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Bobylev-Krook-Wu Modes for Multicomponent Gas Mixtures
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Exact invariant solutions of the spatially uniform Boltzmann equations, the so-called Bobylev-
Krook-Wu modes, are presented in the explicit form for an arbitdslrgpecies gas mixture. The
corresponding necessary and sufficient conditions imposed on the molecular parameters are formulated.
The completeness of the results obtained is supported by the rigorous group analysis of the Boltzmann
equations. [S0031-9007(98)06421-7]

PACS numbers: 51.10.+y

About two decades ago Bobylev [1] and, independently, _ _ S _
Krook and Wu [2] obtained the exact solution of the Boltz- na(t) = | dVa falVa: 1) = na(0), ;1"“ =1

mann kinetic equation (BE) for spatially uniform tempo- (1)
ral relaxation of one-component gas. Now this solution N
is commonly known as the Bobylev-Krook-Wu (BKW) E(t) = Z f AVa V2 fa(Va 1) = E0) =3. (2)
mode. The BKW mode is of physical interest for ex- a=1

plicit modeling of some nonequilibrium threshold pro- We use the Bobylev approach [1,4] to the BE
cesses such as chemical reactions, thermonuclear fusidf, terms of the Fourier transformation of the DF
etc. [2]. From this point of view, the analogous solutions®a« (Ka.1) = [dve eV f,(va.1). Then the BE system
for N-component gas mixture could be of even greater infor DF isotropic in the velocity space is transformed to
terest. The generalization of the solution to an arbitraryfhe system N

N-species gas mixture was announced by the authors [2b. (.0 _ Z o flds

in [3]. However, their results have been actually presented 9’ ) “B J,

for N = 2 only and even in this case appeared incomplete.

It seemed [4] that the conditions of the BKW mode exis- X [@a(xa(l — €485))@p(xa€aps)
tence formulated in [3] could be weakened. As a matter
of fact, the BKW modes were not considered in [4]. Re- — @a(xa)ep(0)], a=1,...,N, (3)

cently, in [5] the BKW modes were obtained for a binarywhere x, = k2/2, eap = 4mamg/(m, + mg)?, and

gas mixture but only in the asymptotic limit when the ratiom,, is a molecular mass of species. For simplicity

of species masses tends to zero. In this case the authat@ restrict our consideration to the Maxwellian isotropic

of [5] have practically dealt with a single BE as in [1,2]. scattering model as in [3]. Here,z is a constant in the
In this Letter we present the comprehensive results ogross section for collision of series withg series.

the BKW modes for an arbitraryy-component mixture of The conservation laws (1),(2) turn into the relations

monatomic gases. They are based on the rigorous calcu- ©a(0,1) = ng, a=1,...,N;

lation of the widest Lie group transformations admissible Y 5o (0.1) (4)
by the system of the BE. The Lie group allows us to de- D 2P0 _

scribe uniquely the complete class of the invariant BKW =1 X

solutions, in particular, the BKW modes that are the only Using our approach [7] to the group analysis of the equa-
members of the class expressed in elementary functionstions with nonlocal (integral) operators (see also Ref. [8])

As in [3,4], we study gas a¥ species of molecules with the widest Lie grougz* admissible by the system (3) was
Maxwellian interaction. The homogeneous relaxation iscalculated. The basis of the gro@d consists of the in-
defined by the set ofV velocity distribution functions finitesimal generators

(DF), fa(Va,t), which are the solutions of the Caushy B <

problem for the BE system [6]. For such a problem there X1 = s, X2 = Zl Xa®adgp,

are conservation laws of species concentrations and total N “ N

klnetl_c energy of mole_cules. Under the chosen system of X; = Z Xa 0y, X, = Z Pady, — 10;
the dimensionless variables they are expressed as = =
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Here the action of the operatéy, on the integrals in (3)is The energy conservation law (4) gives the restriction

the Freshet differentiation. The class of the invariant BKW (a)

solutions is determined by the generakor= X, — X3 + Z naa —1. (6)

¢~ 'X;, wherec is some constant. Therefore, as in [1], one

can search for the BKW solutions in the following form: By the substitution of Egs. (5) in Egs. (3) the recurrent

QDa(xast) = Ng equa - xa)<1 +

i (@ yk systems of linear equations are derived for the coefficients
— (1 (N)

k=1ak k! (5) :(ak 5. ) k = I,.

Vo = 0pexq . (CE — Byag = —CEakﬂ + fi, (7)

| where the elements of the matricBs are expressed as

1 k+1 :
W — m—1k+1 (k) _ k
boa = k(k + 1)|:na0'aa(1 k) + Z npgoap Z( 1) G )8 :| baB = —k(k n l)nagaﬁgaﬁv

m=2

k-1

1

f,ﬁ“) = — Z[naaaaa(“)a;(c )m + Z 'nlgo'aﬁl(sa/g,k -m+ 1,m+ l)a(“) (B)m:|, k>1.
k(k + 1) m=1 B=1

Here, thel (e, k, p) is a quotient of incomplete Euler beta function; the prime in the sum means the absence of the term
with the indexB8 = «a.

By virtue of the recurrent character of the system (5) one can cut the series in Eqgs. (7) off if andagnly #; = 0.
Then the inverse Fourier transformation of such a segment gives the BKW modes

_ e |, @l =TOf v 3 _ v _ g
fale,t) = [277T(t)]3/2|:1 a 0 (ZT(t) > )}exp( 2T(t)>’ a=1,...,N, T(t) =1 — 6pe“,
(8)

where the constan®, is determined by the arbitrar)ll However, in the multicomponent gas mixture there is
choice of time origin. Itis essential to emphasize that heranother way to obtain the BKW modes. Let the molecular
in contrast to [3] the identical temperature functions for allparameters satisfy the following set of constraints:

the species are not postulated, but are the consequence of 1
the strict calculation of the BKW class generator. €= =3 0aptagp a<pB,a=1,...r,

To nullify a, in any case the uniformity of the (10)
corresponding system (7) is necessary. This is equivalent B=2,...,N.

to the requirementa; = f,. If the parameter coincides
with none of the nonzero eigenvalues of the mamix
then the solution of the system (7) fér= 1, satisfying
Eqg. (6), is a; = (—1,...,—1). From the uniformity
condition, the following restrictions are obtained:

Then ¢ is an r-multiple eigenvalue of the matriB;.
Thus, the solution of the system (7) fdr= 1 satis-
fying (6) is @\ = —a@, o = 1,....ra\" = —(1 -
> i nea )/ YN _ . ne.a = r. Here, the coefficients

{ a'® are arbitrarily chosen.
c=——| NagOga + Z’nﬁaaﬁ(.’a - zsaﬁ)saﬁ] For uniformity of the systems (7) fok = 2,3 it
6 (B) (9) is necessary to impose additional restrictions on the
a=1,...,N. molecular parameters of species,
Under these conditions the matricastE — By), k = 1 |: (@)
2,3, have simultaneously the rank= N — 1. In other €= T | teTaat
words, both of the matrices,, B; have a simple “res-
onant” eigenvaluer in the form (9). If we nullify any + Z’nﬁaaﬁagﬁ)ﬁ - zsaﬂ)gaﬁ},
single component of vectors, and as, then the series )
in (5) will be broken. As a result we obtain the BKW a=1,....N. (11)
modes (8). In this case the BKW modes are non-negative » ] )
for v, € [0,%), 1 > 0, whend, € [0,2/5]. If Fhe conditions (10) and (11)_ are fulfilled we again
The necessary expression for parameter ol_atam the BKW mgdes (8). In thls_, case the BKW modes
1 N will be non-negative forv, — = if all the a® =0,
¢= e Z NaGaa + . ngoap3 — zsaﬁ)saﬁ} a=1,...,rnY" _ a%n, <1. Correspondingly, for
B) — 0 they are non-negative if the constafi varies

can be derived by the symmetrization of the condltlonsn the limits 0 < 6y = min[fo;, 02], where 6y =
(9). As can be readily seen this is a direct generallzatlod/(Z + 3ay), ay = MaXq) a'®; 6p =2/[2 + 3(1 —
of obtaining the BKW mode in one-component gas [1]. _a9ng)/ Za i1 Nal-
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The choice of some:!® = 0 means that the cor- For example, one can investigate the relaxation in mix-
responding BKW modes are transformed into unsteadyures with disparate species masses such as Lorentz gas
Maxwellian DF with the temperaturE(z). or Rayleigh gas. Itis interesting to see directly from (8),

The restrictions (9), (10), and (11), as well as the de{10), and (11) that in contrast to the widespread convic-
pendence on the unique constanfuniversal tempera- tion about the relaxation to equilibrium in such mixtures
ture function7'(¢)] for the presented BKW solutions (8), in this case the process has no two-stage character.
are necessary and sufficient conditions, which cannot be Further, it is possible to study the behavior of nonequi-
weakened (compare Ref. [3]). librium impurity in a Maxwellian bath or vice versa of

The BKW modes obtained keep the same form forMaxwellian impurity on the nonequilibrium background.
any Maxwell molecules with arbitrary dependence on theDn the basis of the BKW modes (8) one can explicitly cal-
scattering angle in a differential cross section. In sucttulate the rates of certain gas-phase reactions and estimate
a general case the restrictions (9), (10), and (11) contaitheir deviation from the Arrhenius kinetics. Choosing the
some power moments (functionals) of the cross section. BKW mode with ') > 1 and conditions (10) and (11)

The mixture of N series of monatomic gases is char-one can observe the overpopulation of the far tail of the
acterized by a set 03N parametersmg,na, caatr—1.  DF. This phenomenon allows one to model operating by
The question naturally arises as to how many of thensome threshold kinetic processes.
can be chosen arbitrarily in order to satisfy simultane- The possibilities of the BKW modes for modeling of
ously the conditions (9) or (10), (11) to which it is nec- the spatially homogeneous gas systems initially not in
essary to add the conservation law of concentrations (1equilibrium will be discussed in detail elsewhere.
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der conditions (10) and (11) a total number of connec-

tionsisequaltaC = N(r + 1) — r(r +3)/2,0<r =
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