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Abstracts

The research performed in the project can be formally separated in three parts.
All these parts are related by the method of the study and the sequence of
discoveries. The first part of the project deals with modeling in fluid dynamics.
A systematic application of the group analysis method for modeling fluids with
internal inertia is presented. The group classification separates these models into
73 different classes. The second part of the project deals with applications of the
group analysis method to integro-differential equations. The research deals with
an evolutionary integro-differential equation describing nonlinear waves. We
discuss new approaches developed in modern group analysis and apply them to
the general model considered in the present paper. Reduced equations and exact
solutions are also presented. Another application of the group analysis method to
integro-differential equations related with the Boltzmann equation. The group
classification with respect to sources is carried out for the equations under
consideration using the algebraic method. The third part of the first project is
focused on the study of two problems: (a) on first integrals of second-order
ordinary differential equations; (b) the complete group classification of systems
of two linear second-order/;ordinary . differential equations with constant
coefficients. Here we discuss first 'integrals of a particular representation
associated with second-order ordinary differential equations. The relationship
between the integral form, the associated equations, equivalence transformations,
and some examples are considered as part of the discussion illustrating some
important aspects and properties. For group classification the present project
corrects the way of using Jordan canonical forms for studying the symmetry
structures of systems of linear second-order ordinary differential equations with
constant coefficients applied in (Wafo Soh (2010)). The approach is
demonstrated for a system consisting of two equations.
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