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Abstract

We prove an existence result for T-periodic solutions to nontinear evolution equations
of the form

O+ A(Lx®) = ftx(®), O<r<T.

Here V — H <> V* is an evoluticn triple, A:1 x V — V* is a uniformly monotone
operator, and f: 1 x H — V* is a Caratheodory mapping which is Holder continuous with
respect to x in H and exponent 0 < & < 1. For illustration, an example of a quasi-linear
parabolic differential equation is worked out in detail.
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1. Introduction

In this paper, we establish an existence result of periodic solutions for a class
of nonlinear evolution equations in Banach spaces. Cur approach will be based
on techniques and results of the theory of monotone operators and the Leray—
Schauder fixed point theorem.
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The problem of existence of periodic solutions for nonlinear evolution equa-
tions has been studied by several authors. However, most of the works concen-
trated on semilinear systems. We refer to the works of Browder [2], Priiss [7], and
Becker [1]. The first fully nonlinear existence results for the periodic problem,
were obtained by Vrabie [9] and Hirano [4]. Vrabie assumes that the nonlinear
time invariant operator A monitoring the evolution equation is such that A — A[ is
m-accretive for some A > 0, while Hirano [4] considers time invariant nonlinear
operator A which is a subdifferential of a convex function defined in a Hilbert
space. Moreover, Hu and Papageorgiou [5] consider evolution inclusions defined
in an evolution triple of Hilbert spaces. They proved the existence of a periodic
solution for a problem with a Caratheodory multivalued perturbation F(z, x) de-
finedon I x H into H.

The time-dependent systems for the periodic problem were investigated
recently by Kandilakis and Papageorgiou [6] and Shioji [8]. Kandilakis and
Papageorgion consider multivalued perturbations while Shioji consider single-
valued perturbation. However, the assumptions on the monitoring operator A and
on the perturbation F(t,x) of both papers imply that the operator A + F is a
pseudo-monotone operator.

In this paper, we also consider a time-dependent systems with a single-
valued perturbation. Here, the perturbation f(z, x) is assumed to be continuous
and defined on I x H with values in V*. Our assumptions on the monitoring
operator A and on the perturbation f{t, x} do not imply that A + f is pseudo-
monotone,

2. System description

The mathematical setting of our problem is the following. Let H be a real
separable Hilbert space, V be a dense subspace of H having structure of a
reflexive Banach space, with the continuous embedding V «» H <> V*, where
V* is the topological dual space of V. The system model considered here is based
on this evolution triple. Let the embedding V < H be compact.

Let {x, y} denote the pairing of an element x € V* and an element y € V. If
x,¥ € H, then {x, y} = (x. y), where (x, v) is the scalar product on H. The norm
in any Banach space X will be denoted by || - || x. Let T be a fixed positive constant
and / =(0,7).Let p,g = 1 besuchthat p~! +¢~ ! =1 and 2 < p < +o0.

We denote L,(f, V) by X. Then the dual space of X is Lg(I,V*) and is
denoted by X*, For p, ¢ satisfy the above conditions, it follows from reflexivity
of V that both X and X* are reflexive Banach spaces (see Zeidler [10, p. 411]).
Define

Woe={x: x e X, e X"},
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where the derivative in this definition should be understood in the sense of
distribution. Furnished with the norm lxltw,, = lxilx + ll£llx+, the space
(Wpy. |l - ||} becomes a Banach space which is clearly reflexive and separable.
Moreover, Wy, embeds into C 1, H) continuously (see Proposition 23.23
of [10]). So every element in W, has a representative in C(I, H). Because of
the embedding V < H is compact, the embedding Wp, < L,{I, H) is also
compact (see Problem 23.13 of [10]). The pairing between X and X™* is denoted
by {{,)).

Consider the foilowing equation

x(t) + AL, x(@) = ft,x(D), tel, @D
x(0) = x(T), ’

where the operators A:I x V — V* and f:7 x H — V*. By a solution x of
problem (2.1), we mean a function x € {x € Wy, x(0) = x(7T}} such that

) v)+{AG ), v)=(fE, x), )

forail v e V and almost all t € 1.
We need the following hypotheses on the data problem (2.1).

(Al) A:I x V — V* is an operator such that
(1) t— A(z, x) is measurable;
{2) Poreach tr € I, the operator A(¢):V — V* is uniformly monotone and
hemicontinuous, that is, there exists a constant Cy = 0 such that

{A(r.x1) — A2, x2), x1 ~ x2) 2 Cillxg —~ 22§
forall x;, x2 eV,

and the map s — (A(t,x + s7),y) is continuous on [0, 1] for all
x,y,zeV;

(3) Growth condition: There exists a constant C3 > () and a nonnegative
function a;(:) € Ly {(I) such that

At 0}y, @@ + Colxllf™", forallxeV, ae onl;
{(4) Coerciveness: There exists a constant C3 > 0 such that
(A, x),x) > C3 lxll#, forallx eV, ae.onl.
Without loss of generality, we can assurne that A(¢f,0) =0forall ¢ € I.
(F1y f:I x H— V*is an operator such that
{1) t— f(¢, x)is measurable;
{(2) x> f(r, x) is continuous;
(3) There exists a nonnegative functionk1(-) € L4({) and a constant C4 > 0
such that

(RAGEO)

where 1 < k < p is constant;

e Sh1) +Callxily !, forallxeV, rel,
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(4} f(r, x) is Hélder continuous with respect to x with exponent0 < ¢ < 1
in H and uniformly in . That is, there is a constant L such that

| £ x0) = F @, x| ye < Lixy — x20%,

forall x;,x; € H and forall¢t € I

It is convenient to rewrite system (2.1) as an operator equation in
Wp?(T) =[x € Wpe: x(0) = x(1)}.
Forx € X, we set
Ax)D = At x(®), F)©O=f{t.x()), rel

It follows from Theorem 30.A of Zeidler [10] that the operator A: X — X* is
bounded, uniformly monotone, hemicontinuous, and coercive. By using the same
technique, one can show that the operator F:Ly(I, H) - X* is bounded and
satisfies

|7 g0 <M1+ Ml Dy Forallue Ly(7, H),

Lemma 1. Under assumption (F1), the operator F:Ly(I, H) — X* is Hélder
continuous with exponent «, 0 < o < 1, and F(x,) — F(x) in X* whenever

W
Xy —> x in Wpg.

Proof. Let x1,x2 € L,(I, H). By hypothesis (4) of (F1) and Hélder inequality,
we get

||F(x1) - F(x2)||xt

T lig
(fllf (t. x1(0)) = £t x200) |1, dt)
0

T 1/q
L(["xl(t) 0] dt)
0

o/py L a/(ga—1)
L(]|x1(t)"—m(t)||i,dt) (/11“p/qadt)
0 0

’ «
<L x _xZIle(!.H)

for some constant L’. This proves that F is Hélder continuous with exponent o in
Lp(I, H). Hence F is continuous on L, (I, H).
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Since the embedding V < H is compact, the embedding Wp,q < L, (I, H)
is compact. That is,

. w .
Xy —>x inL,(J, H) whenever x, —x in Wp,.

By using the above relation and the continuity of F, we have

F(x,) = F(x) inX* whenever x,—x inWy. O

Moreover, we observe that the original problem (2.1) is equivalent to the
following operator equation:

{J’c+A(x) = F(x),

X € Woy(T). 22

Lemma 2. Assume (Al) and (F1) are satisfied. Then the set
S1={x € Wpy(T) | % + A(x) = 6 F(x), for some o € [0, 1]} (2.3)
is bounded in Wpq. Moreover, there exists a positive constant M such that
4]y <M and max|xo)], <M

forall x € S1.

Proof. Let x € 81, then we have
(G, x)) + {[{AGO), x)) = ({0 F (), x).
Since A is coercive (hypothesis (A1)} then
Callx % <{{o F(x), x)) — {{x, x)). (2.4)

By using integration by part and the relation x(0) = x(7T'), one can see that the
second term on the right-hand side of (2.4) is equal to zero. Hence, inequality (2.4)

reduces to
r tjg , T 1/p
Cylxl <a( f ||f(t,X)|‘f,*dt) ( f nxui’,dr)
0 0
T /g
< a( f (ha(0) + I 1571 dt) Ixlix
[
<aifxllx +o2lixlk 2.5)

for some constants ¢; > 0 and a7 > 0. Since 1 < k < p, thus, by virtue of the
inequality (2.5), we can find a constant Mj > O such that

Ixllx < M (2.6)
for all x € S1.
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From (2.6), the boundedness of operators A and F, and the continuous
embedding X < L,({, H), we obtain

[A@ 4 M2 and  |Fx)| 4 € M2, 2.7)
for some constant M> > 0 and all x € S1. Therefore,

lilxe < |AC)| g + | F )]
It follows from (2.6) and (2.8) that

lxilw,, <Mi+2M.

g+ S2M,, forallx € S1. (2.8)

Hence, S1 is a bounded subset of Wy,
Finally, we note that Wy, < C(1, f); then

lxllco,m < alxliw,.

and hence
maxx (1), < M3

for some positive constants ¢, M3, and for all x € §1. Choosing M =
max{ M2z, M3), the assertion follows. O3

Theorem 3. Under assumptions (A1) and (F1), Eq. (2.2) has a solution x €
Wog (T).

Proof. We denote S = Lp(I, H). Define G: 5 x [0,1] = § by G{u,0) = v,
where v is the solution of the following problem:

v+ A(v) =a F(u),
0y = v(T).

Since A is uniformly monotone, then A is strictly monotone. By Theorem 32.D
of [10], for any # € §, problem {2.9) has a unique solution v € Wy C §. So G is
well defined.

{1) We now assert that G : § x [0, 1] — § is continuous and compact.

In fact, for any sequence (u,, 0,) C S x [0, 1] such that

2.9

(Mn,0n) = (u,¢) in 8§ x[0,1],
we denote vy, to be the solution of the problem

Uy + Avy) = on Flun),
v, (0) = v, (T),

and v to be the solution of the problem

v+ A(w)y=0cF(u),
v(0) = u(T).
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Therefore,

{(0n — 3, va — v} + {{A(vn) — A(V), va — v}}
={{on F (ttn) — 0 F (u), vy — v)). (2.10)

Using integration by parts and the monotonicity of the operator A, we obtain
from (2.10) that

1
5 (10D = e}, = [6:00) = v@]5) + C1llvn — vl
<{lon F(un) — 0 F(u), v — v))

T
< f lon f 2. t) = o £ @)y Jonte) — v, di
4]

—g/p

S%{Ivn—vllfﬁrg lon F @) — o F ()| %,

q
foralle = 0. 2.11)

Since F(u) is Holder continuous with exponent «, F:L,(f, H) — X* is
bounded, by choosing £ in (2.11) small enough, then

Millon — vl < Ma|on Flun) — o FG0 |5,
= M2||0u F(itn) ~ 0n F(u) + 0n F(u) —a F )| %,
< M3(|| Fun) — F) | %, +lon — o17| Fo) %)
< Malluy — | + Mslo, — o191+ Jul§ V)7,

for some positive constants M;, My, M3, M4, and Ms. Noting that the embedding
Ly(I, V)= Ly(I, H) is continucus, we have

Nvn — vlls < M'(lun — )97 + oy — o972 (1 + e $~ 1)),

for some constant M’ > 0. Hence, G : S x [0, 11— § is continuous.

Let v be the solution of problem (2.9) with |#|ls < b1 for some o € [0, 1],
where by > 0 is a constant. Similar to the proof of Lemma 2, one can show that
there exists constant b > O such that

lollw,, <b2.

Hence, G maps bounded sets in § x [0, 1] into bounded sets in W,,. Since the
embedding W, < § is compact, G: § x [0, 1] — S is also compact.
(2) Next, we must show that the set

lucSlu=Gu, o) forsome 0 <o <1}

is bounded in S.
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Assume that ¥ € § and # = G(u, o). Then u € Wy, and satisfies the problem
u+ A(u) =o Fu),
u(0) =u(T).

By Lemma 2, we get ||u||qu € M. Again, since the embedding Wp; — S is
compact, we get
fulls < B

for some constant B > 0.
3G, 0)=0,foranyu e S,
For any u € 8, set G{u, 0) = vy, where vp satisfies
{ g + A(vo) =0,
vp(0) = vo(T).

By uniqueness of the solution of Eq. (2.12), we get from A(0) = 0 that

(2.12)

vw=0, inWpy,.

Since the imbedding Wy, < S is continuous, we get
=0 1insS,

that is,
G{u,0)=0, foranyuceS.

(4) Applying Leray—Schauder fixed point theorem (see [3, p. 231]) in the
space S, there is one fixed point x € § such that

x=G(x, 1)

and x € SN W,,. Thatis, x is a solution of problem (2.2). Since the problem (2.1)
is equivalent to the problem (2.2), there exists a periodic solution for nonlinear
evolution equation (2.1). O

3. Examples

In this section, to illustrate the applicability of our work, we prove the existence
of a periodic solution for a quasi-linear parabolic partial differential equations of
order 2m.

Let £2 be a bounded domain in R” with smooth boundary 882, Qr =(0,T) x
§£2,0<T < oo Leta =(wy, as, ..., 0, be a multi-index with {a;} nonnegative
integers and |a| = 3] o;. Suppose p > 2 and g = p/(p — 1), W™P($2) denotes
the standard Sebolev space with the usual norm:

i/p
lgllwme = D@ sy ) + m=0,1,2,....
(£2)

lor| Sm
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Let WP (2) = {9 € W™P | DPg|an =0, |8] <m — 1}. It is well known that
C3o(82) — Wy P(£2) = L3(2) — W—™-P(£2) and the embedding WP (82)
<> L2(£2) is compact. Denote V = WP (22) and H = Ly(£2); then V* =
Wma(£2),

Example 1. We consider the time-periodic solutions for 2m-order quasi-linear
parabolic equations

Bx(,2) + Ty (DD A, 2, 7(x)(2, 2))

= X lajgm (DD fo(t, 2, x(1,2))  on Qr, a1
D8x(t,2)=0 on(0,T]x 3$2 forall B: |B|<m— 1, '
x(0,2)=x(T,z) on$2,

where n(x) = {(D"x), y|<m}and M = (n + m}!/(nim!).

‘We need the following hypotheses on the data of (3.1):

(A") The functions Ag (Jorl < m): Q1 x RM — R are functions such that
(1) (t,2) = Aqlt, z,n) is measurable on Q7 for € RM, 5 — Au(r, z. n)
is continuous on R for almost all (¢, z) € Q7
Q) |Aa(t, 2, )| S a1(t, 2) + c1(D) Xy jcm Iy 177" With as (-, ) € Lo(Q7)
and ¢y (-) € L™(£2) for almost all ¢ € (0, T);
) Lprem Aalt, 2.1 — Aalt, 2, D)0 — ) 2 €2() Xy 1 11y — 717
with c2(-} € L% (£2) for almost all € (0, T);
(4) Ay (t,z,0y=0forall (t,2) € QOr.
{I"y fy: 071 x R — R are functions such that
(1) (t,2) = fult,z,x) is measurable on @r forx € R, x — fo{t,7,x) is
continuous on R for almost all (¢, z) € Or;
(2) 1fult, 2, 0 € @2(t, D) +ea@x[F with 1 <k < p,az(-, ) € Ly(Qr),
and ¢4(-) € L°°(£2) for almost all r € (0, T);
{3) faft, z, x) is Holder continuous with respect x and exponent 0 < ¢ < 1;
that is, there is a constant L

| falt,2,x1) — fa(t, 2, x2)| < Llxg — x2f®
forany x1,x2 € R, (¢t,2) € Or.

Forx,ye Wg"p,t € I, we define

a(t,x,y)= ZAa(t,z,n(x)(t,z))D“ydz.
0 lel€m
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It is not difficult to verify that under the above assumption (A”), foreachx € V
and t € I, y — a(t, x, y) is a continuous linear form on V. Hence there exists an
operator A: [ x V — V* such that

(A(t, x), y) =a(t,x,y).

Under the given assumption (A’), it is easy to verify that A satisfies our
hypotheses (A1) of Section 2.
Next, by using the time-varying Dirichlet form f: [ x H x V — R defined by

f(t,x,y)=f Z folt, 2. x(t, 2))DP y(2) dz.

o 1Blsm

“Then y —» f(¢,x,y) is a continuous linear form on V. Hence there exists an
operator F: I x H— V* such that

fit,x,3)={F(t.x), )

Under the given hypotheses (F'), we obtain that F satisfies our hypotheses (F1)
of Section 2.

Using the operators A and F as defined above, Eq. (3.1} can be written in an
abstract form:

{i+A(f,x)= F(t,x),

x(M=x(T). G.2)

So applying Theorem 3, we get the following theorem,

Theorem 4. If iypotheses (A') and (F) hold, thern there exists a periodic solution
xelp(l, Wg"p(Q)), dx /ot € Ly(I, W™9(82)) of Eq. (3.1).
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