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Abstract

Strongly nonlinear impulsive evolution equations are investigated. Existence of solutions
of strongly nonlinear impulsive equations is proved and some properties of the solutions are
discussed.

These results are applied to Lagrange problems of optimal control and we proved existence
results. For illustration, an example of a quasi-linear impulsive parabolic di3erential equation
and the corresponding optimal control is also presented.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Let I =: (0; T ) be a bounded open interval of the real line and let the set D =:
{t1; t2; : : : ; tn} be a partition on (0; T ) such that 0¡t1 ¡t2 ¡ · · ·¡tn ¡T . A strongly
nonlinear impulsive system can be described by the following evolution equation:

ẋ(t) + A(t; x(t)) = g(t; x(t)); t ∈ I\D; (1a)

x(0) = x0; (1b)

8x(ti) = Fi(x(ti)); i = 1; 2; : : : ; n; (1c)

� This work was supported by Thailand Research Fund Grant BRG 47 2004.

E-mail addresses: pairote@ccs.sut.ac.th, elsolitario22@hotmail.com (P. Sattayatham).

0362-546X/$ - see front matter ? 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2004.03.025

mailto:pairote@ccs.sut.ac.th
mailto:elsolitario22@hotmail.com


1006 P. Sattayatham /Nonlinear Analysis 57 (2004) 1005–1020

where A is a nonlinear monotone operator, g is a nonlinear nonmonotone perturbation
in Banach spaces, 8x(ti) ≡ x(t+i ) − x(t−i ) ≡ x(t+i ) − x(ti), i = 1; 2; : : : ; n; and Fi’s are
some operators. The impulsive condition (1c) represents the jump in the state x at time
ti; with Fi determining the size of the jump at time ti (for deBnition of the operators
A, g, and Fi will be given in Section 2). Interesting examples of impulsive systems
are found in the dynamic of populations subject to abrupt changes caused by diseases
or harvesting [7].
For impulsive evolution equations with an unbounded linear operator A of the form

ẋ(t) + A(t; x(t)) = g(t; x(t)); t ¿ 0; t �= ti

x(0) = x0

8x(ti) = Fi(x(ti)); i = 1; 2; : : : ; n

have been considered in several papers by Ahmed [1], Liu [6], and Rogovchenko [7].
The questions of existence and regularity of solutions have been discussed. Ahmed
applied these results to study Bolza and Lagrange problem of optimal control. However,
these questions are still open when the operator A is nonlinear.
The purpose of this paper is to study the existence of classical solutions of the

strongly nonlinear impulsive evolution equations (1a)–(1c) on (0; T ) and we will apply
these results to study Lagrange optimal control problem.

2. System description

The mathematical setting of our problem is the following. Let H be a real separable
Hilbert space, V be a dense subspace of H having structure of a reGexive Banach
space, with the continuous embedding V ,→ H ,→ V ∗; where V ∗ is the topological dual
space of V . The system model considered here is based on this evolution triple. Let
the embedding V ,→ H be compact.
Let 〈x; y〉 denote the paring of an element x ∈V ∗ and an element y ∈V: If x; y ∈H;

then 〈x; y〉 = (x; y), where (x; y) is the scalar product on H . The norm in any Banach
space X will be denoted by ‖ · ‖X .

Let 06 s¡T ¡ + ∞; Is ≡ (s; T ); I0 ≡ I ≡ (0; T ), and let p; q¿ 1, be such that
1=p + 1=q = 1 where 26p¡ + ∞. For p; q satisfying the preceding conditions, it
follows from reGexivity of V that both Lp(I; V ) and Lq(I; V ∗) are reGexive Banach
spaces and the paring between Lp(I; V ) and Lq(I; V ∗) denoted by �;�.
DeBne

Wpq(Is) =Wpq(s; T ) = {x : x ∈Lp(Is; V ); ẋ ∈Lq(Is; V ∗)};

‖x‖Wpq(Is) = ‖x‖Lp(Is;V ) + ‖ẋ‖Lq(Is;V∗)

and

Wpq(s; u) = {x : x ∈Lp((s; u); V ); ẋ ∈Lq((s; u); V ∗)}; 06 s¡ t ¡u¡T;
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where ẋ denotes the derivative of x in the generalized sense. Furnished with the norm
‖ · ‖Wpq(Is), the space (Wpq(Is); ‖ · ‖Wpq(Is)) becomes a Banach space which is clearly
reGexive and separable. Moreover, the embedding Wpq(Is) ,→ C( II s; H) is continuous.
If the embedding V ,→ H is compact, the embedding Wpq(Is) ,→ Lp(Is; H) is also
compact (see Problem 23.13(b) of [9]). Consider the following impulsive evolution
equation:

ẋ(t) + A(t; x(t)) = g(t; x(t)); t ∈ I\D; (2a)

x(0) = x0 ∈H; (2b)

8x(ti) = Fi(x(ti)); i = 1; 2; : : : ; n and 0¡t1 ¡t2 ¡ · · ·¡tn ¡T; (2c)

where the operators A : I × V → V ∗, g : I × H → V ∗ and Fi :H → H . For a partition
0¡t1 ¡t2 ¡ · · ·¡tn ¡T on (0; T ), we deBne the set PWpq(0; T )= {x ∈Wpq(ti; ti+1),
i=0; 1; 2; : : : ; n where t0=0, tn+1=T}. For each x ∈PWpq(0; T ), we deBne ‖x‖PWpq(0;T ) =:∑n

i=0 ‖x‖Wpq(ti ;ti+1). As a result, the space (PWpq(0; T ); ‖ · ‖PWpq(0;T )) becomes a Banach
space. Let PC([0; T ]; H)= {x : x is a map from [0; T ] into H such that x is continuous
at every point t �= ti; left continuous at t = ti, and possesses right-hand limit x(t+i ) for
i = 1; 2; : : : ; n}. Equipped with the supremum norm topology, it is a Banach space.
By a (classical) solution x of problem (2), we mean a function x ∈PWpq(0; T ) ∩

PC([0; T ]; H) such that x(0)=x0 and 8x(ti)=Fi(x(ti)) for i=1; 2; : : : ; n which satisBes

〈ẋ(t); v〉 + 〈A(t; x); v〉 = 〈g(t; x); v〉

for all v∈V and �-a.e. on I , where � is the Lebesgue measure on I .
We need the following hypothesis on the data of problem (2).

(A) A : I × V → V ∗ is an operator such that
(1) t �→ A(t; x) is weakly measurable, i.e., the functions t �→ 〈A(t; x); v〉 is �-

measurable on I , for all x; v∈V:
(2) For each t ∈ I , the operator A(t) :V → V ∗ is uniformly monotone and hemi-

continuous, that is, there is a constant c1¿ 0 such that

〈A(t; x1) − A(t; x2); x1 − x2〉¿ c1‖x1 − x2‖p
V

for all x1; x2 ∈V; and the map s �→ 〈A(t; x+ sz); y〉 is continuous on [0; 1] for
all x; y; z ∈V .

(3) Growth condition: There exists a constant c2 ¿ 0 and a nonnegative function
a1(·)∈Lq(I) such that

‖A(t; x)‖V∗ 6 a1(t) + c2‖x‖p−1
V

for all x ∈V , for all t ∈ I .
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(4) Coerciveness: There exists a constant c3 ¿ 0 and c4¿ 0 such that

〈A(t; x); x〉¿ c3‖x‖p
V − c4 for all x ∈V; for all t ∈ I:

Without loss of generality, we can assume that A(t; 0) = 0 for all t ∈ II .
(G) g : I × H → V ∗ is an operator such that

(1) t �→ g(t; x) is weakly measurable.
(2) g(t; x) is H Nolder continuous with respect to x with exponent 0¡#6 1 in H

and uniformly in t. That is, there is a constant L such that

‖g(t; x1) − g(t; x2)‖V∗ 6L‖x1 − x2‖#
H

for all x1; x2 ∈H and for all t ∈ I . This assumption implies the map x �→ g(t; x)
is continuous.

(3) There exists a nonnegative function h1(·)∈Lq(I) and a constant c5 ¿ 0 such
that

‖g(t; x)‖V∗ 6 h1(t) + c5‖x‖k−1
H

for all x ∈V , t ∈ I , where 16 k ¡p is constant.
(F) Fi :H → H is locally Lipschitz continuous on H , i.e., for any &¿ 0, there exists

a constant Li(&) such that

‖Fi(x1) − Fi(x2)‖H 6Li(&)‖x1 − x2‖H

for all ‖x1‖H ; ‖x2‖H ¡& (i = 1; 2; : : : ; n).

It is sometimes convenient to rewrite system (2) into an operator equation. To do
this, we set X = Lp(I; V ) and hence X ∗ = Lq(I; V ∗). Moreover, we set{

A(x)(t) = A(t; x(t));

G(x)(t) = g(t; x(t))
(3)

for all x ∈X and for all t ∈ (0; T ). Then the original problem (2) is equivalent to the
following operator equation (see [9, Theorem 30.A]):


ẋ + Ax = G(x);

x(0) = x0 ∈H;

8x(ti) = Fi(x(ti)); i = 1; 2; : : : ; n and 0¡t1 ¡t2 ¡ · · ·¡tn ¡T:

(4)

Remark. It follows from Theorem 30.A of Zeidler [9] that Eq. (3) deBnes an operator
A :X → X ∗ such that A is uniformly monotone, hemicontinuous, coercive, and bounded.
Moreover, by using hypothesis (G)(3) and using the same technique as in Theorem
30.A, one can show that the operator G :Lp(I; H) → X ∗ is also bounded and satisBes

‖G(u)‖X ∗ 6M1 +M2‖u‖k−1
Lp(I;H)

for all u∈Lp(I; H).
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3. Preliminaries

In order to get a solution of Eq. (2) in the space PWpq(I), we Brstly show that the
following Cauchy problem{

ẋ(t) + A(t; x(t)) = g(t; x(t)); 06 s¡ t ¡T;

x(s) = xs ∈H
(5)

has a solution in the space Wpq(s; T ). To prove this we need some lemmas.

Lemma 1. Under assumption (G), the operator G :Lp(I; H) → Lq(I; V ∗) is H2older
continuous with exponent #; 0¡#6 1, and G(xn) → G(x) in Lq(I; V ∗) whenever
xn

w→x in Wpq(I).

Proof. The proof is the same as in Lemma 1 of [8, p .101].

Lemma 2. Let Xs be the set of solution of Eq. (5) where 06 s¡T . Then Xs is
bounded in Wpq(I), i.e., ‖x‖Wpq(I)6M and, moreover, ‖x‖C([ II ;H ])6M , ∀x ∈Xs.

Proof. Let x ∈Xs, then x can be considered as an element in Wpq(I) by deBning
x(t) ≡ 0 on (0; s). Let X = Lp(I; V ) and X ∗ = Lq(I; V ∗), it follows from Eq. (5) that

〈〈ẋ; x〉〉 + 〈〈A(x); x〉〉 = 〈〈G(x); x〉〉:
Since A is coercive (hypothesis (A)) then

c3‖x‖p
X − c46 〈〈G(x); x〉〉 − 〈〈ẋ; x〉〉:

By using integration by part, H Nolder inequality, and hypothesis (G), we get

c3‖x‖p
X 6 c4 + 〈〈G(x); x〉〉 − 1

2
[‖x(T )‖2H − ‖x(0)‖2H ]

6 c4 +
(∫ T

0
‖g(t; x)‖q

V∗ dt
)1=q (∫ T

0
‖x(t)‖p

V

)1=p

− 1
2
[‖x(T )‖2H − #1]

6 c4 +
(∫ T

0
(h1(t) + c5‖x(t)‖k−1

H )q dt
)1=q

(‖x‖X ) +
#1
2

for some constants #1¿ 0. After, some simpliBcation, we Bnally get

c3‖x‖p
X 6 # + *‖x‖X + +‖x‖k

X (6)

for some constants #; *; +¿ 0. Multiply both sides of (6) by ‖x‖1−p
X and using the fact

16 k ¡p and p¿ 2, we can easily see that

‖x‖X 6M1 (7)
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for some constant M1 ¿ 0 and for all x ∈Xs. Next, we shall show that

‖ẋ‖X ∗ 6M2 for all x ∈Xs:

Let x ∈Xs and ,∈X then it follows from Eq. (5) that

〈〈ẋ; ,〉〉 + 〈〈A(x); ,〉〉 = 〈〈G(x); ,〉〉:
Applying H Nolder inequality, we get

|ẋ(,)|6 ‖A(x)‖X ∗‖,‖X + ‖G(x)‖X ∗‖,‖X :

Referring to the Remark at the end of Section 2, we know that the operators A and G
are bounded. Thus,

|ẋ(,)|6 (# + *‖x‖p−1
X + ++ -‖x‖k−1

Lp(I;H))‖,‖X (8)

for some positive constants #; *; +, and -. Since the embedding Lp(I; V ) ,→ Lp(I; H) is
continuous then Eqs. (7) and (8) imply

‖ẋ‖X ∗ 6M2 (9)

for some positive constant M2.
Hence, by Eqs. (7) and (9), we get

‖x‖Wpq(I) = ‖x‖X + ‖ẋ‖X ∗ 6M1 +M2 =M3:

Hence Xs is bounded in Wpq(I).
Finally, we note that the embedding Wpq(I) ,→ C[ II ; H ] is continuous; then

‖x‖C[ II ;H ]6 .‖x‖Wpq(I)

and hence

‖x‖C[ II ;H ]6M4

for some positive constants .;M4 and for all x ∈Xs. Choosing M = max{M3; M4}
the assertion follows.

Theorem A. Under assumptions (A) and (G), the Cauchy problem (5) has a solution
x ∈Wpq(s; T ).

Proof. Let Is=(s; T ). DeBne a mapping H :Lp(Is; H)×[0; 1] → Lp(Is; H) by H (u; /)=w
where w is the solution of the following problem:{

ẋ + A(x) = /G(u); 06 s¡ t ¡T;

x(s) = /xs ∈H:
(10)

Here the operators A :Lp(Is; V ) → Lq(Is; V ∗) and G :Lp(Is; H) → Lq(Is; V ∗) are
assumed to be satisBed hypotheses (A) and (G) on the interval (s; T ), respectively.
It follows from Theorem 30.A of Zeidler [9], for each u∈Lp(Is; H); problem (10)
has a unique solution w ∈Wpq(Is): Hence H is well deBned. Similar to the proof of
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Theorem 3 in [8], one can show the map H :Lp(Is; H)×[0; 1] → Lp(Is; H) is continuous
and compact.
We try to use Leray–Schauder Bxed point theorem. Hence, Brstly, we must show

that the set

{u∈Lp(Is; H) : u = H (u; /) for some 06 /6 1}
is bounded in Lp(Is; H). Let u∈Lp(Is; H) and u = H (u; /), for some / ∈ [0; 1]. Then
u∈Wpq(Is) and satisBes the problem{

u̇ + A(u) = /G(u);

u(s) = /xs:
(11)

By Lemma 2, we get ‖u‖Wpq(I)6M . Moreover, since the embedding Wpq(I) ,→
Lp(I; H) is compact, then

‖u‖Lp(I;H)6B and hence ‖u‖Lp(Is;H)6B

for some positive constant B.
Secondly, we shall show that

H (u; 0) = 0 for all u∈Lp(Is; H):

For any u∈Lp(Is; H); set H (u; 0) = w where w satisBes{
ẇ + A(w) = 0;

w(s) = 0∈H:
(12)

By uniqueness of the solution of Eq. (12), we get from A(0) = 0 (see hypothesis
(A)(4)) that

w = 0 in Wpq(Is) ⊂ Wpq(I):

Since the embedding Wpq(I) ,→ Lp(I; H) is continuous, we get

w = 0 in Lp(I; H) and hence w = 0 in Lp(Is; H):

That is H (u; 0) = 0 for all u∈Lp(Is; H).
Finally, we can invoke the Leray–Schauder Bxed point theorem (see [4, p. 222]) in

the space Lp(Is; H), there is one Bxed point x ∈Lp(Is; H) such that

x = H (x; 1)

and x ∈Wpq(Is) ∩ Lp(Is; H). That is x is a solution of problem (10). Since problem
(10) is equivalent to problem (5), hence there exists a solution for nonlinear evolution
equation (5).

4. Impulsive evolution equation

In this section, we would like to investigate the classical solutions of Eq. (2).
By virtue of Theorem A, we have the following theorem.
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Theorem B. Under assumptions (A), (G) and (F), system (2) has a solution.

Proof. Let 0¡t1 ¡t2 ¡ · · ·¡tn ¡T be a partition of (0; T ).
Case 1: Find a solution of Eq. (2) on the interval (0; t1). By Theorem A, Eqs. (2a)

and (2b) have a solution x ∈Wpq(0; T ): Let x1 be the restriction of x on the interval
(0; t1). It is obvious that x1 ∈Wpq(0; t1) and x1(0) = x0: Hence, x1 is a solution of
Eq. (2) on the interval (0; t1).
Case 2: Find a solution of Eq. (2) on the interval (0; t2). Since x1 ∈Wpq(0; t1) and

Wpq(0; t1) ,→ C([0; t1]; H). Then the left-hand limit x1(t−1 ) exists in H and we deBne
x1(t1) = x1(t−1 )∈H . Moreover, deBne

x1(t+1 ) = x1(t1) + F1(x1(t1)):

By Hypothesis (F), we see that x1(t+1 )∈H . Now, consider the following equation:{
ẏ(t) + A(t; y(t)) = g(t; y(t)); t ∈ (t1; T );

y(t1) = x1(t+1 ):
(13)

Again, Theorem A implies that system (13) has a solution y ∈Wpq(t1; T ). Let x2 be
the restriction of y onto the interval (t1; t2) then x2 ∈Wpq(t1; t2) and x2(t1) = y(t1) =
x1(t1) + F1(x1(t1)). Hence, x2 is the solution of Eq. (2) on the interval (t1; t2).
Now deBne a function x on (0; t2) as follows:

x(t) =

{
x1(t); t ∈ (0; t1];

x2(t); t ∈ (t1; t2):

We see that x ∈PWpq(0; t2) ∩ PC([0; t2]; H) and x satisBes Eq. (2a). Moreover, since
x(0)=x1(0)=x0 and 8x(t1) ≡ x(t+1 )−x(t−1 )=x1(t1)+F1(x1(t1))−x1(t1)=F1(x1(t1))=
F1(x(t1)). Thus, x is the solution of Eq. (2) on the interval (0; t2). Continue this process
through the interval (0; T ). We get that system (2) has a solution x ∈PWpq(0; T ) ∩
PC([0; T ]; H).

5. Admissible trajectories and optimal control

In this section, we study the existence of optimal solutions for a Langrange optimal
control problem which is governed by a class of impulsive strongly nonlinear evolution
equation.
We model the control space by a separable reGexive Banach space E. By Pf(E)

(Pfc(E)) we denote a class of nonempty closed (closed and convex) subsets of E,
respectively. Let I = (0; T ). Recall (see, for example, [5]) that a multifunction 3 : I →
Pf(E) is said to be graph measurable if

Gr3 =: {(t; v)∈ I × E : v∈3(t)} ∈B(I) × B(E);

where B(I) and B(E) are the Borel /-Beld of I and E, respectively. For 26 q¡∞,
we deBne the admissible space Uad to be the set of all Lq(I; E)-selections of 3(·), i.e.,

Uad = {u∈Lq(I; E) : u(t)∈3(t)�-a:e: on I};
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where � is the Lebesgue measure on I . Note that the admissible space Uad �= ,
if 3 : I → Pf(E) is graph measurable and the map t �→ |3(t)| =: sup{‖v‖E : v∈3(t)} ∈
Lq(I) (see [5, Lemma 3.2, p. 175]).
The Lagrange optimal control problem (P) under consideration is the following:

inf J (x; u) =
∫ T

0
L(t; x(t); u(t)) dt = m; (14a)

ẋ(t) + A(t; x(t)) = g(t; x(t)) + B(t)u(t); (14b)

x(0) = x0 ∈H; (14c)

8x(ti) = Fi(x(ti)); i = 1; 2; : : : ; n (0¡t1 ¡t2 ¡ · · ·¡tn ¡T ): (14d)

Here, we require the operators A; g and Fi’s of Eq. (14) satisfy hypotheses (A), (G)
and (F), respectively, as in Section 2. We now give some new hypotheses for the
remaining data.

(U) 3 : I → Pfc(E) is a measurable multifunction such that the map

t �→ |3(t)| = sup{‖v‖E : v∈3(t)}
belongs to Lq(I).

(B) B∈L∞(I;L(E;H)), where L(E;H) is the space of all bounded linear operators
from E into H .

(L) L : I × V × E → R ∪ {+∞} is an integrand such that
(1) (t; x; u) �→ L(t; x; u) is measurable;
(2) (x; u) �→ L(t; x; u) is sequentially lower semicontinuous;
(3) u �→ L(t; x; u) is convex;
(4) there exists a nonnegative bounded measurable function ,(·)∈L1(0; T ) and

a nonnegative constant c6 such that

L(t; x; u)¿,(t) − c6(‖x‖V + ‖u‖E)

for all most t ∈ I , all x ∈V; and all u∈E.

By using the same notation as in Eq. (4), we can rewrite the control system
(14b)–(14d) into an equivalent operator equation as follows:

ẋ + A(x) = G(x) + B(u); 0¡t ¡T; (15a)

x(0) = x0 ∈H; (15b)

8x(ti) = Fi(x(ti)); i = 1; 2; : : : ; n (0¡t1 ¡t2 ¡ · · ·¡tn ¡T ); (15c)

where the operators A;G, and Fi(i = 1; 2; : : : ; n) are the same as in Eq. (4). We set
B(u)(t) = B(t)u(t). This relation deBnes an operator B :Lq(I; E) → Lq(I; H) which is
linear and continuous.
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It follows immediately from hypothesis (U) that the admissible space Uad �= , and
Uad is a bounded closed convex subset of Lq(I; E). Any solution x of Eqs. (15a)–(15c)
is referred to as a state trajectory of the evolution system corresponding to u∈Uad and
the pair (x; u) is called an admissible pair. Let

Aad = {(x; u)∈PWpq(I) × Uad : (x; u) is an admissible pair};

Xad = {x ∈PWpq(I) :∃u∈Uad such that (x; u)∈Aad}:
By using the preceding notation, our optimal control problem (14a)–(14d) can be
restated as follows.

Problem (P). Find (x∗; u∗)∈Aad such that

J (x∗; u∗) = min
(x;u)∈Aad

J (x; u) = m:

If such a pair (x∗; u∗) exists, then (x∗; u∗) is called an optimal control pair.

Theorem C. Assume that hypotheses (A), (G), (B) and (U) hold. Then the admissible
set Aad �= , and Xad is bounded in PWpq(I) ∩ PC( II ; H).

Proof. Let u∈Uad, deBne

gu(t; x) = g(t; x) + B(t)u(t):

Since B∈L∞(I;L(E;H)), then one can see that gu : I × H → V ∗ satisBes hypothesis
(G). Hence, by virtue of Theorem B, Eq. (15) has a solution. Next, we shall show
that Xad is bounded in PWpq(I) by considering in each case separately. Let x ∈Xad.
Case 1: t ∈ (0; t1). By Lemma 2, ‖x‖ is bounded in Wpq(0; t1). Hence,

‖x‖Wpq(0;t1)6M1 and ‖x‖C([0; t1];H)6M1:

Case 2: t ∈ (t1; t2). Since ‖x(0)‖H and ‖x(t1)‖H 6M1 then, by hypothesis (F), we have

‖x(t+1 )‖H 6 ‖x(t1)‖H + ‖F1(x(t1))‖H

6M1[1 + 2L1(M1)] + ‖F1(x(0))‖H ;

where L(M1) is a real constant depending on M1: Hence, ‖x(t+1 )‖H is bounded.

Using Lemma 2 again, we have

‖x‖Wpq(t1 ;t2)6M2; and ‖x‖C([t1 ;t2];H)6M2:

After a Bnite step, there exists M ¿ 0 such that

‖x‖PWpq(0;T )6M and ‖x‖C( II ;H)6M:

Hence, Xad is bounded in PWpq(0; T ) ∩ PC( II ; H).
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6. Existence of optimal controls

Theorem D. Assume hypotheses (A), (G), (F), (U), (B), and (L) hold. There exists
an admissible control pair (x∗; u∗) such that J (x∗; u∗) = m.

Proof. By Theorem C, we get Aad �= ,. If m=+∞, then every control is admissible.
Now suppose that m¡+∞. Choose a minimizing sequence {(xk ; uk)} ⊂ Aad such that

lim
k→+∞

J (xk ; uk) = m:

Since, for each k, (xk ; uk)∈Aad then (xk ; uk) must satisfy the operator equation

ẋk + A(xk) = G(xk) + B(uk); 0¡t ¡T; (16a)

xk(0) = x0 ∈H; (16b)

8xk(ti) = Fi(xk(ti)); i = 1; 2; : : : ; n (0¡t1 ¡t2 ¡ · · ·¡tn ¡T ) (16c)

(k = 1; 2; 3; : : :). Since Uad is bounded, the sequence {uk} is bounded in the reGexive
Banach space Lq(I; E). By passing to a subsequence if necessary, we may assume that

uk
w→u∗ in Lq(I; E) as k → ∞: (17)

Moreover, since Uad is a closed convex subset of Lq(I; E): So, by Mazur’s theorem
(see [2, p. 7]), Uad is weakly closed and hence u∗ ∈Uad.
Next, we shall Bnd x∗ ∈Xad such that (x∗; u∗)∈Aad. We shall do this by considering

in each case separately.
Case 1: Find x∗ on the interval (0; t1).

For notational convenience, we let I1 = (0; t1), X1 = Lp(I1; V ), and X ∗
1 = Lq(I1; V ∗).

We note that X1=Lp(I1; V ) can be considered as a closed subspace of X =Lp(I; V ). Let
x1k and u1k be the restriction of the functions xk and uk on the interval I1, respectively
(k = 1; 2; 3; : : :). Since {x1k} is the sequence of solution of Eq. (16) on the interval
(0; t1), then by Theorem C, {x1k} is bounded in Wpq(I1). By reGexivity of Wpq(I1),
there is a subsequence of {x1k}, again denoted by {x1k}, such that

x1k
w→x1 in Wpq(I1) as k → ∞: (18)

Since the embedding Wpq(I1) ,→ X1 is continuous, the embedding Wpq(I1) ,→ Lp(I1; H)
is compact, and the operator A :X1 → X ∗

1 maps bounded sets to bounded sets, it follows
from (18) that there is a subsequence of {x1k}, again denoted by {x1k}, such that

x1k
w→x1 in X1; ẋ1k

w→ẋ1 in X ∗
1 ;

x1k
s→x1 in Lp(I1; H); and Ax1k

w→z in X ∗
1

as k → ∞. It follows from Lemma 1 that

G(x1k) → G(x1) in X ∗
1 :
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Hence,

〈〈G(x1k); x
1
k〉〉X1 → 〈〈G(x1); x1〉〉X1 as k → ∞: (19)

Moreover, since B :Lq(I1; E) → Lq(I1; H) is linear and continuous. Hence, we get from
Eq. (17) that

Bu1k
w→Bu1∗ in Lq(I1; H) as k → ∞:

Since x1k
s→x1 in Lp(I1; H) (here, we identify H = H∗). Then

〈〈Bu1k ; x
1
k〉〉X1 → 〈〈Bu1∗; x

1〉〉X1 as k → ∞: (20)

We note from Eq. (16a) that

〈〈A(x1k); x1k〉〉X1 = 〈〈A(x1k); x1〉〉X1 − 〈〈ẋ1k ; x1k − x1〉〉X1

+ 〈〈G(x1k); x
1
k − x1〉〉X1 + 〈〈Bu1k ; x

1
k − x1〉〉X1 : (21)

From the integration by part formula, we have

〈〈ẋ1k ; x1k − x1〉〉X1 = 〈〈ẋ1; x1k − x1〉〉X1

+
1
2
(‖x1k (t1) − x1(t1)‖2H − ‖x1k (0) − x1(0)‖2H ): (22)

Substituting (22) into (21) and note that the second term on the right-hand side of
(22) is always nonnegative, then we get

〈〈A(x1k); x1k〉〉X1 6 〈〈A(x1k); x1〉〉X 1 − 〈〈ẋ1; x1k − x1〉〉X1 + ‖x1k (0) − x1(0)‖2H
+ 〈〈G(x1k); x

1
k − x1〉〉X1 + 〈〈Bu1k ; x

1
k − x1〉〉X1 :

By Eq. (18), x1k
w→x1 in Wpq(0; t1) and hence x1k

w→x1 in C([0; t1]; H). This means that
x1k (0)

w→x1(0) in H . Referring to the initial condition (16a), we have x1k (0) = x0 ∈H
(k = 1; 2; 3; : : :): Hence, by the uniqueness of weakly limit, we get x1k (0) = x1(0) = x0
for all k. Therefore

lim
k→∞

〈〈A(x1k); x1k〉〉X1 6 〈〈z; x1〉〉X1 : (23)

Since A :X1 → X ∗
1 is monotone and hemicontinuous on the reGexive Banach space

X1 = Lp(I1; V ) then by Example 27.2(a) [9, p. 584], we have

z = Ax1:

That is

A(x1k)
w→A(x1) in X ∗

1 :

For any ,∈X1; we have

〈〈ẋ1k ; ,〉〉X1 + 〈〈A(x1k); ,〉〉X1 = 〈〈G(x1k); ,〉〉X1 + 〈〈B(u1k); ,〉〉X1 :

Letting k → ∞, we have

〈〈ẋ1; ,〉〉X1 + 〈〈A(x1); ,〉〉X1 = 〈〈G(x1); ,〉〉X1 + 〈〈B(u1); ,〉〉X1 :
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Hence, x1 is the solution of the following system:

ẋ1 + A(x1) = G(x1) + B(u1); 0¡t ¡ t1;

x1(0) = x0: (24)

Moreover, one can show that x1k (t1) → x1(t1) in H as k → ∞. To see this we note
that

〈〈ẋ1k − ẋ1; x1k − x1〉〉X1 =−〈〈A(x1k − x1); x1k − x1〉〉X1

+ 〈〈G(x1k)−G(x1); x1k−x1〉〉X1+〈〈B(u1k)−B(u1); x1k−x1〉〉X1 :

By using integration by parts and noting that the operator A is monotone, we have
1
2
(‖x1k (t1) − x1(t1)‖2H − ‖x1k (0) − x1(0)‖2H )6 〈〈G(x1k) − G(x1); x1k − x1〉〉X1

+ 〈〈B(u1k) − B(u1); x1k − x1〉〉X1 :

Since x1k
w→x1 in X1, then the right-hand side the above inequality tend to 0 as k → ∞.

Thus, we have just proved

x1k (t1) → x1(t1) in H as k → ∞: (25)

This proves that x1 satisBes Eqs. (15a)–(15c) on the interval (0; t1) and x1 is the
required x∗ on (0; t1).
Case 2: Find x∗ on the interval (t1; t2).
The proof is similar to case 1. Here, let I2=(t1; t2); X2=Lp(I2; V ) and X ∗

2 =Lq(I2; V ∗).
Let x2k and u2k be the restriction of the functions xk and uk on the interval I2, respectively
(k=1; ; 2; 3; : : :): It follows from Eq. (16) that the sequence (x2k ; u

2
k) satisBes the operator

equation

ẋ2k − A(x2k) = G(x2k) + B(u2k); tt ¡ t ¡ t2; (26a)

x2k (t
+
1 ) = x2k (t

−
1 ) + F1(x2k (t1)); (26b)

where x2k (t
−
1 ) = x2k (t1) = x1k (t1) (k = 1; 2; 3; : : :): By using the same proof as in case 1,

we get that

x2k
w→x2 in Wpq(t1; t2) and x2k

w→x2 in C([t1; t2]; H);

which implies that x2k (t
+
1 ) → x2(t+1 ) in H as k → ∞ and moreover, x2 satisBes the

operator equation

ẋ2 + A(x2) = G(x2) + B(u2); tt ¡ t ¡ t2:

We are left to verify the initial condition at t1. To see this, we note that the expression
on the right-hand side of Eq. (26b) converges to x1(t1) + F1(x1(t1)) as k → ∞ (see
Eq. (25) and hypothesis (F)). On the other hand, the left-hand side x2k (t

+
1 ) → x2(t+1 )

in H as k → ∞. Hence, x2(t+1 )=x1(t1)+F1(x1(t1)) ≡ x2(t−1 )+F1(x2(t2)). This proves
that x2 satisBes Eqs. (15a)–(15c) on the interval (t1; t2) and x2 is the required x∗
on (t1; t2).
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Continue this process, we can Bnd x∗ satisBes (15a)–(15c) on the interval (0; T ).
This proves that (x∗; u∗)∈Aad.

Finally, we shall show that (x∗; u∗) is an optimal pair. Let (xk ; uk) be the minimizing
sequence as above, i.e.,

xj
k

w→xj
∗ in Wpq(Ij) and uk

w→u∗ in Lq(I; E);

where xj
k and xj

∗ are the restriction functions of xk and x∗ onto the interval Ij =:
(tj−1; tj) (j = 1; 2; : : : ; n), respectively, and limk→∞J (xk ; uk) =m. Since the embedding
Wpq(Ij) ,→ Lp(Ij; H) is compact then, by passing to a subsequence if necessary, xj

k
s→xj

∗
in Lp(Ij; H) as k → ∞. By piecing them together from j = 1 to n and taking into
account the impact of jumps, one can conclude that

xk
s→x∗ in Lp(I; H) as k → ∞:

Since the embedding Lp(I; H) ,→ L1(I; H) and Lq(I; E) ,→ L1(I; E) are continuous, then

xk
s→x∗ in L1(I; H) and uk

w→u in L1(I; E)

as k → ∞.
It follows from hypothesis (L) and Theorem 2.1 of Balder [3] that

J (x∗; u∗) =
∫ T

0
L(t; x∗(t); u∗(t)) dt6

∫ T

0
lim

k→∞
L(t; xk(t); uk(t))6m:

Hence (x∗; u∗) is an optimal control pair.

7. Example

Let I = (0; T ) and 9 ⊂ RN be a bounded domain with C1 boundary @9. For p¿ 2
and <¿ 0, we consider the following optimal control problem:
(P′)

J (x; u)=
1
2

∫ T

0

∫
9

|x(t; z)−y0(z)|2 dz dt+
<
2

∫ T

0

∫
9

|u(t; z)|2 dz dt → inf =m;

such that


@
@t

x(t; z) −
N∑

i=1

Di(|Dix(t; z)|p−2Dix(t; z));

=
N∑

i=1

Difi(t; z; x(t; z)) + f0(t; z; x(t; z)) + b(t)u(t; z) a:e: on I × 9;

x|I×@9 = 0; x(0; z) = x0(z); |u(t; z)|6 r(t; z) a:e: on 9;

8x(ti; z) = Fi(x(ti; z)); i = 1; 2; : : : ; n;

where (0¡ti ¡ ti ¡ · · ·¡tn ¡T ):

(27)



P. Sattayatham /Nonlinear Analysis 57 (2004) 1005–1020 1019

Here the operator Di = @=@xi (i = 1; 2; : : : ; N ). We need the following hypotheses
on the data of (27).

(G′) fi : I × 9 × R → R (i = 0; 1; : : : ; N ) are functions such that
(1) for every x ∈R, (t; z) �→ fi(t; z; x) is measurable;
(2) for all (t; z)∈ I × 9 and for all x1; x2 ∈R, we have fi(t; z; x) is H Nolder con-

tinuous with respect to x and exponent 0¡#6 1; that is, there is a constant
Li ¿ 0 such that

|fi(t; z; x1) − fi(t; z; x2)|6Li|x1 − x2|#;
(3) for almost all (t; z; x)∈ I × 9 × R, we have

|fi(t; z; x)|6 a(t; z) + +1|x|k−1

with 16 k ¡p, a(·; ·)∈Lq(I × 9), and +1 ¿ 0.
(F′) Fi :L2(9) → L2(9) (i = 1; 2; : : : ; n) are operators such that for any &¿ 0 there

exists a constant Li(&)¿ 0 such that

‖Fi(x1) − Fi(x2)‖L2(9)6Li(&)‖x1 − x2‖L2(9)

for all ‖x1‖L2(9); ‖x2‖L2(9) ¡& (i = 1; 2; : : : ; n).
(B′) b(·)∈L∞(I).
(R′) r(·; ·)∈Lq(I × 9).

In order to study the existence for optimal control problem (P′), we Brstly consider
the existence of solutions for the impulsive quasi-linear control systems.

Theorem E. If hypotheses (G′) and (F′) hold and x0(·)∈L2(9), u(·; ·)∈L2(I×9), then
problem (27) has a solution x ∈Lp(I; PW 1;p

0 (9)) ∩ PC(I; L2(9)) such that @x=@t ∈Lq

(I; W−1; q(9)).

Proof. In this problem, the evolution triple is V = W 1;p
0 (9), H = L2(9), and V ∗ =

W−1; q(9). All embedding are compact (Sobolev embedding theorem). DeBne an
operator A : I × V → V ∗ by

〈A(t; x); y〉V =
∫

9

N∑
i=1

|Dix)|p−2(Dix)(Diy) dz: (28)

One can easily check that A(t; x) satisBes hypothesis (A) in Section 2. The uniform
monotonicity of A(t; ·) is a consequence of the result of Zeidler [9, p. 783].

Next, by using the time-varying Dirichlet form f : I × H × V → R by

f(t; x; y) =
∫

9

N∑
i=1

fi(t; z; x)Diy dz +
∫

9
f0(t; z; x)y dz:

Then, for each t ∈ I and x ∈H; the map y �→ f(t; x; y) is a continuous linear form on
V . Hence, there exists an operator g : I × H → V ∗ such that

f(t; x; y) = 〈g(t; x); y〉V : (29)
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By using hypothesis (G′), we obtain that g satisBes hypothesis (G) of Section 2. Using
the operator A and g as deBned in Eqs. (28) and (29), one can rewrite Eqs. (27) in
an abstract form as in Eq. (15). So apply Theorem C, problem (27) has a solution.
Finally, consider the optimal control problem (P′). Let E = Lq(9), V = W 1;p

0 and
L : I × V × E → R with

L(t; x; u) =
1
2

∫
9

|x(t; z) − y0(t; z)|2 dz +
<
2

∫
9

|u(t; z)|2 dz;

where u∈Lq(I; Lq(9)), r : I × 9 → R+ with r ∈Lq(I × 9), and y0(·)∈L2(9).
Let 3 : I → Pfc(E) be deBned by

3(t) = {v∈Lq(9) : ‖v‖Lq(9)6 ‖r(t; ·)‖Lq(9)}:
Then, it is easy to see that, with these deBnitions, problem (P′) satisBes all the
hypothesis of Theorem D. Hence (P′) has at least one optimal pair.

Acknowledgements

I would like to thank Prof. X.L. Xiang and the referees for their valuable suggestions
and comments.

References

[1] N.U. Ahmed, Measure solution for impulsive systems in Banach spaces and their control, Dyn. Continuous
Discrete Impulsive Syst. 6 (1999) 519–535.

[2] N.U. Ahmed, K.L. Teo, Optimal Control of Distributed Parameter Systems, North-Holland, New York,
1981.

[3] E. Balder, Necessary and suTcient conditions for L1 strong-weak lower semicontinuity of integral
functionals, J. Nonlinear Anal. 11 (1987) 1399–1404.

[4] D. Gilbarg, N.S. Trudinger, Elliptic Partial Di3erential Equations of Second Order, Springer, New York,
1980.

[5] S. Hu, N.S. Papageorgiou, Handbook of Multivalued Analysis, Vol. I, Kluwer Academic Publishers,
Boston, London, 1997.

[6] J.H. Liu, Nonlinear impulsive evolution equations, Dyn. Continuous Discrete Impulsive Syst. 6 (1999)
77–85.

[7] Y.V. Rogovchenko, Impulsive evolution systems: main result and new trends, Dyn. Continuous Discrete
Impulsive Syst. 3 (1997) 77–88.

[8] P. Sattayatham, S. Tangmanee, Wei Wei, On periodic solution of nonlinear evolution equation, JMAA
276 (2002) 98–108.

[9] E. Zeidler, Nonlinear Functional Analysis and Its Applications, Vol. II, Springer, New York, 1990.


	Strongly nonlinear impulsive evolution equations and optimal control
	Introduction
	System description
	Preliminaries
	Impulsive evolution equation
	Admissible trajectories and optimal control
	Existence of optimal controls
	Example
	Acknowledgements
	References


