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Exact invariant solutions of the spatially uniform Boltzmann equations, the so-called Boby
Krook-Wu modes, are presented in the explicit form for an arbitraryN-species gas mixture. The
corresponding necessary and sufficient conditions imposed on the molecular parameters are form
The completeness of the results obtained is supported by the rigorous group analysis of the Boltz
equations. [S0031-9007(98)06421-7]
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About two decades ago Bobylev [1] and, independentl
Krook and Wu [2] obtained the exact solution of the Boltz
mann kinetic equation (BE) for spatially uniform tempo
ral relaxation of one-component gas. Now this solutio
is commonly known as the Bobylev-Krook-Wu (BKW)
mode. The BKW mode is of physical interest for ex
plicit modeling of some nonequilibrium threshold pro
cesses such as chemical reactions, thermonuclear fus
etc. [2]. From this point of view, the analogous solution
for N-component gas mixture could be of even greater i
terest. The generalization of the solution to an arbitra
N-species gas mixture was announced by the authors
in [3]. However, their results have been actually present
for N ­ 2 only and even in this case appeared incomplet
It seemed [4] that the conditions of the BKW mode exis
tence formulated in [3] could be weakened. As a matt
of fact, the BKW modes were not considered in [4]. Re
cently, in [5] the BKW modes were obtained for a binary
gas mixture but only in the asymptotic limit when the ratio
of species masses tends to zero. In this case the auth
of [5] have practically dealt with a single BE as in [1,2].

In this Letter we present the comprehensive results
the BKW modes for an arbitraryN-component mixture of
monatomic gases. They are based on the rigorous cal
lation of the widest Lie group transformations admissibl
by the system of the BE. The Lie group allows us to de
scribe uniquely the complete class of the invariant BKW
solutions, in particular, the BKW modes that are the on
members of the class expressed in elementary function

As in [3,4], we study gas ofN species of molecules with
Maxwellian interaction. The homogeneous relaxation
defined by the set ofN velocity distribution functions
(DF), fasva , td, which are the solutions of the Caushy
problem for the BE system [6]. For such a problem ther
are conservation laws of species concentrations and to
kinetic energy of molecules. Under the chosen system
the dimensionless variables they are expressed as
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nastd ­
Z

dva fasva , td ­ nas0d,
NX

a­1

na ­ 1 ,

(1)

Estd ­
NX

a­1

Z
dva y2

afasva , td ­ Es0d ­ 3 . (2)

We use the Bobylev approach [1,4] to the B
in terms of the Fourier transformation of the DF
waska , td ­

R
dva eika va fasva , td. Then the BE system

for DF isotropic in the velocity space is transformed t
the system
≠wasxa ,td

≠t ­
NX

b­1

sab

Z 1

0
ds

3 fwasssxas1 2 ´absddddwbsxa´absd

2 wasxadwbs0dg, a ­ 1, . . . , N , (3)
where xa ­ k2

ay2, ´ab ­ 4mambysma 1 mbd2, and
ma is a molecular mass ofa species. For simplicity
we restrict our consideration to the Maxwellian isotrop
scattering model as in [3]. Heresab is a constant in the
cross section for collision ofa series withb series.

The conservation laws (1),(2) turn into the relations
was0, td ­ na , a ­ 1, . . . , N ;

NX
a­1

≠was0, td
≠xa

­ 21 .
(4)

Using our approach [7] to the group analysis of the equ
tions with nonlocal (integral) operators (see also Ref. [8
the widest Lie groupG4 admissible by the system (3) was
calculated. The basis of the groupG4 consists of the in-
finitesimal generators

X1 ­ ≠t , X2 ­
NX

a­1

xawa≠wa
,

X3 ­
NX

a­1

xa≠xa
, X4 ­

NX
a­1

wa≠wa
2 t≠t .
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Here the action of the operator≠wa
on the integrals in (3) is

the Freshet differentiation. The class of the invariant BK
solutions is determined by the generatorX ­ X2 2 X3 1

c21X1, wherec is some constant. Therefore, as in [1], o
can search for the BKW solutions in the following form

wasxa , td ­ na exps ya 2 xad

√
1 1

X̀
k­1

a
sad
k

yk
a

k!

!
,

ya ­ u0ectxa .
(5)
94
e

The energy conservation law (4) gives the restriction
NX

a­1

naa
sad
1 ­ 21 . (6)

By the substitution of Eqs. (5) in Eqs. (3) the recurre
systems of linear equations are derived for the coefficie
ak ­ sas1d

k , . . . , a
sNd
k d, k ­ 1, . . . ;

scE 2 Bkdak ­ 2cEak21 1 fk , (7)

where the elements of the matricesBk are expressed as#
term
bskd
aa ­

1
ksk 1 1d

"
nasaas1 2 kd 1

NX
b­1

0nbsab

k11X
m­2

s21dm21sk11
m d´m21

ab , b
skd
ab ­

1
ksk 1 1d

nasab´k
ab ,

f
sad
k ­

1
ksk 1 1d

k21X
m­1

"
nasaaasad

m a
sad
k2m 1

NX
b­1

0nbsabIs´ab, k 2 m 1 1, m 1 1dasad
m a

sbd
k2m

#
, k . 1 .

Here, theIs´, k, pd is a quotient of incomplete Euler beta function; the prime in the sum means the absence of the
with the indexb ­ a.

By virtue of the recurrent character of the system (5) one can cut the series in Eqs. (7) off if and only ifa2 ­ a3 ­ 0.
Then the inverse Fourier transformation of such a segment gives the BKW modes

fasya , td ­
na

f2pTstdg3y2

"
1 2 a

sad
1

1 2 T std
T std

√
y2

a

2T std
2

3
2

!#
exp

√
2

y2
a

2T std

!
, a ­ 1, . . . , N, T std ­ 1 2 u0ect ,

(8)
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where the constantu0 is determined by the arbitrary
choice of time origin. It is essential to emphasize that he
in contrast to [3] the identical temperature functions for a
the species are not postulated, but are the consequenc
the strict calculation of the BKW class generator.

To nullify a2 in any case the uniformity of the
corresponding system (7) is necessary. This is equival
to the requirementca1 ­ f2. If the parameterc coincides
with none of the nonzero eigenvalues of the matrixB1,
then the solution of the system (7) fork ­ 1, satisfying
Eq. (6), is a1 ­ s21, . . . , 21d. From the uniformity
condition, the following restrictions are obtained:

c ­ 2
1
6

"
nasaa 1

X
sbd

0nbsabs3 2 2´abd´ab

#
,

a ­ 1, . . . , N .
(9)

Under these conditions the matricesscE 2 Bkd, k ­
2, 3, have simultaneously the rankp ­ N 2 1. In other
words, both of the matricesB2, B3 have a simple “res-
onant” eigenvaluec in the form (9). If we nullify any
single component of vectorsa2 and a3, then the series
in (5) will be broken. As a result we obtain the BKW
modes (8). In this case the BKW modes are non-negat
for ya [ f0, `d, t . 0, whenu0 [ f0, 2y5g.

The necessary expression for parameterc,

c ­ 2
1

6N

NX
a­1

"
nasaa 1

X
sbd

0nbsabs3 2 2´abd´ab

#
,

can be derived by the symmetrization of the condition
(9). As can be readily seen this is a direct generalizati
of obtaining the BKW mode in one-component gas [1].
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However, in the multicomponent gas mixture there i
another way to obtain the BKW modes. Let the molecula
parameters satisfy the following set of constraints:

c ­ 2
1
2

sab´ab , a , b, a ­ 1, . . . , r ,

b ­ 2, . . . , N .
(10)

Then c is an r-multiple eigenvalue of the matrixB1.
Thus, the solution of the system (7) fork ­ 1 satis-
fying (6) is a

sad
1 ­ 2asad, a ­ 1, . . . , r; a

sad
1 ­ 2s1 2Pr

a­1 naasaddy
PN

a­r11 na , a $ r. Here, the coefficients
asad are arbitrarily chosen.

For uniformity of the systems (7) fork ­ 2, 3 it
is necessary to impose additional restrictions on th
molecular parameters of species,

c ­ 2
1
6

"
nasaaa

sad
1

1
X
sbd

0nbsaba
sbd
1 s3 2 2´abd´ab

#
,

a ­ 1, . . . , N . (11)

If the conditions (10) and (11) are fulfilled we again
obtain the BKW modes (8). In this case the BKW mode
will be non-negative forya ! ` if all the asad $ 0,
a ­ 1, . . . , r ;

Pr
a­1 asadna , 1. Correspondingly, for

ya ! 0 they are non-negative if the constantu0 varies
in the limits 0 # u0 # minfu01, u02g, where u01 ­
2ys2 1 3aMd, aM ­ maxsad asad; u02 ­ 2yf2 1 3s1 2Pr

a­1 asadnady
PN

a­r11 nag.
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The choice of someasad ­ 0 means that the cor-
responding BKW modes are transformed into unstea
Maxwellian DF with the temperatureTstd.

The restrictions (9), (10), and (11), as well as the d
pendence on the unique constantc [universal tempera-
ture functionTstd] for the presented BKW solutions (8),
are necessary and sufficient conditions, which cannot
weakened (compare Ref. [3]).

The BKW modes obtained keep the same form f
any Maxwell molecules with arbitrary dependence on th
scattering angle in a differential cross section. In su
a general case the restrictions (9), (10), and (11) cont
some power moments (functionals) of the cross section

The mixture ofN series of monatomic gases is cha
acterized by a set of3N parametershma , na , saajN

a­1.
The question naturally arises as to how many of the
can be chosen arbitrarily in order to satisfy simultan
ously the conditions (9) or (10), (11) to which it is nec
essary to add the conservation law of concentrations (
In the case of the BKW modes witha1 ­ s21, . . . , 21d a
complete number of the restrictions isC ­ N , and 2N
of parameters remain free. For the BKW modes u
der conditions (10) and (11) a total number of conne
tions is equal toC ­ Nsr 1 1d 2 rsr 1 3dy2, 0 , r #

N 2 1. Here, it is possible thatC $ 3N and then it is
necessary to consider the solvability of an overdetermin
system of the conditions.

For N ­ 2 all the calculations are very simple be
cause the eigenvalues of matricesBk are explicitly de-
rived. In particular, the restrictions (9) are reduce
to the relationn1s11 1 n2s12´12s3 2 2´12d ­ n2s22 1

n1s12´s3 2 2´12d obtained in [3]. However, another
condition given in [3] does not follow from our results
and is really erroneous.

The presented BKW modes allow us to model in an e
plicit form many physically interesting kinetic processe
even forN ­ 2, that had been previously available onl
through a very precise numerical computing of the B
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For example, one can investigate the relaxation in mix
tures with disparate species masses such as Lorentz
or Rayleigh gas. It is interesting to see directly from (8)
(10), and (11) that in contrast to the widespread convi
tion about the relaxation to equilibrium in such mixtures
in this case the process has no two-stage character.

Further, it is possible to study the behavior of nonequ
librium impurity in a Maxwellian bath or vice versa of
Maxwellian impurity on the nonequilibrium background.
On the basis of the BKW modes (8) one can explicitly ca
culate the rates of certain gas-phase reactions and estim
their deviation from the Arrhenius kinetics. Choosing the
BKW mode with as1d . 1 and conditions (10) and (11)
one can observe the overpopulation of the far tail of th
DF. This phenomenon allows one to model operating b
some threshold kinetic processes.

The possibilities of the BKW modes for modeling of
the spatially homogeneous gas systems initially not
equilibrium will be discussed in detail elsewhere.
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