fis Uin, = fix1, 1=0,...,N, (2.9)
and for the end conditions (2.5) we have
Augo = fo and Auny,y = fyi:- (2.10)

The equalities (2.8) permit to eliminate the redundant unknowns in the
difference equations (2.6). The values ug,—1 and un,,+1 are not explicitly
computed but are introduced into the formulation to accommodate the two
necessary end conditions. Putting m = Zij\io n; + 3, the previous equations
can be collected in the m x m linear system

Al = b, (2.11)
where
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In the previous system the unknowns u; 9, ¢ = 0,..., N+1, can be immediately
determined from the interpolation conditions while the expression of ug, _1
(UN,ny+1) can be obtained from the first (last) equation and substituted in
the third (third to last) equation. Then in practice we deal with the m* x m*
linear system (m* =m — N — 4)

where

A*

rbo—1 ag
ao bo

1 ao

1

A*u* = b,
1
ao 1
bo ap 1
ao bo ao
1 ap bo 1
1 b1 a1
aq b1
1

1
a1 1
an by an
1 anN bN
1 an

and u*, b* are correspondingly deduced from @ and b.

Following [4] we observe that

14*:: Cﬁ +—l)#

(2.12)

an
by — 1 J

where both C* and D* are symmetric block diagonal matrices; to be more

specific,

C*

—CO
b, — 1 a;
a; bi
1 a;

Cy

Cy

CnJ

073 1
a;

a; bi—-l_

(2.13)



o O
o O

D* =

0 0
s 0 0

Since the eigenvalues of D* are 0 and 2, from a corollary of the Courant-Fisher
theorem [1] we have that the eigenvalues of A*, A\i(A*), satisfy the following
inequalities

)\k(A*) 2 )\k(C*), k= 1, . . .,m*.

The eigenvalues of C'* are the collection of the eigenvalues of C; and we have
Ci = B} — w;Bi,

where B; is the (n; — 1) x (n; — 1) tridiagonal matrix

It is well known, (see also [4]), that

X (Bi) :—2(1—cos£>, =1, m—1,

ng

then

It follows that

Ak(A*) > min A;(C;) = min [4(1 — Cos %)2 + 2wi<1 — Cos %)]

0, i i

Hence, A* is a positive matrix and the linear system (2.12) (and (2.11) as
well) has unique solution.



In addition, from Gershgorin’s theorem, \;x(A*) < max;[16 + 4w;], then
for the condition number, ps(A*), with respect to the 2 norm of A*, we have
the following upper bound not depending on the number of data points, N +2:

max; [16 4 4(72)?]

pa(A7) < min; [4(1 — cos 7)2 + 2(724)2(1 — cos 7T )] (2.14)
max; [16 + 4(52)?]
~ min (57)4 [t + (mpi)?]
We remark that, forp; =0, ¢ =0,..., N, we recover the results presented

in [4].

From the structure of A*, the linear system (2.12) can be solved efficiently
using a direct method for band matrices. Since A* is positive band matrix
of band width 2, the classical Cholesky factorization , A* = LLT, provides a
lower triangular band matrix L of band 2 and it can be performed in O(2m*)
operations, [1].

3. System Splitting and Mesh Solution Extension

In order to solve numerically the differential multipoint boundary value prob-
lem (2.2)—(2.5) we consider the system of difference equations (2.6) completed
with the smoothness conditions (2.7) (or (2.8)), interpolation conditions (2.9)
and end conditions (2.10).

In the notation

]\/[”:AU,”7 j:O,...,?’li7 7;:07”.7]\77 (31)

on the interval [z;, z;+1] the system (2.6) takes the form

Mo = M;
Mi'—l — 2M1 + Mz +1 bi 2 .
j TZJ J _(h_) Mjj=0,j=1,...,n; — 1, (3.2)
M; ., = M4,

where M; and M, are prescribed numbers. The system (3.2) has a unique
solution, which can be represented as follows

Mij = mi(xij), w5 =z +j7, j=0,...,n4

with ( )
sinh k; (1 — ¢ sinh k;t
i =M,—————=+ M, .717
mi(2) simh(B)  Sinh (k)
-z 2 . kT .
t:$ ad — sinh T:pi>0 Ti:l.

h; ’ Ti 2 - h;



From the equation (3.1) and the interpolation conditions (2.9) we have
Uijo = fi7
Ujj—1 — 2U5 + Usj41
2

Uin, = fit1-
Let us consider the function
U,(CE) = fz(l — t) —f— f1;_|_1t —I— @,(1 — t)th, —f— @i(t)thH—la (34)

where

sinh(k‘it) —t Slnh(kz)
p? sinh(k;)

The function u;(z) satisfies to the conditions

ui(x) = fj,  Aui(xj) = My, j=1i,0+1,

~

@i(t) =

where
Aug () = wi(x — 1) — 2u,gaj) + ui(x + 7').
T
The mesh restriction of the function u;(z) gives us the solution of the system
(3.3) with w;; = u;(x45), j = 0,...,n;. The smoothness conditions (2.7) can

be rewritten as
Ui—l(xi) = Uz(ﬂfz%
Az rui—1(x;) = Az rui—1(x;), (3-5)
Aui_l(aji) = A’U,Z(CUZ),

where
Ar () = BT U@ 2T,
T

(3.5) are equivalent to
ui—1(wi +j7) = ui(w; + j7), j=-1,0,1

Using (3.4) and the second condition (3.5) we obtain a linear system with
3-diagonal matrix

MO — (/)/7
@i—1hi—aMi_1 + (Bizihi—1 + Bihi) M; + a;hi M1 = d;y, i =1,...,N,

"
MN+1 = JN+1»

(3.6)
where
g = firr—fi  fi— fi
' h; hic1
(,57,(721) — 951(—%1) Sll’lh(kﬂﬁl) — 721 smh(kl)
oy = — ~ = - ~ - 3
27; p?7; sinh(k;)
ﬂ' . (,51(1 + 721) — (,51(1 — 721) . COSh(ki) Sll’lh(k‘lﬂ,) — 7A'7, sinh(k‘i)




Using an expansion of the hyperbolic functions in the above expressions as
power series we obtain

Bi >2a; >0, 1=0,...,N, forall 7>0, p;>0.

Therefore the system (3.6) is diagonal dominant and has a unique solution.
We can now conclude that the function u(z) which coincides with u; ()
for z € [z;,2;41], 1 =0,1,..., N, is a discrete tension interpolation spline. A
mesh restriction of the spline u(x) gives us a solution of the system (2.6). The
spline u(x) can also be easy recovered from the solution of the system (2.6).
Instead of looks for a direct solution for the system (2.6) we recommend
the following algorithm.

Step 1. Solve 3-diagonal system (3.6) for M;, i =1,...,N.
Step 2. Solve N + 1 3-diagonal systems (3.2) for M;;, j = 1,...,n; — 1,

i=0,...,N,
Step 3. Solve N + 1 3-diagonal systems (3.3) for u;;, j=1,...,n; — 1,
i=0,....N.

Steps 2 and 3 can be replaced by a direct splitting of the system (2.11)
into N + 1 systems with 5-diagonal matrices

C’,-ui:c,-, iZO,...,N, (37)
where the (n; — 1) x (n; — 1) matrix C; has the form (2.13),

_ T
U; = (Uilauﬂv .- -aui,ni—l) )

T
¢i = (24 w)fi — My, —f;,0,...,0,— fiy1, (24 w;) fix1 — Miga) " .

The calculations to solve the systems (3.2) and (3.3) or (3.7) can be
performed by using a multi-processing parallel computer system. If n; = n
for all ¢, we can first store a triangular factorization of the matrices of the
systems and then use parallel computations.
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