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CHAPTER 1 

INTRODUCTION 
 
1.1 General Introduction 

An important analysis tool for the control and operation of electric power 
system is optimal power flow (OPF), which gained widespread attention in today's 
electrical system control and operation, especially for economic operations. The OPF 
model is a famous problem for power system operation and planning, illustrating the 
problem of power plants in determining optimal operating levels. To meet the 
demands imposed during a typical power system network with the aim of reducing 
operating costs. The main goal of the OPF solution is to obtain the optimal control 
variable of the system that optimizes the objective function that optimizes the 
objective function within the constraints of the system. Therefore, with different 
objective in power system operation, the OPF can be defined as a multi-objective 
security constraint optimization problem. 

In the last decades, many variable optimization methods have been used to 
solve complex constrained optimization problems for example OPF problems. The 
OPF problem are created using a multi-objective problem under a set of operative 
constraint. These constraints include equality and inequality constraints. Therefore, the 
multi-objective optimization is an important part of optimization activities. The classic 
approach to solving such problems focuses on aligning multiple objectives to a 
individual objective. For the multi-objective optimization can be defined conflicting 
objectives by the Pareto optimal method or a fuzzy decision method to separate the 
best compromise solution from the tradeoff front. 

On the other hand, the OPF assessment is one of the guidelines used to 
determine the state of the electrical system. But in an unstable energy system such 
as renewable energy, a conditional OPF assessment cannot accurately solve the state 
of the system. However, a more general formulation of the probabilistic 
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optimal power flow (POPF) problem is assumed that random disturbances in the 
system load can be represented as random disturbances in all the OPF variables. 

 

1.2 Problem Statement 
Economic growth and population growth are the key factors to drive economic 

activities to raise people’s living standards. Renewable and alternative energy is part 
of strengthening energy security through the use of domestic energy feedstocks to 
reduce the import and dependence of petroleum-based energy. which is a major cause 
of climate change problems. In the past, Thailand has a policy to continuously support 
the production of renewable energy and alternative energy in the form of electricity, 
heat and biofuels. Therefore, the proportion of such energy consumption increases 
every year. However, providing enough energy to meet growing demand and being 
greener is a key mission within Thailand’s ministry of energy responsibility (Alternative 
Energy Development Plan: AEDP, 2018). Combining large amounts of renewable energy, 
such as wind and solar, into the power system presents significant operational 
challenges due to uncertainty. With highly penetrating renewable energy integrated 
into the power system, the rapidly increasing uncertainty presents many challenges to 
the operation of power systems. The POPF has become a powerful and indispensable 
analytical tool to deal with the uncertainty for power system operation. 

Electric utilities are looking at a continuous economic operating scenarios and 
generation scheduling to reduce the generation cost, power transfer constraints, 
operating security, and reliable constraints. Over the past two decades, the OPF 
problem has received a lot of attention. Due to its ability to solve problems to find 
the optimal solution that takes the security into account system and operational 
requirements. Meanwhile, a classical OPF is a power flow solution. The control 
variables must be confidently adjusted to support the objective function of minimizing 
such total system cost, active power losses, and voltage magnitude deviation while 
satisfying physical and functional constraints to control, dependent variables, and 
variable functions. So, the classical OPF apart from similar optimization problems, also 
makes it more difficult to solve.  
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The classical mathematical programming approach have modified the previous 
OPF approach, and its capability has been successfully proven. Recently, combining 
one or more objectives from both categories has been the focus of the task to find 
the best compromise solutions that meets economic and technical requirements at 
the same time. Because optimization problems are continuously developed, various 
methods have been developed to find OPF solutions.  Various optimization techniques 
are used to troubleshoot OPF to determine the best operating conditions for the 
power system and control variables in the power system. Previously, deterministic 
methods such as nonlinear programming, Newton-based method, Gradient method, 
Quadratic Programming method, and the simplex method have been used to solve 
OPF problems.  

With discrete and continuous control variables, even in the absence of discrete 
control variables, the OPF problem is non-convex due to the existence of the non-
linear (AC) power flow equality limits. That's very difficult to get the best solution with 
a given method. Therefore, the latest intelligent computational tool with random 
optimization methods has solved the OPF problem. However, due to the high 
complication of the OPF problem, some studies, therefore, offers approximation 
models for simplicity, but the best solutions to global OPF problems remain 
challenging with different formulas and search techniques. In the OPF problems, the 
objectives typically conflict with each other, making it impossible to optimize each 
objective at the same time. Almost all real engineering problems have multiple 
objectives, such as cost reduction, loss reduction, minimizing voltage deviation, etc. 
This is a difficult but realistic problem, a common approach to multi-objective 
optimization is to combine each objective functions into an individual composite 
function or combine an individual objective to the constraint set. In the previous case, 
determining an individual objective can be achieved using methods such as utility 
theory, weighted sum method, etc. But the problem lies in choosing the right weight 
or utility function to determine the preferences of decision-makers. In practice, precise 
and accurate selection of these weights can be very difficult, for those who are familiar 
with the extent of the problem. This drawback is that scaling is required between 
objectives, and sometimes a small perturbation in the weights can lead to very 
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different solutions. In another case, the problem is that moving an objective to a set 
of constraints requires defining the constraints for each of these original objectives. 
This can be quite presuming.  

This thesis focuses on POPF methods applied to power systems with uncertain 
load, photovoltaic power plant (PVPP), and wind power plant (WPP) generations. 
Therefore, the Monte-Carlo simulation (MCS) is applied to solve the POPF problem. 
Meanwhile, this thesis introduces the method for solving OPF, with multiple objectives 
using a fuzzy trade-off concept. The proposed probabilistic fuzzy multi-objective 
optimal power flow (PFMOOPF) was resolved by particle swarm optimization (PSO) and 
tested with the modified IEEE 30-bus test system compared to the existing OPF 
methods. 

 

1.3 Research Objectives 
The main objectives of this thesis are as follow, 
1) To solve the OPF problem with multi-objective including the total system 

cost minimization, active power loss minimization, and voltage magnitude deviations 
minimization. 

2) To apply the fuzzy satisfactory function method for multi-objective decision 
problems. 

3) To study the behavior of variables in power systems with integrated WPP 
and PVPP generators. 

4) To solve multi-objective OPF with fuzzy satisfactory function using PSO 
considering PVPP, WPP, and load uncertainty using probabilistic model and Monte-
Carlo simulation. 

 

1.4  Scope and limitations 
The PFMOOPF using PSO method is developed for determining the OPF 

solution with several load flow control variables. The multi-objective OPF can be 
formulated by stochastic optimization problem. The proposed method will be 
investigated and compared by IEEE 30-bus test system with four cases, as follow; 
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1) Develop OPF and test with the modified IEEE 30-bus test system, considering 
the total system cost minimization 

2) Develop OPF and test with the modified IEEE 30-bus test system, considering 
the active power losses minimization. 

3) Develop OPF and test with the modified IEEE 30-bus test system, considering 
the voltage magnitude deviations minimization. 

4) Develop OPF and test with the modified IEEE 30-bus test system, considering 
the multi-objective minimization in 1), 2), and 3) under fuzzy satisfactory function. 

5) The investigation of PVPP, WPP, and load uncertainty using probabilistic 
density function (PDF) and Monte-Carlo simulation (MCS) for the above MOOPF will be 
carried out. 

6) The simulations result with the modified IEEE 30-bus test system has been 
as case study including single-objective and multi-objective by MATLAB programming. 

 

1.5 Conception 
This thesis's significant contribution is applying the fuzzy concept by PSO for 

determining OPF solutions in multi-objective problems. The probabilistic fuzzy multi-
objective OPF (PFMOOPF) problem is formulated with the optimization problem to 
minimize the total system cost, the active power losses, and voltage magnitude 
deviations for optimal several control variables with integrated PVPP, WPP, and load 
uncertainty. The OPF formulation includes the voltage magnitude at PVPP and WPP 
buses are considered to control variables. Meanwhile, the output power of PVPP, WPP, 
and load is based on the probability density function (PDF) of solar irradiance, wind 
speed, and load demand. However, the simulations result with IEEE 30-bus test system 
has been a case study including individual objectives and multi-objectives by MATLAB 
programming. The computational concept can be illustrated in Figure1.1. 
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Figure 1.1 The computational concept of the proposed 

 
The organization of this thesis are as follow, 
Chapter 1 is the introduction of the thesis. Chapter 2 addresses the literature 

survey on related works. The OPF solution using PSO is illustrated in Chapter 3. Then, 
further improved on the proposed OPF solving multi-objective OPF is addressed in 
Chapter 4. In addition, the uncertainties of load, solar, and wind power generations are 
incorporated to the proposed method using Monte-Carlo simulation in Chapter 5. 
Lastly, Chapter 6 conclude this thesis. 

 

1.6 Research Benefits 
The PFMOOPF will be able to solve for optimal operation of control variables 

in the power system. The probabilistic model can handle the uncertainty of power 
system with integrated WPP, PVPP generation, and load uncertainty. The proposed 
method is expected in providing positive effects, such as reducing the total system 
cost, as well as reducing the active power losses and voltage magnitude deviation, 
under fuzzy satisfactory function concept and PSO. 
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CHAPTER 2 

LITERATURE REVIEW 
 
2.1 Introduction 

In the operation and planning of power systems, there are various concerns 
and studies that need to be developed in optimal power flow (OPF) analysis. Today, 
the OPF problem is vast and continues to be a growing subject for the global power 
system research community. Many kinds of research have been proposed by 
considering the objective of total system cost minimization, active power loss 
minimization, voltage magnitude deviations minimization, etc. However, the reviews of 
existing works on OPF are addressed in this chapter, which provides some of the 
relevant research to compare the result of different methods. The OPF kinds of 
literature were categorized into different objectives, problem formulations, and 
optimization tools. 

 

2.2 Literature Overview 
Related research in the thesis can be classified into three groups: the individual 

objective OPF, the multi-objective OPF, and the probabilistic OPF. Each research group 
classified offers a different approach to problem-solving. However, most of the 
optimization research involved in the review focuses on the objective of minimizing 
total system cost, active power loss, and voltage magnitude deviation. This section 
overview presents an overview of the relevant research in tabular form. Firstly, Table 
2.1 shows the kinds of literature on OPF under the individual objective. Table 2.2 
presents the literature OPF under the multi-objective. Meanwhile, Table 2.3 shows the 
literature on Probabilistic OPF. However, a detailed description of the mentioned 
references contained in the tables in each group can be found in Sections 2.4, 2.5, and 
2.6 
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Table 2.1 The OPF under the individual objective 

Year Author Objective Description 

1974 O.Alsac and 
B.Stott 

- Minimize total 
system cost. 

- Use Optimal load-flow 
program. 
- Tested with the IEEE 30-
bus standard load-flow test 
system. 
- This proposal expands the 
scope of problem 
determination and solution 
model by incorporating 
absolute emergency stop 
constraints. 

2002 M.A. Abido 
 

- Minimize total 
system cost. 
- Voltage profile 
improvement. 
- Voltage stability 
enhancement. 

- Used Particle swarm 
optimization (PSO). 
- Tested with IEEE 30-bus 
test system. 
- Represented the cost 
curves of generators by 
piecewise quadratic 
function. 

2002 A. G. Bakirtzis 
et al. 

- Minimize total 
operation cost. 

- Used Enhanced Genetic 
Algorithm (EGA). 
- Tested with IEEE 30-bus 
test system and the 3-area 
IEEE RTS96. 
- Simulating the best and 
worst operation costs of 
proposed method by 20 
test runs. 
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Table 2.1 The OPF under the individual objective (Continued) 

Year Author Objective Description 

2010 A. 
Bhattacharya 
et al. 

- Minimize the active 
power losses. 

- Used Biogeography Based 
Optimization (BBO). 
- Tested with IEEE 30-bus 
and IEEE 57-bus power 
system. 
- Found that optimal 
solutions BBO method is 
better than GCA, SOA, L-
SaDE, SPSO, CLPSO and PSO. 

2013 B. Emre, 
et al. 

- Minimize total system 
cost. 
- Minimize system loss. 

- Used PSO. 
- Obtain cost curves 
considering Valve Point 
Loading Effect. 
- Tested on IEEE 14 and 30 
buses system with 
generation PV. 
- The total system loss 
values and total generation 
cost found the proposed 
hybrid PSO method are 
lower than literature. 
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Table 2.1 The OPF under the individual objective (Continued) 

Year Author Objective Description 

2014 H.R.E.H. 
Bouchekara 

- Minimize total system 
cost. 
- Minimize total active 
transmission losses. 
- Minimize total 
reactive transmission 
losses. 
- Minimize the 
deviation of load 
voltage. 
- Minimize the index of 
stability. 

- Used Black-hole-based 
optimization (BHBO). 
- Tested on IEEE 30-bus test 
system and Algerian 59-bus 
network systems. 
- The proposed solution 
gives better results than GA, 
PSO, etc. 

2015 R. P. Singh 
et al. 

- Minimize total system 
cost. 
- Minimize transmission 
active power loss. 
- Minimize total voltage 
deviation. 

- Used PSO with an aging 
leader and challengers (ALC-
PSO). 
- Tested with the modified 
IEEE 30-bus test system. 
- The proposed ALC-PSO 
provides better quality 
results compared to other 
result literature. 

2016 H. J.Touma 
 

- Minimize total system 
cost. 

- Used Whale optimization 
algorithm (WOA). 
- Tested with IEEE 30-bus 
test system. 
- Using B-coefficients data for 
test system. 
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Table 2.1 The OPF under the individual objective (Continued) 

Year Author Objective Description 

2017 D.P. Ladumor 
et al. 

- Minimize total system 
cost. 
- Voltage profile 
improvement. 
- Minimize active power 
loss. 

- Used Grey Wolf Optimizer 
algorithms (GWO). 
- Tested with IEEE 30-bus 
test system. 
- Found that the results of 
proposed method were clear 
that using SVC gave the best 
results for all three cases. 

2017 U. Khaled 
et al. 

- Minimize total system 
cost. 

- Used PSO. 
- Tested with IEEE 30-bus 
test system. 
- Add renewable energy 
sources such as wind and PV. 
- PSO has been suggested to 
select the optimal hourly 
load flow with the 
integration of Renewable 
Power Distribution (DG) 
generation. 

2018 M. Abdo 
et al. 

- Minimize quadratic 
fuel cost. 
- Minimize piecewise 
quadratic cost. 
- Minimize quadratic 
fuel cost considering 
the valve point effect. 

- Used Developed Grey Wolf 
Optimizer (DGWO). 
- Tested with IEEE 30-bus 
test system. 
- The DGWO is proven 
compared to conventional 
GWO and other well-known 
optimization techniques. 
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Table 2.1 The OPF under the individual objective (Continued) 

Year Author Objective Description 

2019 T. T. Nguyen - Minimize total 
electricity generation 
fuel cost. 
- Minimize total power 
losses. 
- Minimize total 
emission of all 
generators. 
- Minimize voltage 
deviation. 
- Minimize L index. 

- Used Novel Improved 
Social Spider Optimization 
Algorithm (NISSO). 
- Tested with IEEE 30-, 57- 
and 118- bus system. 
- The results have 
advantages over SSO such 
as simpler application, 
fewer control parameters, 
faster convergence with 
optimized solutions, and 
more stable search 
capabilities. 

2021 P. Muangkhiew 
and K. 
Chayakulkheeree 

- Minimize total 
system cost. 

- Used PSO. 
- Tested on IEEE 30-bus test 
system. 
- Found that the result of 
proposed method is better 
than deterministic method, 
EGA method, and GWO 
method. 
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Table 2.2 The OPF under the multi-objective 

Year Author Objective Description 

2010 M. S. Kumari 
et al. 

- Minimize total system 
cost. 
- Minimize loss. 
- Minimize voltage 
stability index. 

- Used Decoupled Quadratic 
Load Flow (DQLF) solution 
with EGA. 
- Tested on IEEE 30-bus test 
system. 
- Found that EGA–DQLF with 
SPEA method showed 
superiority over PSO–Fuzzy 
method. 

2011 S. 
Sivasubramani 
et al. 

- Minimize total system 
cost. 
- Minimize real power 
loss. 
- Minimize voltage 
stability index (L-index). 

- Used Multi-objective 
harmony search (MOHS). 
- Tested with IEEE 30-bus 
test system. 
- The MOHS method can 
provide best Pareto solution 
with better distribution than 
NSGA-II method with 
different objectives. 

2012 C. Kumar 
et al. 

- Minimize total system 
cost. 
- Minimize active power 
loss. 
- Minimize multi-
objective. 

- Used PSO. 
- Tested with IEEE 14-bus 
system. 
- The multi-objective 
considered fuel cost and 
active power loss. 
- Found that optimal 
solutions PSO method is 
better than Evolutionary 
programming (EP). 
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Table 2.2 The OPF under the multi-objective (Continued) 

Year Author Objective Description 

2013 M. R. Adaryani 
et al. 

- Minimize total 
system cost. 
- Voltage profile 
improvement. 
- Voltage stability 
enhancement. 
- Minimize total power 
losses. 
- Minimize total 
emission cost. 

- Used Artificial bee colony 
(ABC) algorithm. 
- Tested with IEEE 9-bus 
system, IEEE 30-bus test 
system and IEEE 57-bus 
system. 
- That ABC algorithm results 
in lower fuel cost than 
those previously reported in 
the literature. 

2015 M. Ghasemi 
et al. 

- Minimize total 
system cost. 
- Improvement of 
voltage profile. 
- Piecewise quadratic 
fuel cost functions. 
- Quadratic cost curve 
with valve point 
loadings. 

- Used Teaching-learning-
based optimization using 
Lévy mutation operator 
(LTLBO). 
- Tested with IEEE 30-bus 
and IEEE 57-bus system. 
- Implemented the goal to 
near global optimal settings 
of the control variables and 
their superiority compared 
to other methods. 
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Table 2.2 The OPF under the multi-objective (Continued) 

Year Author Objective Description 

2015 A. A. El-
Fergany 
et al. 

- Minimize total fuel 
cost of generating units. 
- Minimize total 
network real power 
losses. 
- Minimize total 
network reactive power 
losses (series 
reactance). 
- Minimize voltage 
security index. 

- Used GWO and differential 
evolution (DE). 
- Tested with IEEE 30-bus and 
118-bus systems. 
- Tested to find the best 
compromise of multi-
objective functions by fuzzy 
Pareto front method. 

2017 X. Yuan 
et al. 

- Minimize total system 
cost. 
- Minimize emissions. 

- Used improved strength 
Pareto evolutionary 
algorithm (ISPEA2). 
- Tested with the IEEE 30-bus 
and  
23 IEEE 57-bus systems. 
- Found that the ISPEA2 
method can produce the 
best Pareto optimal solutions 
for the multi-objective OPF 
problem better than other 
methods. 
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Table 2.2 The OPF under the multi-objective (Continued) 

Year Author Objective Description 

2018 M. A. Taher 
et al. 

- Minimize total 
system cost. 
- Minimize gas 
emission reduction. 
- Minimize active 
power loss. 
- Improve voltage 
profile. 
- Voltage stability 
enhancement. 

- Used Moth flame 
optimization (MFO). 
- Tested with IEEE 30-, 57-, 
and 118-bus systems. 
- The proposed algorithm is 
based on 15 case studies in 
terms of different individual 
and multi-objective 
functions. 
- Found that IMFO was able 
to find a more accurate and 
better OPF solution 
compared to other 
techniques. 

2019 Z. Ullah 
et al. 

- Minimize total 
system cost. 
- Minimize active 
power loss. 
- Minimize load bus 
voltage deviations. 

- Used Phasor PSO and a 
gravitational search 
algorithm (hybrid PPSOGSA). 
- Tested with IEEE 30-bus 
test system. 
- Forecast the output power 
of WT and PV generators 
based on the real-time 
measurements. 
- The multi-objective OPF 
problem can be solved 
using a weighted sum 
method. 
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Table 2.2 The OPF under the multi-objective (Continued) 

Year Author Objective Description 

2020 M.A. Ilyas 
et al., 

- Minimize total system 
cost. 
- Minimize real power 
loss. 
- Minimize carbon 
emission. 

- Used Paper review using 
Fuzzy Membership Function 
(FMF). 
- Tested with modified IEEE-
30 bus system with 
integration of renewable 
energy resources. 
- The constraint satisfaction 
was achieved using penalty 
function approach (PFA) and 
to develop true Pareto front 
(PF). 

2021 M. K. Ahmed 
et al. 

- Minimize active power 
loss. 
- Minimize total system 
cost. 
- Minimize voltage 
deviation. 

- Used PSO and Genetic 
algorithms (GA). 
- Tested on IEEE 30-bus test 
system. 
- Used fuzzy set theory to 
consider multi-objective 
functions. 
- The results showed that 
PSO was much better than 
GA. 
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Table 2.2 The OPF under the multi-objective (Continued) 

Year Author Objective Description 

2021 E. Naderi 
et al. 

- Minimize total 
generation cost. 
- Minimize active 
power transmission 
losses. 
- Minimize emission. 

- Used Fuzzy adaptive 
hybrid configuration 
oriented to a joint self-
adaptive PSO and 
differential evolution 
algorithms (FAHSPSO-DE). 
- Tested with IEEE 30-bus, 
57-bus, and 118-bus test 
systems. 
- Found that the FAHSPSO-
DE can handle different 
scales, multi-objective, and 
non-convex optimization 
problem. 

2021 A. K. Khamees 
et al. 

- Minimize fuel cost. 
- Minimize wind 
generation cost. 
- Minimize active 
power losses. 
- Minimize voltage 
security index. 

- Used Mayfly Algorithm. 
- Used the fuzzy-based 
Pareto front technique in 
multi-objective (MO) 
optimization. 
- Study the impact of 
changes in Weibull 
parameters, fine cost 
coefficients and return cost 
coefficients on wind power 
generation costs. 
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Table 2.2 The OPF under the multi-objective (Continued) 

Year Author Objective Description 

2022 S. Li et al. - Minimize total system 
cost. 
- Minimize active power 
loss. 
- Minimize voltage 
deviation. 
- Minimize emission. 

- Used non-dominated 
sorting genetic algorithm 
(NSGA-II). 
- Used adaptive crossover 
non-dominated sorting 
differential evolution 
(ACNSDE) and Superiority of 
feasible (SF) 
- Tested with modified IEEE-
30 bus system incorporating 
renewable energy sources. 
- Tested with IEEE 57-bus 
systems to verify the 
effectiveness of the 
proposed approach in 
handling large-scale 
problems. 

2022 P. 
Muangkhiew 
and K. 
Chayakulkhee
ree 

- Minimize total system 
generation cost. 
- Minimize active power 
losses. 
- Minimize load bus 
voltage deviations. 

- Used F-PSO. 
- Tested with IEEE 30-bus test 
system. 
- A fuzzy satisfactory function 
is used to solve for the best 
solution of multi-objective 
coordinately with PSO. 
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Table 2.3 Probabilistic OPF 

Year Author Objective Description 

2007 S. Conti et al. - Solved load flow 
problem in 
distribution networks 
with solar 
photovoltaic (PV) 
distributed generation. 

- Used Deterministic load-
flow (DLF). 
- The models are included 
in a radial distribution 
probabilistic load flow (PLF) 
program developed using 
Monte Carlo techniques. 
- Comparison between 
Deterministic Load Flow 
(DLF) and PLF analyses is 
also performed. 

2008 J. Hetzer 
et al. 

- Minimize total 
system cost. 

- Used Economic dispatch 
(ED). 
- Develop a model to 
integrate the wind power 
conversion system into the 
ED problem. 

2014 Y. Li et al. - Considered the 
relationship of wind 
speed and load after 
different distributions. 

- Used Probabilistic Optimal 
Power Flow (POPF). 
- Tested on IEEE 14-, 118-
bus system and an actual 
utility system in the 
southwest of China. 
- Found that the 
correlations between wind 
speeds and loads have 
significant impacts on the 
outputs of POPF. 
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Table 2.3 Probabilistic OPF (Continued) 

Year Author Objective Description 

2014 K. 
Chayakulkheeree 

- The review of 
different POPF 
methods. 

- Load uncertainty is a 
normal probability 
distribution function (PDF) 
with the concept of using 
historical total daily or 
annual load profile. 
- Proposes the frameworks 
for more realistic 
probabilistic modeling of 
system loads and renewable 
energy. 

2015 H. Zhang et al. - Minimize the total 
power loss with 
carbon emission 
consideration of the 
whole power 
network. 

- Used Interior-point 
algorithm and Monte-Carlo 
sampling (MCS) method. 
- Tested with modified IEEE 
14-bus system. 
- Maintain the lowest carbon 
emissions and the lowest 
energy loss. 
- Wind power variation and 
load variation are considered 
probabilistic variations. 

 



22 

Table 2.3 Probabilistic OPF (Continued) 

Year Author Objective Description 

2018 D. Fang et al. - Minimize root-mean-
square (RMSE). 

- Used MCS method. 
- Tested with modified IEEE 
14-bus test network. 
- Uncertainties of wind 
energy resources (wind 
speeds, wind directions and 
power outputs of wind-
based generation system). 
- Uncertainties during the 
assessment of line dynamic 
thermal rating (DTR). 

2018 U. Chhor et al. - Minimize total 
system cost. 

- Used Probabilistic optimal 
power dispatch (POPD) using 
linear programming (LP). 
- Solve the power 
generation dispatch with 
price-based real-time 
demand response (PRDR). 
- The expected short-term 
load forecast is shown with 
the probability distribution 
function. 
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Table 2.3 Probabilistic OPF (Continued) 

Year Author Objective Description 

2019 G. Li  
et al. 

- Minimize fuel cost 
of power generation. 

- Tested on IEEE 30-bus test 
system. 
- POPF calculation method 
that considers the 
relationship between PV 
output and load. 

2019 K. 
Rojanaworahiran  
et al. 

- Minimize the total 
cost. 
- Minimize the total 
real power loss. 

- Used PSO. 
- Tested with IEEE 30-bus test 
system and PDF of power 
system variables. 
- Consider the probabilistic of 
load and solar power 
uncertainties. 
-  This method can be 
applied to infiltration of high 
PVPP with unstable load or 
other variables in emerging 
power systems. 

2020 M.U. Keerio  
et al. 

- Minimize g active 
power loss. 
- Minimize voltage 
deviation. 
 

- Use NSGA-II algorithm. 
- Tested on IEEE 30-bus test 
system. 
- Appropriate probability 
distribution functions are 
considered to model them 
with Monte-Carlo simulation 
technique for wind and solar 
power generation. 
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Table 2.3 Probabilistic OPF (Continued) 

Year Author Objective Description 

2022 P. Muangkhiew 
and K. 
Chayakulkheeree 

- Minimize total 
system cost. 
- Minimize active 
power loss. 
- Minimize voltage 
magnitude deviation. 

- Calculated FMOPF using 
PSO. 
- Tested on IEEE 30-bus test 
system. 
- Using PDF for load, PVPP, 
and WPP with MCS. 

 

2.3  OPF under the individual objective 
The optimal power flow (OPF) problem is a complex optimization problem, 

especially considering the limitations of the system. The OPF problem is a non-linear 
and smooth optimization problem. O.Alsac and B.Stott (1974) previously extended 
problem definitions and solution schemes by incorporating potential downtime 
constraints in this approach. To achieve the optimal operating point of the system with 
stable state security. The controllable system volume in the base case problem is 
optimized within scope for some defined purposes so as not to violate other volume 
limits in baseline or emergency system operating conditions 

After years of OPF development, M.A. Abido (2002) studied the optimal setting 
of the OPF problem control variable by a particle swarm optimization (PSO) technique. 
The PSO method is a derivative-free optimization method for solving the OPF problem. 
The assumptions set in the objective function are highly optimized. The proposed 
method has a different objective reflecting the reduction of fuel cost, voltage profile 
improvement, and voltage stability enhancement. The results of the proposed 
guidelines have been compared with those reported in the literature recently, tested 
on IEEE 30-bus standard test systems.  

At the same time, A. G. Bakirtzis et al. (2002) presented an optimal current 
solution (OPF) with both continuous and discrete control variables using an advanced 
genetic algorithm (EGA). There are the unit active power output and the voltage 
magnitude of the generator bus as a modeled continuous control variable, while the 
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transformer tap settings and switchable dividers are the discrete variables. Lastly, there 
are several operational limitations, such as branch flow, Load bus voltage, and the 
response capability of the generator. This is included in the penalty in the GA fitness 
function. 

The optimal reactive power flow is an optimization problem with at least one 
objective of reducing active power loss for a fixed production schedule. The generator 
bus voltages, transformer tap settings, and reactive power output of the compensating 
devices placed on various busbars are the control variables in the system. At the same 
time, Aniruddha B. et al. (2010) presented a solution for optimal reactive energy flow 
of various types under operational constraints by using the Biogeography-Based 
Optimization (BBO) technique. BBO searches for the global optimum mainly through 
two stages: Migration and Mutation. However, BBO are used to solve the problem of 
optimal reactive power flow for power systems to reduce active power loss tested on 
IEEE 30-bus and IEEE 57-bus standards.  

Belgin Emre et al. (2013) describe OPF with the total system cost function as 
considered the objective function by using the PSO method to fix the problem. The 
proposed OPF formula contains detailed generator limits, including power generation 
limits of active and reactive and test valve point load effects, tested on the standard 
IEEE 14 and 30 bus test systems. Therefore, the results of this proposed showed that 
the PSO technique developed within the domain of this study produces results at a 
lower cost than studies available in the literature.  

H.R.E.H. Bouchekara (2014) presented an algorithm. meta-heuristic Inspired by 
nature to solve the problem of optimal power flow in the electrical system. This 
algorithm was inspired by the phenomenon of black holes. A black hole is a region of 
spacetime where gravity is so strong that nothing (no particles or even electromagnetic 
radiation such as light) can escape from black hole. The developed method namely 
the black hole-based optimization method shows the effectiveness of the proposed 
method. It has been tested on the standard IEEE 30-bus test system for various 
objectives. In addition, to establish the scalability and suitability of the proposed 
method for large and active power systems. The system was tested on an actual Algeria 
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59 bus power system. Lastly, the results are compared with other methods reported 
in the literature.  

Rudra Pratap Singh et al. (2015) presented the solution to the power system 
OPF problem using a combination of PSO with an aging leader and challengers (ALC-
PSO). The study was performed on a modified IEEE 30-bus test power system with 
different objectives reflecting the reduction in fuel cost or active power loss or the 
total voltage deviation. Later, Haider J.Touma (2016) presented a new strategy to solve 
the Economic Dispatch problem, the latest meta-heuristic optimization approach 
called the Whale Optimization Algorithm. The proposed method was validated on an 
IEEE 30-Bus test system to reduce production costs. Dilip P Ladumor et al. (2017) 
presented a paper that introduced defined OPF problems equipped with shunt-
connected Flexible AC transmission (FACT) device known as Static VAR Compensator 
(SVC) by a meta-heuristic Grey Wolf Optimizer (GWO) algorithm. There are three 
objective functions consisting of total system fuel Cost, voltage magnitude deviation, 
and active power loss considered OPF problems. The proposed methodology applies 
to standard IEEE 30-bus test systems with and without SVC devices to determine the 
quality and performance of the proposed approach (GWO). 

Extensive loads often cause voltage drop problems in the power system, which 
can be solved by adding renewable energy sources such as wind power plants and 
photovoltaic (PV) plants to the busbars. This option can increase the efficiency and 
reliability of the system while also reducing the generated power cost. So, Usama 
Khaled et al. (2017) presented an hourly load flow suitable for distributed generation 
with the consolidation of renewable energy resources using PSO, a modified intelligent 
technique in the 30-bus IEEE system under different operating conditions. In addition, 
PV and wind power plants have been used on selected buses to assess their benefits 
as renewable distributed generation (DG). Meanwhile, the different solar radiation and 
wind speeds for the Dammam site in Saudi Arabia were used locally to study the 
potential of the integration of renewable energy resource and their impact on the 
operation of the electrical system. However, the results of this proposed system prove 
that the use of renewable energy sources such as DG reduces the overall production 
and operating costs of the power system.  
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Next, Mostafa Abdo et al. (2018) presented an effective solution to OPF by an 
improved version of a gray wolf optimization technique called the Developed Gray 
Wolf Optimizer (DGWO). While the GWO is an efficient technique but it may tend to 
stagnate at local optimization in some cases due to insufficient wolf diversity. 
Therefore, the DGWO algorithm was proposed to improve the searchability of this 
optimizer. The DGWO is based on improving the survey process using a random 
mutation to increase the population diversity while an exploitation process is 
enhanced by improving the position of populations in a spiral path around the best 
solution. The adaptive operators are used in DGWO to find a balance between the 
exploration and exploitation step during the iterative process. The objective function 
of this work is to reduce quadratic fuel cost, reduce piecewise quadratic cost, and 
reduce quadratic fuel cost considering the effect of valve point. 

However, T. T. Nguyen (2019) proposed the NISSO algorithm for solving the OPF 
solutions to optimize fuel cost in electricity generation, power loss, polluted emission, 
voltage deviation, and L index tested on three IEEE systems with 30, 57, and 118 buses. 
At the same time, the NISSO method was developed to improve the quality of the 
optimal solution and accelerate the convergence of traditional Social Spider (SSO) 
optimization. As a result, the proposed method has advantages over SSO such as 
simplification of operation with few control parameters and less time to adjust control 
parameters. 

 

2.4 OPF under the multiple objective 
In recent years, there is an optimization problem associated with more than 

one objective function where the task of finding one or more optimal solutions is 
called multi-objective optimization. The different objectives and constraints of the OPF 
problem are defined as non-linear constrained multi-objective optimization problems 
considered in a different formula than the original formula. M. S. Kumari et al. (2010) 
began to define the problem of multi-objective optimization by setting optimal 
controls for reducing and wasting fuel costs, loss Index and voltage stability fuel cost 
index and voltage stability, and finally Fuel cost, loss and voltage stability index, tested 
on an IEEE 30-bus test system. This work combines the new DQLF solution with EGA 
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to solve OPF problems. Then, the multi-objective evolutionary algorithm proposed 
with the EGA–DQLF model for OPF solutions sets the Pareto front. Results using EGA–
DQLF versus SPEA methods were compared with results obtained using PSO and Fuzzy 
maximization methods. 

S. Sivasubramani et al. (2011) presented a multi-objective harmony search 
(MOHS) algorithm for the OPF problem. Elite sorting and rejection distances are used 
quickly to find and manage the most suitable Pareto front end. Lastly, use a fuzzy-
based function to select a compromise solution from the Pareto set. This proposed 
MOHS method was tested on the IEEE 30-bus test system for different objectives, and 
the simulation results were also compared with the fast non-dominated sorting genetic 
algorithm (NSGA-II) method. By comparison, it is clear that the proposed method can 
produce a truly optimal Pareto solution and well distributed for OPF problems. 
Subsequently, C.Kumar et al. (2012) presented the solution of the OPF using PSO. The 
main goal of this article is to examine the feasibility of implementing PSO problems, 
which consist of various objective functions. The proposed PSO technique has been 
verified and compared with the Evolutionary Programming (EP) method to standard 
IEEE 14-bus systems. The results showed that the proposed PSO method was able to 
find a higher quality solution to the OPF problem effectively. 

Meanwhile, M. Rezaei Adaryani et al. (2013) presented the artificial bee colony 
(ABC) algorithm as the primary optimization tool for optimizing the electrical control 
variables of the OPF problems. The proposed method is a new efficient method for 
solving the OPF problem in electric power systems. In this work, different objective 
functions were chosen for this highly restrictive non-convex nonlinear optimization 
problem, in which different objective functions consist of convex and non-convex fuel 
costs, total active power loss, voltage profile improvement, voltage stability 
enhancement, and total emission cost. The absoluteness and effectiveness of the 
proposed method have been tested with the IEEE 9-bus system, IEEE 30-bus test 
system, and IEEE 57-bus system and the simulation results show that the proposed 
ABC algorithm provides the right solutions for all kinds of objective functions.  

Mojtaba Ghasemi et al. (2015) examined the feasibility of implementing an 
evolutionary approach to solving OPF problems using a novel Teaching-Based 
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Optimization (TLBO) algorithm using a mutation strategy. Lévy variants for optimal 
setting of OPF problem control variables. The objective functions in these problems 
are to reduce fuel costs such as quadratic cost function, piecewise quadratic cost 
function, cost function with valve point effect, and improvement of the voltage profile, 
tested on IEEE 30-bus and IEEE 57-bus test systems with different objective functions 
and compared to methods reported in the literature. At the same time, A. A. El-Fergany 
et al. (2015) used the grey wolf optimizer and DE algorithms to solve individual and 
multi-objective OPF problems. Both algorithms are used to optimize individual 
objective functions including fuel cost, real power loss, reactive power loss, and 
voltage security index. The best compromise of multi-objective functions uses the 
fuzzy-based Pareto front approach.  

X. Yuan et al. (2017) used the Pareto evolutionary algorithm to solve the multi-
objective OPF problems. The original SPEA2, ISPEA2, NSGA2, and r-NSGA2 were used 
to evaluate IEEE 30-bus and IEEE 57-bus systems with respect to reductions in fuel cost 
and associated emissions. Compared to other algorithms, the simulation results 
showed that the ISPEA2 was able to find a well-distributed Pareto set and a better 
solution. In addition, M. A. Taher et al. (2018) proposed an improved moth flame 
optimization (IMFO) algorithm to effectively solve the problem of OPF. The MFO 
concept was inspired by the movement of a moth in the direction of the moon. The 
IMFO was based on the MFO concept, re-spiralizing the moth's path around the flame. 

Standard IEEE 30‐bus, IEEE 57‐bus, and IEEE 118‐bus test systems are used to verify 
and prove the performance and durability of IMFO algorithms. The validation of the 
proposed method is based on 15 case studies in terms of different individual and 
multi-objective functions, including minimizing fuel cost, minimizing gas emission, 
active minimizing power loss, voltage profile improvement, and voltage stability 
enhancement. The results demonstrated the capability and robustness of the IMFO 
algorithm in solving OPF problems.  

Z. Ullah et al. (2019) presented a mixture of phasor particle swarm optimization 
(PPSO) and a gravitational search algorithm, namely a hybrid PPSOGSA algorithm, for 
OPF in power systems with an integrated solar photovoltaic (PV) and wind turbine (WT) 
generators. The WT and PV generator output power forecasts are based on real-time 
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measurements and the probabilistic models of solar irradiance and wind speed. The 
proposed OPF guidelines and solutions have been validated in IEEE 30-bus test 
systems. The statistical characteristics of the OPF results were assessed using the 
Monte Carlo method.  

Meanwhile, M. A. Ilyas et al. (2020) presented that the inclusion of renewable 
energy resources (RESs) in an electrical network is a center of attention. This proposed 
OPF problem is considered a multi-constraint, multi-objective optimal power flow 
(MOOPF) problem along with optimal RESs integration. While, the objectives of MOOPF 
are three: the total generation cost, active power loss of the system, and reducing 
carbon emission of thermal sources. In this work, efficient computational techniques 
are presented to find the most probable values of control variables in power systems 
with distributed RES. The IEEE-30 bus system was addressed with RES inclusion, and 
the final optimization issue was resolved using the Particle Group Optimization (PSO) 
algorithm. 

M. K. Ahmed et al. (2021) presented a single-objective and multi-objective (MO) 
function, where a reduction in real power loss, fuel cost, and voltage deviation is 
considered the objectives. In this paper, a multi-objective PSO (MOPSO) method is 
proposed using fuzzy set theory which was tested on the IEEE 30-bus test system. 
However, the results showed that MOPSO and revised PSO results were much better 
than GA and MOGA.  

E. Naderi et al. (2021) proposed a new fuzzy adaptive hybrid configuration 
focused on a joint self-adaptive particle swarm optimization (SPSO) and differential 
evolution algorithms (FAHSPSO-DE), to deal with multi-objective OPF (MOOPF). The 
objectives with normal differences such as total system cost, active power losses, and 
emission are selected. To demonstrate the effectiveness and appropriateness of the 
proposed approach to solving the OPF problem. They will test on IEEE 30-, 57- and 
118-bus test systems also used. 

Renewable energy sources are gaining increasing attention due to a number of 
attractive features such as recycling, integrity, and cleanliness. As a result, more and 
more renewable energy sources are being penetrated into the power grid. A. K. 
Khamees et al. (2021) studied a new artificial intelligence (AI) method called the Mayfly 
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Algorithm (MA) and Aquila Optimizer (AO) to calculate the Weibull distribution 
parameters. Two AI methods have proven superior and robust for evaluating the two-
parameter Weibull distribution as they provide lower error and higher correlation 
coefficients. Then, individual and multi-objective stochastic optimal power flow 
(SCOPF) is applied to modified IEEE-30 with two wind farms to reduce total system 
cost, active power loss, thermal unit emission, and voltage security index (VSI). They 
use the fuzzy Pareto front technique of multi-objective optimization (MOO) to achieve 
the best compromise solution. 

In addition, S. Li et al. (2022) proposed a modified IEEE 30-bus test system that 
integrates renewable energy sources as the case study. Meanwhile, the available solar 
power is used the lognormal probability density function (PDF) to calculate and the 
available wind power is used the Weibull probability density function to calculate. The 
optimal power flow with random wind and solar energy is formulated as a multi-
objective optimization problem, in which four optimization objectives including total 
system cost, active power loss, voltage magnitude deviation, and emission, are 
considered. In addition, to verify the effectiveness of the proposed approach to 
addressing large-scale problems, another larger test system, such as the IEEE 57 bus 
system, was selected. 

 

2.5 Probabilistic OPF 
 With greater uncertainty and variability in smart grids' configurable load flow, It 
is used to analyze daily working conditions and plan electrical systems for future 
investments. The problem cannot be solved by considering intermittent power 
generation and load variation. S. Conti et al. (2007) addressed the LF problem in 
photovoltaic (PV) DG distribution networks. This model was included in a radial 
distributed probabilistic load flow (PLF) program developed using Monte Carlo 
techniques. Meanwhile, a comparison is made between Deterministic Load Flow (DLF) 
and PLF analyses are also performed. A year later, J. Hetzer et al. (2008) proposed a 
solution to the electrical power system economic dispatch (ED) by continually 
searching for alternatives to conventional energy sources, the need to include a wind 
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power generator (WECS). The uncertain nature of the wind speed is illustrated by the 
Weibull PDF. 

Y. Li et al. (2014) presented a probabilistic optimal power flow (POPF) technique 
based on the relationship of wind speed correlations after arbitrary probability 
distributions based on the point estimation method (PEM). The results showed that 
the relationship between wind speed and wind speed and load had a significant impact 
on POPF results. At the same time, Keerati Chayakulkheeree (2014) discussed the 
advantages of probabilistic optimal power flow (POPF) in the analysis of modern power 
systems, including the frameworks for probabilistic models for system loading and 
renewable power, which is the behavior of solar and wind energy. An examination of 
the practical load profiles and behavior of photovoltaic plants is discussed as an 
illustration. The POPF is one of the interesting tools that provide effective uncertainty 
management in power system analysis. 

Haotian Zhang (2015) presented a probabilistic optimal power flow (POPF) 
considering probabilistic load and solar power instability. In defining the proposed 
POPF problem formulations, minimization of the total cost (TCMS) and the 
minimization of total real power loss (TLMS) are solved by PSO, respectively. In the 
POPF model, the probabilistic of photovoltaic power plant (PVPP) and load data are 
combined with the POPF calculation.  
Then, Duo Fang (2018) looked at the assessment of uncertainties due to significantly 
increased penetration levels of unpredictable renewable energy sources, which is 
illustrated by the example of an actual UK wind farm (WF) and the use of dynamic 
thermal rating (DTR), instead of static heat rating. The analysis presented shows that 
there is a complex relationship between the line DTRs and WF power outputs, as both 
are greatly affected by variations in wind speeds and wind directions. This associated 
volatility and related uncertainties were modeled using the appropriate PDF and CDF 
analysis formulas, and then combined with the probabilistic optimal power flow (POPF) 
analysis, allowing for a more accurate assessment of the risk of cable overload. 

At the same moment, Udoum Chhor (2018) presented a probabilistic optimal 
power dispatch (POPD) using linear programming (LP) for solving the power generation 
dispatch with price-based real-time demand response (PRDR). The expected short-term 
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load forecast is represented by a probabilistic distribution function, clearly showing 
that the proposed method can handle a POPD solution for the actual power 
distribution based on PRDR using the probable truncated normal distribution (PTNF) 
function. 

Years later, Guoqing Li (2019) proposed presented the influence of uncertainty 
and the relationship between solar photovoltaic (PV) power output and load on the 
operating state of the power system. This article is a probabilistic optimal power flow 
(POPF) calculation method based on the propagation kernel density estimate. Firstly, 
according to the distribution characteristics of the solar PV output, an adaptive diffusion 
kernel density estimation of the PV output is modeled, which can transform the kernel 
function into a linear diffusion process to achieve a modulation of the approximation 
bandwidth of the nuclear density estimation. Second, the Kendall rank correlation 
coefficient and the minimum Euclidean distance were used as correlation measures 
and suitability index of fitting to select the optimal Copula function, and the joint 
probability distribution model of PV output and load is constructed. Finally, simulation 
studies will be conducted with the measured data of a Chinese solar PV and the IEEE 
30-bus power system. The results showed that considering the relationship between 
solar PV output and load, it was possible to improve the accuracy of POPF calculation 
and effectively reduce the total system cost of the power system by using a genetic 
algorithm (GA). That same year, Kanatip Rojanaworahiran (2019) presented a 
probabilistic optimal power flow (POPF) based on probabilistic load and solar power 
uncertainties. In the proposed POPF problem determination, total cost reduction 
(TCMS) and total real power loss reduction (TLMS) will be solved by PSO respectively. 
The POPF model, probabilistic solar photovoltaic (PVPP), and load data were combined 
with POPF calculations tested on an IEEE 30-bus test system and the electrical system 
variable's probability density function (PDF) was a machine. real generator total loss 
and have reviewed all expenses. 

The POPF model, probabilistic photovoltaic (PVPP), and load data were 
combined with POPF calculations tested on an IEEE 30-bus test system and the 
electrical system variable probability density function (PDF) as a machine. active 
generator total loss and have reviewed all expenses. 
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CHAPTER 3 

OPF CONSIDERING FULL CONTROL VARIABLES1 
 
3.1 Introduction 
 The OPF problem determines the power output of each online generator. The 
main objective of the OPF problem is to reduce the total system cost (TSC) of the 
considered power system, which can be achieved by adjusting the output power of all 
generators connected to the considered electric system. From section 2.3, numerous 
research has been aimed at minimizing the total system cost for the power system. 
Total system cost minimization (TSCM) is a key factor for economic performance that 
benefits both electricity buyers and consumers. Thus, the TSCM for the power system 
is achieved based on several parameters, one of which is generator allocation. 

This chapter presents a particle swarm optimization (PSO) for the determining 
of OPF solution based on full control variables. The proposed PSO-based OPF (PSO-
OPF) problem is defined with the intent of TSCM. The active power generation, 
generator voltage magnitudes, transformer tap changing, and capacitive reactance 
optimization are obtained simultaneously. This is a result of the proposed method, 
tested on the IEEE 30-bus test system. Finally, comparative results of the IEEE 30-bus 
test system of the proposed method and other available methods are shown and 
discussed. 
 

3.2 Problem formulation 
 The OPF problem is known as economic dispatch (ED) considering operating 
control variables and security constraints. It optimizes the control variable settings in 
terms of the objective function while satisfying various equality and inequality limit 
constraints. Thus, the objective function of this chapter is to reduce the overall cost 

 
1 Part of this work was presented at the " 9th International Electrical Engineering Congress (iEECON2021)”, 
Thailand, 2021. (Best Paper Award in Power System Session) 
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of generating electricity under constraints. Mathematically, the OPF problem can be 
defined as: 
 

Minimize  (x,u)+iOB PNF      (3.1) 
 

Subject to:  (x,u) 0=g       (3.2) 
 

(x,u) 0h       (3.3) 
 

In the above equations, OBi represents the set of objective functions to be 
minimized. Meanwhile, g and h, in Equations 3.2 and 3.3, are the sets of necessary 
equality and inequality constraints, where x is the vector of dependent variables 
including: 
1. Active power generation of slack bus (PG1). 
2. Voltages at load bus (VL) 
3. Reactive power output generation (QG) 
4. Transmission line flow (Sl). 

So, x can be expressed as: 
 

1 1 1 1[ , ... , ... , ... ]T

G L LNL G GNG l lNTLP V V Q Q S S=x .     (3.4) 
 
So, u can be expressed as: 
 

[ , , , ].T = G G Cu P V T X         (3.5) 
 

Where u is the control variable vectors, consisting of, 
1. Active power output generation (PG) excluding at the slack bus (PG1). 
2. Voltage magnitude at generator bus (VG). 
3. Transformer tap setting (T). 
4. Capacitive Reactance (XC). 
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( )2 3 1 1
[ , ,..., ]  G G GNG NG
P P P

 −
=GP ,      (3.6) 

 

1 2 1[ , ,..., ]  G G GNG NGV V V =GV ,       (3.7) 
 

1 1[ ,..., ]  NT NTT T =T ,        (3.8) 
 

1 1[ ,..., ]  C CNC NCX X =CX .       (3.9) 
 

3.3 Objective function: Total system generation cost minimization 
(TSCM) 
In this simulation process of the OPF problem, the objective function is to 

reduce the total cost of electric power to meet demand and stay within the limitations 
listed below: 

 

1min ( ) min ( )= +
u u

OB TSC PNFx,u x,u       (3.10) 

where,  

2

1

( ) ( )
NG

i i Gi i Gi

i

TSC a b P c P
=

= + +x,u       (3.11) 

 

3.4 Constraints 
 Optimization constraints are as follows: 

3.4.1 Equality constraints 

In Equation 3.2, g is the equality limit constraints, which represent 
typical load flow equations: 

 

1

cos sin 0 
=

 − − + = 
NB

Gi Di i j ij ij ij ij

j

P P V V G B      (3.12) 

 

1

sin cos 0 
=

 − − − = 
NB

Gi Di i j ij ij ij ij

j

Q Q V V G B     (3.13) 

 
Where, i = 1,2,…,NB. 
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3.4.2 Inequality constraints 

The matrix h is the inequality limit constrains that included: 
- Generator’s voltage magnitude limit constraints, 

| | | | | |L U

i i iV V V   , i=1,…,NG,    (3.14) 
 

- Generator’s active power output limit constraints, 
L U

Gi Gi GiP P P   , i=1,…,NG,    (3.15) 
 

- Generator’s reactive power output limit constraints, 
L U

Gi Gi GiQ Q Q    , i=1,…,NG,    (3.16) 
 

- Transformer tap changing limit constraints, 
L U

i i iT T T    , i=1,…,NT,    (3.17) 
 

- Shunt capacitor limit constraints, 
L U

ci ci ciQ Q Q    , i=1,…,NC,    (3.18) 
 

- Bus voltage magnitude limit constraints, 
| | | | | |L U

Li Li LiV V V   , i = 1,…,NPQ,   (3.19) 
 

- Line flow limit constraints, 
| |   U

Li LiMVA MVA  , i = 1,…,NL.    (3.20) 
 

3.5 The OPF Using PSO 
Particle Swarm Optimization (PSO) was presented by Kennedy and Eberhart in 

1995. The PSO solution is a random search optimization method with the concept that 
“the populations are defined as swarms, and the possible solutions are the particles”. 
The system is initialized with a stochastic population of solutions and particles are 
updated in the subsequent releases (iterations). Every time (iteration), each particle 
will be updated with the best values. Meanwhile, the best value in each iteration is 
called ‘pbest’. And if the value is better than the ‘pbest’ of the current iteration, the 
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‘pbest’ value is replaced and each particle that knows the best value in the group 
called ‘gbest’ among ‘pbest’. PSO is more computationally efficient in terms of 
velocities and records the best position ever.  

In this section, the population set is defined as Equation (3.21). The particles 
modify their velocity and current position according to equations (3.22) and (3.23), 
respectively. 

 
[ ,  ,  ,  ].=i Gi Gi i Cip P V T X        (3.21) 

 
1

1 1 2 2( ) ( ) .t t t t t t

m m m i mv wv c r pbest c r gbest+ = + − + −p p    (3.22) 
 

1 1  .t t t

m m mv+ += +p p         (3.23) 
 

The standard parameters of PSO are used for the investigation of this work. A 
w decreases from 0.9 at the first iteration to 0.4 at the maximum iteration, and c1 and 
c2 are 2.00. The computational procedure of the TSCM can be described in the 
following step: 
 

Step 1: Obtain power flow input data set. 
Step 2: Specify the control variables, dependent variables, and security limits. 
Step 3: Formulate the PSO population by Equation (3.21). 
Step 4: Run power flow for all populations and compute the objective value 

by Equations (3.12) and (3.13). 
Step 5: Check constraint violations for the population. If the constraint is not 

violated, go to step 7, otherwise, proceed to step 6. 
Step 6: Add the penalty factor to the objective function for population m. 
Step 7: Compute TSC by Equation (3.11). 
Step 8: Get pbestm

t and gbestt of PSO. 
Step 9: Determine the velocity of particle m and update the particle’s position. 
Step 10: Check maximum iteration. If the iteration reaches maximum iteration, 

go to step 11, otherwise, go to step 4. 
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Step 11: Obtain the output. 
 

3.6 Simulation Results 
The proposed OPF using PSO was validated by IEEE 30-bus test system as 

shown in Figure 3.1 and the modified IEEE 30-bus test system with additional capacitors 
connected to bus numbers 12, 15, 17,20, 21, 23, and 29, as shown in Figure 3.2. 

The IEEE 30-bus test system data, including network information, generation 
and load information are given in (O. Alsac, B. Stott., 1974) and control variables 
including their limits from (A. G. Bakirtzis et al., 2002). The study cases are presented 
using MATLAB software. The goal of this section is the total system cost.  
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Figure 3.1 The IEEE 30-bus test system 
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Figure 3.2 The modified IEEE 30-bus test system 

This section contains two case studies, consisting of Case I: The base case with 
IEEE 30-bus test system and Case II: Further capacitors connected with modified IEEE 
30-bus test system. For the base case and further capacitors of the base case, the 
control variables are as shown in Table 3.1. 
 
Table 3.1 The control variables of standard case 

Control Variables 
Base Case 

Further capacitors  
of the base case 

Number At bus number Number At bus number 

Active power 
generations 

5 2, 5, 8, 11, 13 5 2, 5, 8, 11, 13 

Generators’ voltage 
magnitudes 

6 
1 (slack), 2, 5, 8, 

11, 13 
6 

1 (slack), 2, 5, 8, 11, 
13 

Transformer tap-
changes 

4 
6-9, 6-10, 4-12, 

27-28 
4 6-9, 6-10, 4-12, 27-28 

Capacitive 
reactance 

2 10, 24 9 
10, 12, 15, 17, 20, 21, 

23, 24, 29. 
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3.6.1 Case I: Simulation Results with the Base Case of IEEE 30-Bus Test 

System 

This case study investigates the performance of the proposed PSO-
based OPF by comparing it to the widely-used standard case (O. Alsac, B. Stott., 1974), 
which is the model shown in Figure 3.1. The TSC is compared deterministic method 
(O. Alsac, B. Stott., 1974) provided in Table 3.2. 

In Table 3.2, the Capacitors are connected only to buses 10 and 24. 
The results show that the total system cost proposed PSO is 799.551 ($/h), which is 
lower than that of the conventional deterministic method. 

Table 3.3 illustrates the base case simulation results from 30 trials of 
the proposed method. Meanwhile, the minimum and maximum values of TSC received 
from PSO are 799.551 $/h. and 800.479 $/h., respectively. The average and standard 
deviation of TSC from 30 trials are 799.643 $/h and 0.195, respectively. Then, the 
behavior convergence plot of the proposed base case is shown in Figure 3.3., and the 
plot of 30 trial solutions is also shown in Figure 3.4. 
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Table 3.2 Comparison results of the IEEE 30-bus test system for TSCM 

Control Variables Deterministic method Proposed method 
Power Generation (PGi) at Bus (MW) 

2 48.84 48.66 
5 21.51 21.30 
8 22.15 21.05 
11 12.14 11.84 
13 12.00 12.00 

Generator Voltage (|Vi|) Magnitude at Bus (p.u.) 
1 1.05 1.10 
2 1.04 1.09 
5 1.01 1.06 
8 1.02 1.07 
11 1.09 1.09 
13 1.09 1.08 

Transformer Tap-Changing (Ti-j) between Buses 
6-9 1.00 1.10 
6-10 0.96 0.93 
4-12 1.00 1.05 
28-27 0.94 1.03 

Capacitive Reactance (XCi) at Bus (p.u.) 
10 -5.26 -44.46 
24 -25.00 -9.64 

TSC ($/h.) 802.400 799.551 

 
Table 3.3 The best, worst, average, and standard deviation of TSC from the Base 

case 30 trial solutions 

  The proposed PSO 
 Best Worst Average S.D. 

TSC ($/h) 799.551 800.479 799.643 0.195 
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Figure 3.3 The convergence plot of the proposed method for base case 

 

 
Figure 3.4 The solution with 30 trials of the proposed method run for base case 

 

3.6.2 Case II: Simulation Results of the modified IEEE 30-Bus Test System 

In this case, the modified IEEE 30-bus test system with further capacitors 
is tested by the proposed method and compared with the EGA method (A. G. Bakirtzis 
et al., 2002), BHBO method (H.R.E.H. Bouchekara, 2014), and EGA-DQLF method (M. S. 
Kumari et al., 2010), which the model showed in Figure 3.2. Meanwhile, the control 
variables are shown in Table 3.1. The comparison results with the modified IEEE 30-

 



44 

bus test system of EGA, BHBO, EGA-DQLF, and the proposed method are given in Table 
3.4. The TSC should be lower than Case I because it has more capacitors control 
variables. Similarly, the proposed PSO of Case II yielded the lowest TSC result of 
799.385 $/h, compared to the EGA method, BHBO method, and EGA-DQLF method. 
Meanwhile, the behavior convergence plot of the proposed PSO for Case II is shown 
in Figure 3.5. From the results, it can be seen that the proposed method can 
successfully reduce the TSC considering all load flow variables in the power system. 

Table 3.5 illustrates the base case simulation results from 30 trials of 
the proposed method. The best and worst values of TSC received from PSO are 
799.385 $/h. and 800.025 $/h., respectively. The average and standard deviation of TSC 
from 30 trials are 799.445 $/h and 0.121, respectively. Meanwhile, the convergence 
plot of the proposed base case is shown in Figure 3.5., and the plot of 30 trial solutions 
is also shown in Figure 3.6. 
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Table 3.4 Comparison results of the modified IEEE 30-bus test system for TSCM 

Control Variables EGA BHBO EGA-DQLF Proposed method 

Power Generation (PGi) at Bus (MW) 
2 48.75 48.35 48.11 48.69 
5 21.44 21.53 21.28 21.30 
8 21.95 20.02 20.93 21.13 
11 12.42 13.42 12.50 11.95 
13 12.02 13.41 12.00 12.00 

Generator Voltage (|Vi|) Magnitude at Bus (p.u.) 
1 1.05 1.10 1.10 1.10 
2 1.04 1.08 1.08 1.09 
5 1.01 1.05 1.05 1.06 
8 1.01 1.06 1.06 1.07 
11 1.08 1.08 1.10 1.05 
13 1.07 1.07 1.09 1.01 

Transformer Tap-Changing (Ti-j) between Buses 
6-9 1.01 1.02 0.95 1.03 
6-10 0.95 1.00 1.04 1.07 
4-12 1.00 1.03 1.00 1.05 
28-27 0.96 1.00 0.98 1.04 

Capacitive Reactance (XCi) at Bus (p.u.) 
10 -20.00 -33.23 -25.00 -15.16 
12 -20.00 -33.69 -50.00 -2.39 
15 -33.33 -28.94 -20.00 -33.08 
17 -20.00 -28.16 -20.00 -15.25 
20 -20.00 -40.84 -50.00 -45.00 
21 -20.00 -36.03 -25.00 -9.08 
23 -25.00 -35.74 -25.00 -44.92 
24 -20.00 -29.52 -33.33 -14.47 
29 -33.33 -37.21 -100.00 -44.97 

TSC($/h.) 802.060 799.922 799.560 799.385 

 



46 

Table 3.5 The best, worst, average, and standard deviation of TSC from 30 trial 
solutions 

  The proposed PSO 
 Best Worst Average S.D. 

TSC ($/h) 799.385 800.025 799.445 0.121 

 

 
Figure 3.5 The convergence plot of the proposed method of TSCM 

 

 
Figure 3.6 The solution with 30 trials of the proposed method run of TSCM 
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CHAPTER 4 

FUZZY MULTI-OBJECTIVE OPF2 

 
4.1 Introduction 

With the different objectives of operating an electrical system, the OPF can be 
defined as a multi-objective security constraint optimization problem. The multi-
objective (MO) optimization is an important part of optimization activities. Whereas the 
multi-objective OPF (MOOPF) has been proposed in several kinds of research literature 
in section 2.4, most of the research is on minimizing total system cost (TSC), active 
power loss (APL), and voltage deviation (VMD) considering each objective 
simultaneously.  

This section presents the problem of determining the optimal control variable 
for the purpose, which consists of reducing TSC, APL, and VMD. Meanwhile, the 
proposed provides three objective functions that are optimized individually and MO 
at the same time, subjected to several equality limits constraints. Therefore, the 
proposed fuzzy-MOOPF (FMOOPF) uses the PSO method tested on the modified IEEE 
30-bus test system. Lastly, the comparison results with the IEEE 30-bus test system of 
the proposed method and the kinds of literature are addressed. 

 

4.2 Problem formulation 
Mathematically, the OPF problem can be formulated as Equations (4.1), (4.2), 

and (4.3). Whereas, the dependent variables vector (x) can be expressed as Equation 
(4.4) and the control variables vector (u) can be expressed as Equation (4.5). 
Mathematically, the OPF problem can be defined as: 
 

Minimize  (x,u)+iOB PNF       (4.1)

 
2 Part of this work is accepted for publication in "International Energy Journal (IEJ)”, 2022. 
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Subject to:  (x,u) 0=g        (4.2) 
 

(x,u) 0h        (4.3) 
 

In the above equations, OBi represents the set of objective functions to be 
minimized. Where x is the vector of dependent variables including: 
1. Active power generation of slack bus (PG1). 
2. Voltages at load bus (VL) 
3. Reactive power output generation (QG) 
4. Transmission line flow (Sl). 

So, x can be expressed as: 
 

1 1 1 1[ , ... , ... , ... ]T

G L LNL G GNG l lNTLP V V Q Q S S=x .     (4.4) 
 
So, u can be expressed as: 
 

[ , , , ].T = G G Cu P V T X         (4.5) 
 

Where u is the control variable vectors, consisting of, 
1. Active power output generation (PG) excluding at the slack bus (PG1). 
2. Voltage magnitude at generator bus (VG). 
3. Transformer tap setting (T). 
4. SVCs Reactance values (XC). 
 

( )2 3 1 1
[ , ,..., ]  G G GNG NG
P P P

 −
=GP ,      (4.6) 

 

1 2 1[ , ,..., ]  G G GNG NGV V V =GV ,       (4.7) 
 

1 1[ ,..., ]  NT NTT T =T ,        (4.8) 
 

1 1[ ,..., ]  C CNC NCX X =CX .       (4.9) 
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4.3 Objective function 
4.3.1 Total system generation cost minimization (TSCM) 

This cost depends on the actual amount of power produced by the 
generator. The generator cost is regarded as a quadratic function, therefore the TSCM 
of all generators in the system can be considered as Equations (4.10) and (4.11). 

 

1min ( ) min ( )= +
u u

OB TSC PNFx,u x,u       (4.10) 

where,  

2

1

( ) ( )
NG

i i Gi i Gi

i

TSC a b P c P
=

= + +x,u       (4.11) 

 

4.3.2 Active power loss minimization (APLM) 

The transmission power network consists of a large number of wires 
with high transmission power, which leads to high active power losses and high-power 
losses. Losses are an important parameter in determining the effect of active energy 
losses. This will reduce power transfer efficiency and deteriorate the voltage profile. 
The actual reduction of power loss in the distribution network is therefore very 
important compared to the transmission system. Therefore, the active power loss (APL) 
in the transmission line must be reduced by the expression below. 

 

2min ( ) min ( )= +
u u

OB APL PNFx,u x,u       (4.12) 

where,  
2 2

,

1

( ) V V 2VV cos  .
NTL

L ij i j i j ij

L

APL g 
=

 = + − x,u      (4.13) 

 

4.3.3 Voltage magnitude deviation minimization (VMDM) 

The voltage at the load of the bus is the most important value that 
contribute greatly to the stable and economical operation of the transmission power 
network. Therefore, the voltage magnitude deviation (VMD) between the operating and 
the reference voltage should be taken into account in the OPF problem, and the goal 
of reducing the VMD can be formulated as: 
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3min ( ) min ( )= +
u u

OB VMD PNFx,u x,u       (4.14) 

where,  

1

( ) .
NL

ref

i i

i

VMD V V
=

= −x,u        (4.15) 

 
Vi

ref is generally considered as 1 p.u. 
 

4.3.4 Fuzzy Multi-Objective OPF Formulation 

In this section, the fuzzy satisfactory function (FSF) is used to solve 
multi-objective OPF (MOOPF), namely FMOOPF. On account of the FMOOPF method 
defines fuzzy satisfaction for individual objectives (H. J. Zimmermann, 1987). The 
proposed method with three objectives is solved by a fuzzy satisfaction method, 
where the fuzzy satisfaction method is the choice of all feasible solutions. Rather than 
incorporating the objectives into one objective by a simple sum or weight factor. The 
FMOOPF problem is concurrently resolved for the optimal solution of TSCM, APLM, 
and VMDM, based on an FSF. In this way, the FMOOPF can be solved by compromising 
all objectives. The FSF values λ for individual objective functions consisting of TSCM, 
APLM, and VMDM are computed and defined as (4.16), (4.17), and (4.18), respectively. 
Meanwhile, the objective functions in Equations (4.16) to (4.18) are used for FSF as 
shown in Figures 4.1 to 4.3.  

This process determines the FSF associated with each objective, and 
the best value for each objective is obtained by optimizing each objective. From 
Figures 4.1 to 4.3, the FSF can take any value in [0,1]. An FSF value of 1 is assigned to 
the minimum value for each objective. When another objective states that the 
objective value is greater than the minimum, the FSF is reduced to zero. Lastly, a 
MOOPF can be defined as a fuzzy maximization problem as in Equation 4.19. 

 
min

max
min max

max min max min

max

1 ,for 

1
, for 

0 , for 

TSC

TSC TSC

TSC
TSC TSC TSC TSC

TSC TSC TSC TSC

TSC TSC



 


−
=  +  

− −
 

  (4.16) 
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min

max
min max

max min max min

max

1 ,for 

1
, for A

0 ,for A

APL

RPL RPL

APL
APL PL APL APL

APL APL APL APL

PL APL



 


−
=  +  

− −
 

 (4.17) 

 
min

max
min max

max min max min

max

1 ,for 

1
, for 

0 , for 

VMD

VMD VMD

VMD
VMD VMD VMD VMD

VMD VMD VMD VMD

VMD VMD



 


−
=  +  

− −
 

 (4.18) 

 
 

 Maximize  min , ,   = +T TSC APL VMD PNF     (4.19) 
 

 
Figure 4.1 FSF of TSC 

 
Figure 4.2 FSF of APL 
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Figure 4.3 FSF of VMD 

 

4.4 Constraints 
 Optimization constraints are as follows: 

4.4.1 Equality constraints 

In Equation 4.2, g is the equality limit constraints, which represent 
typical load flow Equations (4.20) and (4.21): 
 

1

cos sin 0 
=

 − − + = 
NB

Gi Di i j ij ij ij ij

j

P P V V G B      (4.20) 

1

sin cos 0 
=

 − − − = 
NB

Gi Di i j ij ij ij ij

j

Q Q V V G B     (4.21) 

 
Where, i = 1,2,…,NB. 
 

4.4.2 Inequality constraints 

The matrix h is the inequality limit constrains that included generator’s 
voltage magnitude, generator’s active power output, generator’s reactive power 
output, transformer tap changing, shunt capacitor, bus voltage magnitude, and line 
flow, can be formulated as Equations (4.22) to (4.28). 

 
| | | | | |L U

i i iV V V   , i=1,…,NG,      (4.22) 
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L U

Gi Gi GiP P P   , i=1,…,NG,      (4.23) 
 

L U

Gi Gi GiQ Q Q    , i=1,…,NG,      (4.24) 
 

L U

i i iT T T    , i=1,…,NT,      (4.25) 
 

L U

ci ci ciQ Q Q    , i=1,…,NC,      (4.26) 
 

| | | | | |L U

Li Li LiV V V   , i = 1,…,NPQ,     (4.27) 
 

| |   U

Li LiMVA MVA  , i = 1,…,NL.      (4.28) 
 

4.5 The FMOOPF Using PSO 
In this Section, the set of populations is formulated as Equation (4.29), velocity 

and current position according to the Equations (4.30) and (4.31), respectively.  
 

[ ,  ,  ,  ].=i Gi Gi i Cip P V T X        (4.29) 
 

1

1 1 2 2( ) ( ) .t t t t t t

m m m i mv wv c r pbest c r gbest+ = + − + −p p    (4.30) 
 

1 1  .t t t

m m mv+ += +p p         (4.31) 
 
The procedure for calculating the objective function can be described in the 

following steps: 
Step 1: Get the power flow input data set. 
Step 2: Identify the control variables, dependent variables, and security limits. 
Step 3: Determine the PSO population. 
Step 4: Run power flow for all populations and calculate the objective value. 
Step 5: Check constraint violations for the population. If the constraints are not 

violated, go to step 7, otherwise, proceed to step 6. 
Step 6: Add the penalty factor to the objective function for population m. 
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Step 7: Calculate individual objective function. 
Step 8: Get PSO’s pbestm

t and gbestt. 
Step 9: Determine the velocity of particle m and update the particle’s position. 
Step 10: Check for maximum iteration. If the iteration reaches maximum 

iteration, go to step 11, otherwise, go to step 4. 
Step 11: Get the results from minimizing individual objectives. 
Step 12: Define an FSF for individual objections. 
Step 13: Calculate the power flow of all populations. 
Step 14: Compute an FSF for MO. 
Step 15: Repeat steps 5-9. 
Step 16: Check maximum iteration. If the iteration reaches maximum iteration, 

repeat steps 14-15 until the maximum iteration is reached. 
Step 17: Print the results of objective functions. 
 

4.6 Simulation Results 
In this section, the proposed FMOOPF using PSO was validated by the modified 

IEEE 30-bus test system with additional capacitors, as shown in Figure 3.2 and the 
capacitors in addition to the control variable base case shown in Table 3.1. In 
particular, the modified IEEE 30-bus test system furthers capacitors, considering MO 
including three objective functions: TSC, APL, and VMD.  

In Table 4.1, the simulation results of this section consider two cases consisting 
of individual objectives and MO, compared with the PPSOGSA method (Z. Ullah et al., 
2019), tested under the same system data and control variables. To further validate 
the reliability of the FMOOPF proposed method, 30 trials were performed to determine 
the best values for individual objectives (TSCM, APLM, and VMDM) and the MO (-λT of 
FMOOPF), where λT is the maximum FSF value between the lowest values of λTSC, 
λAPL, and λVMD. Note the minimization of - λT is corrected for λT maximization. 

As simulation results in Table 4.1, when minimizing an individual objective, each 
objective could result in a higher result for other objectives.  As the results obtained 
from several trials guarantee the reliability of the proposed method. For the first, 
considering each objective function, when minimizing TSC from TSCM, the lowest value 
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of TSC is 799.385 $/h. Under this condition, the APL and VMD are 8.709 p.u. and 0.823 
p.u., respectively. Meanwhile, the APLM derived from the proposed method is 2.966 
p.u, but the best APL condition leads to a maximum resolution of TSC and VMD at 
967.342 $/h and 0.888 p.u., respectively. Likewise, VMDM is 0.076, which the lowest 
VMDM condition is leading to the higher value of TSC and APL at 861.944 $/h and 
10.946 p.u., respectively. Hence, a comparison of the proposed and PPSOGSA methods 
showed that the proposed yielded better results for each objective, including TSCM, 
ALPM, and VMDM, than those of the PPSOGSA method, as shown in Table 4.1.  

However, the MO problems considering simultaneously minimizing TSC, APL, 
and VMD may be also beneficial to the system depending on operator needs. Thus, 
the proposed FMOOPF can smoothly resolve conflicting MO problems. As a result, the 
proposed FMOPF can compromise between TSCM, APLM, and VMDM, under the FSF 
concept. On the other hand, the PPSOGSA method uses the weighted sum method to 
solve the MOOP. 

Table 4.2 shows individual objectives (TSCM, APLM, and VMDM) and MO 
(considering all three objective functions simultaneously), with simulation results from 
30 trials of the proposed method. For individual objectives, the best and worst values 
of TSC received from PSO are 799.385 $/h. and 800.025 $/h., respectively. The TSC’s 
average and standard deviations are 799.445 $/h and 0.121, respectively. Meanwhile, 
the best and worst values of APL from APLM are 2.966 p.u. and 3.486 p.u., respectively. 
Besides, the average and standard deviation of APL are 3.001 p.u. and 0.114, 
respectively. The best and worst values of VMD from VMDM are 0.076 p.u. and 0.121 
p.u., respectively. In the same way, the VMD’s average and standard deviation are 
0.087 p.u. and 0.010, respectively. In addition, the MO problem considerations looked 
at the -λT values of FMOOPF, where the best and worst values of -λT are 0.723 and 
0.542, respectively. While, the average and standard deviation of -λT are 0.650 and 
0.038, respectively. Lastly, the convergence behaviors of TSCM, APLM, VMDM, and -λT 

of FMOOPF are shown in Figures 4.4, 4.5, 4.6, and 4.7, respectively.
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Table 4.1 Comparison results of the modified IEEE 30-bus test system for MO 

Control 
Variables 

TSCM APLM VMDM MO 

PPSO 
GSA 

Proposed 
method 

PPSO 
GSA 

Proposed 
method 

PPSO 
GSA  

Proposed 
method 

PPSO 
GSA  

FMOOPF 

Power Generation (PGi) at Bus (MW) 

2 48.58 48.69 80.00 80.00 49.04 80.00 52.66 54.58 
5 21.37 21.30 50.00 50.00 44.74 15.00 31.73 34.12 
8 21.44 21.13 35.00 35.00 18.41 10.00 34.94 34.99 
11 11.94 11.95 30.00 30.00 24.13 17.29 25.28 26.58 
13 12.00 12.00 40.00 40.00 14.50 39.35 20.38 27.56 

Generator Voltage (|Vi|) Magnitude at Bus (p.u.) 

1 1.08 1.10 1.06 1.10 1.01 1.00 1.03 1.02 
2 1.07 1.09 1.06 1.10 1.00 1.04 1.02 1.01 
5 1.03 1.06 1.04 1.08 1.02 1.02 1.00 0.99 
8 1.04 1.07 1.04 1.09 1.01 1.00 1.01 1.00 
11 1.09 1.05 1.06 1.03 1.00 0.95 1.01 1.02 
13 1.04 1.01 1.05 1.06 1.02 0.95 1.01 1.04 

Transformer Tap-Changing (Ti-j) between Buses 

6-9 1.02 1.03 1.02 1.10 1.02 0.95 1.03 1.07 
6-10 0.95 1.07 0.94 0.97 0.90 1.10 0.91 0.90 
4-12 0.96 1.05 0.99 1.05 1.01 0.94 0.98 0.98 
28-27 0.98 1.04 0.98 1.05 0.96 1.00 0.97 0.97 

Capacitive Reactance (XCi) at Bus (p.u.) 
10 -1.39 -15.16 -0.26 -44.95 -0.22 -40.83 -0.20 -26.07 
12 -0.72 -2.39 -0.47 -30.08 -0.28 -21.22 -0.95 -44.77 
15 -0.22 -33.08 -0.21 -28.75 -0.20 -22.91 -0.21 -33.08 
17 -0.20 -15.25 -0.20 -15.58 -3.08 -9.84 -1.40 -19.02 
20 -0.25 -45.00 -0.22 -45.00 -0.20 -45.00 -0.20 -42.16 
21 -0.20 -9.08 -0.20 -9.49 -0.20 -7.36 -0.20 -8.35 
23 -0.26 -44.92 -0.29 -44.99 -0.20 -44.94 -0.20 -31.76 
24 -0.20 -14.47 -0.20 -14.23 -0.20 -6.29 -0.20 -25.78 
29 -0.30 -44.97 -0.37 -45.00 -0.77 -32.15 -0.34 -45.00 

TSC ($/h.) 800.528 799.385 967.669 967.342 849.613 861.944 829.598 845.866 
APL (p.u.) 9.027 8.709 3.103 2.966 7.420 10.946 6.110 5.478 
VMD (p.u.) 0.911 0.823 0.891 0.888 0.090 0.076 0.110 0.308 
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Table 4.2 The best, worst, average, and standard deviation of individual 
objective and MO from 30 trial solutions 

  The proposed FMOOPF 
 Best Worst Average S.D. 

TSC ($/h) 799.385 800.025 799.445 0.121 
APL (p.u.) 2.966 3.486 3.001 0.114 
VMD (p.u.) 0.076 0.121 0.087 0.010 
-λT of FMOOPF -0.723 -0.542 -0.650 0.038 

 

 
Figure 4.4 The convergence plot of the proposed method of TSCM 
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Figure 4.5 The convergence plot of the proposed method of APLM 

 

 

Figure 4.6 The convergence plot of the proposed method of VMDM 
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Figure 4.7 The convergence plot of the proposed method of -λT of FMOOPF 

 

 



60 

CHAPTER 5 

PROBABILISTIC FUZZY MULTI-OBJECTIVE OPF3 
 

5.1 Introduction 
In the last decade, renewable energy has been heavily pursued and largely 

infiltrated the power system, and of course, this type of energy is a good alternative 
to conventional thermal units as renewable energy, especially photovoltaic power 
plants (PVPP) and wind power plants (WPP), will soon cost less than fossil fuels. 
Whereas, the problem of PVPP and WPP generation in the power system is the 
uncertainties of local wind speed and solar radiation. There is also load uncertainty in 
the power system. Therefore, to properly assess PVPP and WPP generators in the 
power system, probabilistic load flow (PLF) is one of the effective tools. Recently, 
accurate stochastic models that accurately describe the behavior of power generation 
and load demand are critical to the planning and operation of the power system. 
Therefore, these models need further enhancements to accurately capture the 
behavior of solar radiation and wind speed. Meanwhile, there are two methods for 
solving PLF problems: the numerical method and the analytical method. The most 
commonly used method is the Monte-Carlo simulation (MCS). 

This chapter presents the probability density function (PDF) of load, wind 
speed, and solar radiation uncertainties. It is necessary to calculate system state 
variables with uncertain properties. Then, load uncertainty is expressed by Normal PDF 
in the proposed method. Similarly, the solar radiation uncertainty is expressed by the 
Normal PDF as well as the load uncertainty. Meanwhile, the Weibull PDF is used for 
modeling wind speed, as proposed by M. R. Patal in 2006, and became a widely used 
method.  

This research proposes the probabilistic fuzzy multi-objective optimal power 
flow (PFMOOPF) considering photovoltaic power plant (PVPP) generation, wind power 

 
3 Part of this work is accepted for publication in " GMSARN International Journal”, 2022. 
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plant (WPP) generation, and load uncertainty. Then, the objectives considered are 
individual objectives and MO tested on the modified IEEE 30-bus test system with 
renewable energy. While objective functions consider TSCM, APLM, and VMDM. 
Meanwhile, the proposed method can successfully provide the optimal operation of 
controllable parameters, including the optimal active power generation, the 
magnitudes of generators’ voltages, the tap changing of transformers, and reactance 
values of capacitors considering load, wind speed, and solar radiation uncertainty in 
the test system. 
 

5.2 Problem formulation 
In this paper, the PFMOOPF problem can be mathematically described by 

 
Minimize ( )+iOB PNFx,u  ,  i = 1, 2,…,Nobj    (5.1) 

 
Subject to:  ( ) 0=x,ug ,        (5.2) 

 
   ( ) 0x,uh .       (5.3) 

 
 The matrix OBi represents the set of objective functions that are to be 
minimized consisting of total system cost (TSC), active power loss (APL), and voltage 
magnitude deviation (VMD), as shown in Equation (5.1). Meanwhile, g and h, in 
Equations (5.2) and (5.3), are the sets of necessary equality and inequality constraints. 
However, the vector of probabilistic dependent variables is denoted by x̃, consisting 
of, 
 1. Probabilistic slack bus generated active power (P̃G1), 
 2. Probabilistic voltage magnitudes at load bus (ṼLi), 
 3. Probabilistic generators’ reactive power output (Q̃Gi), and 
 4. Probabilistic transmission lines and transformers loading (branches flow) (S̃l). 
Hence, x̃ can be expressed as: 
 

1 1 1 1[ , ... , ... , , , ... ]T

G L LNL G GNG WPP PVPP l lNTLP V V Q Q Q Q S S=x     (5.4) 
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 Whereas, ũ is the vector of probabilistic control variables as follow:  
 

[ , , , ]T = G G Cu P V T X         (5.5) 
 

 Where P̃G is the matrix of probabilistic active power generation excluding slack 
bus generation. |ṼG| is the matrix of probabilistic voltage magnitude of generator bus 
including WPP and PVPP. Then, T̃ is the matrix of probabilistic transformer tap-
changing. And X̃C is the matrix of probabilistic capacitive reactance. 
 

( )2 3 1 1
[ , ,..., ]  G G GNG NG
P P P

 −
=GP ,      (5.6) 

 

1 2 1[ , ,..., , , ]  G G GNG WPP PVPP NGV V V V V =GV ,    (5.7) 
 

1 1[ ,..., ]  NT NTT T =T ,        (5.8) 
 

1 1[ ,..., ]  C CNC NCX X =CX .       (5.9) 
 

5.3 Objective function 
5.3.1 Total system generation cost minimization (TSCM) 

In this process of the OPF problem simulation, the objective function is 
to minimize the overall cost of electricity needed to supply the demands and subject 
to the constraints considering the uncertainty of load, PVPP and WPP in the system, 
expressed below: 

 

1min ( ) min ( )= +
u u

OB TSC PNFx,u x,u       (5.10) 

where,  

2

1

( ) ( )
NG

i i Gi i Gi

i

TSC a b P c P
=

= + +x,u       (5.11) 

 

 



63 

5.3.2 Active power loss minimization (APLM) 

The active power loss (APL) in the transmission lines needs to be 
minimized taking into account the uncertainty of PVPP and WPP loads in the system 
as the following expression below. 

 

2min ( ) min ( )= +
u u

OB APL PNFx,u x,u       (5.12) 

where,  
2 2

,

1

( ) V V 2VV cos  .
NTL

L ij i j i j ij

L

APL g 
=

 = + − x,u      (5.13) 

 

5.3.3 Voltage magnitude deviation minimization (VMDM) 

The voltage magnitude deviation (VMD) between the operating and the 
reference voltage should be taken into account in the OPF problem and taken into 
account with the uncertainty of load, PVPP, and WPP. So, the goal of minimizing the 
VMD can be formulated as: 

 

3min ( ) min ( )= +
u u

OB VMD PNFx,u x,u       (5.14) 

where,  

1

( ) .
NL

ref

i i

i

VMD V V
=

= −x,u        (5.15) 

Vi
ref is generally considered as 1 p.u. 

 

5.3.4 Probabilistic Fuzzy Multi-Objective OPF Formulation (PFMOOPF) 

The PFMOOPF problem was addressed concurrently for an optimal 
solution of TSCM, APLM, and VMDM based on fuzzy satisfactory function (FSF) 
concepts. As a result of minimizing the objective function in Equations (5.10) to (5.15), 
FSF can be determined as shown in Figures 5.1 to 5.3 and Equations (5.16) to (5.8), 
where OBi represents individual objectives (TSCM, APLM, and VMDM). Finally, the multi-
objective (MO) problem can be formulated as a fuzzy maximization problem as 
Equation (5.9). 
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min

max
min max

max min max min

max

1 ,for 

1
, for 

0 , for 

TSC

TSC TSC

TSC
TSC TSC TSC TSC

TSC TSC TSC TSC

TSC TSC



 


−
=  +  

− −
 

  (5.16) 

 

min

max
min max

max min max min

max

1 ,for 

1
, for A

0 ,for A

APL

RPL RPL

APL
APL PL APL APL

APL APL APL APL

PL APL



 


−
=  +  

− −
 

 (5.17) 

 
min

max
min max

max min max min

max

1 ,for 

1
, for 

0 , for 

VMD

VMD VMD

VMD
VMD VMD VMD VMD

VMD VMD VMD VMD

VMD VMD



 


−
=  +  

− −
 

 (5.18) 

 
 

 Maximize  min , ,   = +T TSC APL VMD PNF     (5.19) 
 

 
Figure 5.1 FSF of TSC 
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Figure 5.2 FSF of APL 

 
Figure 5.3 FSF of VMD 

 

5.4 Constraints 
The limitations of the probabilistic OPF (POPF), including power and function 

balance, are taken into account in the proposed method. 

5.4.1 Equality constraints 

In Equation 5.2, g is the equality limit constraints considering the 
uncertainty of load, PVPP, and WPP shown in PDF, representing the general load-flow 
equation: 
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1

cos sin 0 
=

 + + − − + = 
NB

Gi PVi WTi Di i j ij ij ij ij

j

P P P P V V G B     (5.20) 

 

1

sin cos 0 
=

 + + − − − = 
NB

Gi PVi WTi Di i j ij ij ij ij

j

Q Q Q Q V V G B    (5.21) 

 
where, i=1,…,NB. 
 

5.4.2. System operating limit constraints 

The generator constraints are the limit on generators’ voltage 
magnitude, the generators’ active, and reactive power operating limit at the ith bus as 
formulated in Equations (5.22) to (5.24), respectively. Equations (5.25) and (5.26) 
present transformer tap-changing limits, and the Capacitors setting limits, respectively. 
Whereas, network operating limit constraints include the limit on bus voltage 
magnitude and the transmission lines and transformers loading limit as formulated in 
Equations (5.27) and (5.28), respectively. 
 

| | | | | |  L U

Gi Gi GiV V V  , i = 1, 2,…,NG,      (5.22) 
 

  L U

Gi Gi GiP P P  ,   i = 1, 2,…,NG,      (5.23) 
 

  L U

Gi Gi GiQ Q Q  ,   i = 1, 2,…,NG,      (5.24) 
 

  L U

i i iT T T  ,  i = 1, 2,…,NT,       (5.25) 
 

 L U

ci ci ciQ Q Q  ,  i = 1, 2,…,NC,      (5.26) 
 

| | | | | |L U

Li Li LiV V V  ,  i = 1, 2,…,NPQ,      (5.27) 
 

| |   U

Li LiMVA MVA ,  i = 1, 2,…,NL.       (5.28) 
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5.5 Uncertainty models 
A probability model is a model that combines the probability distribution of a 

random variable, where the random variable represents the possible outcome of an 
uncertain event. Probability distributions assign probabilities to various possible 
outcomes. Meanwhile, Monte-Carlo simulation (MCS) is a traditional numerical method 
for dealing with probability problems. Because MCS can generate random numbers 
and random sampling with the cumulative density function and replicate the energy 
flow individually. Therefore, practical probability models are used to make realistic 
decisions with the MCS concept, often necessary to recognize the uncertainty in the 
inputs and outcomes of the process. However, this research considers the uncertainty 
of PVPP, WPP, and load in Thailand. In the proposed, the procedure for calculating the 
MCS concept can be described in the following steps: 

 
Step 1: Get the power flow input data set. 
Step 2: Identify the control variables, dependent variables, and security limits. 
Step 3: Set the average total power generation at k = 0 to zeros ( 0 0AVPGT = ). 

Set iteration k = 1. 
Step 4: Get system load, PVPP, and WPP power generation, from PDFs. 
Step 5: Solve OPF for individual objective function (TSC, APL, and VMD in 

Equations (5.10), (5.12), and (5.14), respectively) using PSO. 
Step 6: Define a satisfying fuzzy function for individual objective function. 
Step 7: Calculate a satisfying fuzzy function for MO. 
Step 8: Solve FMOOPF for λT maximization in Equation (5.19), using PSO. 
Step 9: Calculate the average total power generation ( k

AVPGT ) obtained from 
iterations k 

Step 10: If 1k k

AV AVPGT PGT −−  , k = k+1 and go to Step 4, conversely,  
if 1k k

AV AVPGT PGT −−  , go to Step 11. 
Step 11: Compute the PDF of control and output variables. 
Step 12: Stop. 
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The proposed PFMOOPF is tested with the modified IEEE 30-bus test system 
consisting of PVPP, WPP, and load for individual objectives and MO. The system data 
is taken from Z. Ullah et al. in 2019, as shown in Figure 5.4. Therefore, PVPP generation, 
WPP generation, and load are modeled as uncertain variables as follows. 
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Figure 5.4 The modified IEEE 30-bus test system with renewable energy 

 

5.5.1 PVPP Model 

Solar radiation follows a normal distribution probability theory. A 
normal distribution is a continuous probability distribution of a continuous random 
variable in which a normal logarithm distribution is given. In the proposed, the PVPP is 
intermittent and uncertain output, and it is modeled as a continuous random variable 
of Thailand. In the proposed, Figure 5.5 shows the normal fitting of normalized solar 
irradiance data after running an MCS. Meanwhile, the mean value ‘µ’ of solar irradiance 
is taken as 0.7805 and the variance ‘2’ is taken as 0.0242. The rated power of PVPP 
connected at bus 30 is 25 MW. 
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Figure 5.5 The PDF of solar irradiance data 

 
Therefore, the output power generated by the PVPP unit is dependent 

on solar irradiance, as follows. 
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The PDF for the normal random variable, S which is a normal probability 

distribution of solar irradiance as defined by: 
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for -∞ < S < ∞, -∞ < µ < ∞, 0 < 2 < ∞ 
 

The mean and variance of the PDF of solar irradiance for normal 
distribution ‘S’ are; 
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( )E S = ,        (5.31) 
 

2( )Var S = .        (5.32) 
 

The random variable is modeled by the normal distribution with mean 

‘μ’ and variance ‘2’ as shown in Equations (5.31) and (5.32), respectively, then it is 
simply denoted as; 
 

2( , )S N    .       (5.33) 
 

5.5.2 WPP model 

The power generated by a wind power plant (WPP) depends on the 
fluctuation of wind speed over time. Due to the high variability of the geographic 
location of wind resources. Therefore, the probability distribution of wind speed is 
often characterized by a Weibull distribution. A typical Weibull distribution can take 
various shapes depending on the parameters. In this research, the wind speed is 
modeled using a Weibull distribution. In addition, the WPP connected at bus 19 has a 
rated power (Pwtn) of 50 MW with a normal wind speed (vn) of 10 m/s, cut-in wind 
speed (vci) of 2.7 m/s, and cut-out wind speed (vco) of 25 m/s. Moreover, the 
normalized wind speed is approximated with a two-parameter Weibull distribution. 
The scale factor ‘c’ is taken as 0.493 and the shape factor ‘k’ is taken as 2.459, as in 
Figure 5.6. 
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Figure 5.6 The PDF of wind speed data of Thailand 

 
The output power of wind speed (v) of WPP can be analyzed as follows: 

 
0               

     
( )

                  

0               

ci

ci
wtn ci n

n ciWPP

wtn n co

co

v v

v v
P v v v

v vP v

P v v v

v v




−
   

−= 
  




     (5.34) 

 
Weibull distribution with shape factor (k) and scale factor (c) can be 

formulated as follows:  
 

1

( )

k
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c

v
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f v e

c c
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 for 0 < v < ∞    (5.35) 

 
Mean of Weibull distribution can be formulated as follows:  
 

1(1 )wblM c k −=  +        (5.36) 
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5.5.3 Load Model 

Probabilistic load models can be found in several probabilistic load 
flows. In the same way, in PVPP and WPP, the load is modeled as a continuous random 
variable of energy consumption in Thailand. Nevertheless, the nature of the load in 
the normal distribution model is shown in Figure 5.4. Therefore, the load PDF is usually 
represented by a normal PDF, where the probabilistic load models can be rendered 
more realistically by daily hourly loading. In Figure 5.7, the active power of the load is 
assumed to have a normal PDF. Furthermore, the µ is taken as 0.7748 and the 2 is 
taken as 0.0077.  

 

 
Figure 5.7 The PDF of active power load 

 
The total load connected to the bus can be probabilistically described 

by a normal distribution. The relevant PDF is as follows:  
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for -∞ < Pd < ∞, -∞ < µ < ∞, 0 < 2 < ∞ 
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The mean and variance of the PDF of load for normal distribution ‘Pd’ 
are; 
 

( )dE P = ,        (5.38) 
 

2( )dVar P = .        (5.39) 
 

The random variable is modeled by the normal distribution with mean 

‘μ’ and variance ‘2’ as shown in Equations (5.38) and (5.39), respectively. 
 

5.6 Simulation Results 
The PFMOOPF simulations were performed on the modified IEEE 30-bus test 

system consisting of PVPP, WPP, and load, which were studied as individual objectives 
and MO, as shown in Figure 5.1. The PVPP power generation characteristic is obtained 
from the solar irradiance data of Thailand, which selected dispatch hour is noon every 
day because it is the time with the highest solar irradiation. The PVPP is connected to 
bus 30. The wind speed data is derived from NASA’s location in Bangkok, Thailand at 
noon, just like solar irradiance data. The WPP is connected to bus 19. Like solar 
irradiance and wind speed, the load characteristic is derived from the load demand of 
Thailand, which is distributed proportionally across the modified IEEE 30-bus test 
system. 

Tables 5.1 and 5.2 shows the control variables of the proposed PFMOOPF. The 
PDF in terms of mean and standard deviation (S.D.) for TSCM and APLM is shown in 
Table 5.1, respectively. Therefore, the PDF in terms of mean and standard deviation 
(S.D.) for VMDM and MO are shown in Table 5.2, respectively. 

 
Table 5.1 The TSCM and APLM results obtained by proposed PFMOOPF 

Control Variables 
TSCM APLM 

Mean S.D. Mean S.D. 

Power Generation (PGi) at Bus (MW) 

2 32.811 5.849 44.507 14.914 
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5 16.412 1.399 49.895 1.598 
8 10.066 0.766 30.991 6.361 
11 10.004 0.066 28.985 4.004 
13 12.000 0.009 31.558 7.105 

Generator Voltage (|Vi|) Magnitude at Bus (p.u.) 

1 1.082 0.033 1.054 0.043 
2 1.072 0.035 1.055 0.043 
5 1.052 0.036 1.046 0.042 
8 1.060 0.036 1.054 0.042 
11 1.043 0.053 1.042 0.045 
13 1.052 0.044 1.061 0.032 

19(WPP) 1.063 0.035 1.077 0.023 
30(PVPP) 1.081 0.032 1.094 0.019 

Transformer Tap-Changing (Ti-j) between Buses 

6-9 1.013 0.067 1.016 0.066 
6-10 0.998 0.081 0.939 0.067 
4-12 0.998 0.047 0.969 0.040 
28-27 0.998 0.043 0.976 0.039 

Capacitive Reactance (XCi) at Bus (p.u.) 

10 -28.347 17.644 -24.748 17.978 
12 -22.346 18.682 -18.339 17.556 
15 -41.574 6.542 -43.312 5.119 
17 -28.599 10.848 -24.160 7.082 
20 -43.384 5.293 -44.187 4.292 
21 -19.070 12.391 -15.222 7.702 
23 -43.759 3.393 -44.628 2.045 
24 -25.735 10.402 -23.480 6.717 
29 -44.407 2.805 -44.856 1.411 

TSC ($/h.) 486.705  90.524 666.916 112.017 
APL (p.u.) 4.401 1.950 1.194 1.805 
VMD (p.u.) 1.433 0.413 1.564 0.336 

Table 5.2 The VMDM and MO results obtained by proposed PFMOOPF 

Control Variables 
VMDM MO 

Mean S.D. Mean S.D. 

Power Generation (PGi) at Bus (MW) 

2 48.405 23.666 38.868 7.449 
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5 31.569 13.573 31.338 5.238 
8 20.876 9.724 23.779 7.414 
11 19.361 7.518 19.010 5.348 
13 27.111 10.364 17.874 5.190 

Generator Voltage (|Vi|) Magnitude at Bus (p.u.) 

1 0.996 0.025 1.036 0.032 
2 1.008 0.043 1.029 0.032 
5 1.014 0.013 1.013 0.031 
8 0.997 0.016 1.022 0.031 
11 1.017 0.046 1.011 0.036 
13 0.998 0.033 1.011 0.026 

19(WPP) 0.998 0.006 1.014 0.019 
30(PVPP) 0.992 0.023 1.040 0.020 

Transformer Tap-Changing (Ti-j) between Buses 

6-9 1.023 0.050 1.014 0.055 
6-10 0.991 0.058 1.006 0.067 
4-12 0.999 0.059 1.004 0.042 
28-27 0.968 0.033 1.003 0.038 

Capacitive Reactance (XCi) at Bus (p.u.) 

10 -26.914 14.446 -27.570 14.487 
12 -26.823 14.268 -24.442 15.428 
15 -25.603 12.149 -36.064 9.614 
17 -28.881 12.022 -28.078 10.760 
20 -34.963 13.213 -37.298 9.629 
21 -18.861 12.587 -21.742 12.649 
23 -35.257 10.208 -37.993 8.437 
24 -15.124 10.644 -25.489 10.274 
29 -33.298 11.985 -40.195 7.344 

TSC ($/h.) 596.140 93.435 535.123 98.046 
APL (p.u.) 6.941 4.917 2.523 1.896 
VMD (p.u.) 0.055 0.0205 0.430 0.148 
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Figure 5.8 The PDF of PFMOOPF for output power of generators 

 

 
Figure 5.9 The PDF of PFMOOPF for voltage magnitudes of generators 
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Figure 5.10 The PDF of PFMOOPF for transformer Tap-Changing 

 

 
Figure 5.11 The PDF of PFMOOPF for capacitive reactance 
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Figure 5.12 The PDF of PFMOOPF for TSC 

 

 
Figure 5.13 The PDF of PFMOOPF for APL 
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Figure 5.14 The PDF of PFMOOPF for VMD 

 

 
Figure 5.15 The PDF of PFMOOPF for -λT 
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Figure 5.16 The convergence of MCS of PFMOOPF 

 
Figures 5.8 to 5.11 show the PDF of the optimal control variables including the 

output power of generators, voltage magnitudes of generators, transformer Tap-
Changing, and capacitive reactance, respectively. Meanwhile, Figures 5.12 to 5.15 show 
the PDF results for TSC, APL, VMD, and -λT of PFMOOPF obtained with 2000 MCS 
samples. 

The results obtained from the proposed method can be compared with the 
values of the MCS with 2000 runs to indicate the validity and effectiveness of the 
proposed method, which is shown in Figure 5.16. However, Figure 5.16 shows the 
convergence of the MCS results of each objective and MO function: TSCM, APLM, 
VMDM, and PFMOOPF.
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CHAPTER 6 

CONCLUSION 
 

This thesis proposes the PSO-OPF for optimal operation of the controllable 
parameters to reduce total system cost. To verify the effectiveness of the proposed 
PSO-OPF was used with the original IEEE 30-bus test system and the modified IEEE 30-
bus test system. Meanwhile, the proposed PSO-OPF considers the optimal active 
power generation, generator Voltage Magnitude, transformer tap-changing, and SVC 
reactive value leading to the lowest total system cost. Therefore, the simulation results 
show that PSO-OPF can reduce the total system cost compared to the reported results. 

Moreover, the fuzzy multi-objective optimal power flow (FMOOPF) using the 
PSO algorithm considers individual objective functions, including total system cost 
(TSC), active power loss (APL), voltage magnitude deviation (VMD), and multi-objective 
(MO) that consider all three objective functions simultaneously. To verify the 
performance of the FMOOPF proposed is used the modified IEEE 30-bus test system, 
which considers the optimal active power generation, generator Voltage Magnitude, 
transformer tap-changing, and SVC reactive value. However, the proposed FMOOPF has 
well performed in obtaining the solution in the middle of conflicting objectives. 

Meanwhile, the probabilistic optimal power flow (POPF) is one of the interesting 
tools for handling uncertainty in power system analysis. Therefore, the proposed 
PFMOOPF method presents various control variables to determine the uncertainties of 
PVPP, WPP, and the loads in the system. The proposed method was tested on the 
modified IEEE 30-bus test system with renewable energy. The uncertainty models can 
be presented in the PDF. Meanwhile, the objectives considered are individual 
objectives and multi-objectives such as TSCM, APLM, and VMDM. Therefore, the 
proposed PFMOOPF using a fuzzy satisfactory function concept with PSO achieves a 
better multi-objective OPF solution. However, the simulation results indicated that the 
PFMOOPF can effectively minimize individual-objective and maximize the overall FSF 
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for multi-objective OPF solutions, incorporating uncertainty of PVPP, WPP, and load in 
the power system. 
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APPENDIX A 
IEEE 30-bus test system data 

 
29

30

27

26 25

24

28

23

22

21

20

1918

17

1

10

9

16

15

14

13 12

8
64

2

3

11

7

5

 
Figure A.1 The IEEE 30-bus test system 
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Table A.1 Bus load and injection data of IEEE 30-bus test system 

Bus Load (MW) Bus Load (MW) 
1 0.00 16 3.50 
2 21.70 17 9.00 
3 2.40 18 3.20 
4 67.60 19 9.50 
5 34.20 20 2.20 
6 0.00 21 17.50 
7 22.80 22 0.00 
8 30.00 23 3.20 
9 0.00 24 8.70 
10 5.80 25 0.00 
11 0.00 26 3.50 
12 11.20 27 0.00 
13 0.00 28 0.00 
14 6.20 29 2.40 
15 8.20 30 10.60 
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Table A.2 Reactive power limit data of IEEE 30-bus test system 

Bus Qmin (p.u.) Qmax (p.u.) Bus Qmin (p.u.) Qmax (p.u.) 

1 -0.2000 0.0000 16   

2 -0.2000 0.2000 17 -0.0500 0.0500 
3   18 0.0000 0.0550 
4   19   

5 -0.1500 0.1500 20   

6   21   

7   22   

8 -0.1500 0.1500 23 -0.0500 0.0550 
9   24   

10     25     
11 -0.1000 0.1000 26   
12   27 -0.0055 0.0550 
13 -0.1500 0.1500 28   
14   29   
15     30     
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Table A.3 Line parameter of IEEE 30-bus test system 

Line 
From 
(Bus) 

To 
(Bus) 

R (p.u.) X (p.u.) Tap Ratio 
Rating 
(p.u.) 

1 1 2 0.0192 0.0575  0.3000 
2 1 3 0.0452 0.1852 0.9610 0.3000 
3 2 4 0.0570 0.1737 0.9560 0.3000 
4 3 4 0.0132 0.0379  0.3000 
5 2 5 0.0472 0.1983  0.3000 
6 2 6 0.0581 0.1763  0.3000 
7 4 6 0.0119 0.0414  0.3000 
8 5 7 0.0460 0.1160  0.3000 
9 6 7 0.0267 0.0820  0.3000 
10 6 8 0.0120 0.0420  0.3000 
11 6 9 0.0000 0.2080  0.3000 
12 6 10 0.0000 0.5560  0.3000 
13 6 11 0.0000 0.2080  0.3000 
14 9 10 0.0000 0.1100 0.9700 0.3000 
15 4 12 0.0000 0.2560 0.9650 0.6500 
16 12 13 0.0000 0.1400 0.9635 0.6500 
17 12 14 0.1231 0.2559  0.3200 
18 12 15 0.0662 0.1304   0.3200 
19 12 16 0.0945 0.1987  0.3200 
20 14 15 0.2210 0.1997  0.1600 
21 16 17 0.0824 0.1932  0.1600 
22 15 18 0.1070 0.2185  0.1600 
23 18 19 0.0639 0.1292 0.9590 0.1600 
24 19 20 0.0340 0.0680  0.3200 
25 10 20 0.0936 0.2090  0.3200 
26 10 17 0.0324 0.0845 0.9850 0.3200 
27 10 21 0.0348 0.0749  0.3000 
28 10 22 0.0727 0.1499  0.3000 
29 21 22 0.1160 0.0236  0.3000 
30 15 23 0.1000 0.2020  0.1600 
31 22 24 0.1150 0.1790  0.3000 
32 23 24 0.1320 0.2700 0.9655 0.1600 
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Table A.3 Line parameter of IEEE 30-bus test system (Continued) 

Line 
From 
(Bus) 

To 
(Bus) 

R (p.u.) X (p.u.) Tap Ratio 
Rating 
(p.u.) 

33 24 25 0.1885 0.3292  0.3000 
34 25 26 0.2544 0.3800  0.3000 
35 25 27 0.1093 0.2087  0.3000 
36 28 27 0.0000 0.3960  0.3000 
37 27 29 0.2198 0.4153 0.9810 0.3000 
38 27 30 0.3202 0.6027  0.3000 
39 29 30 0.2399 0.4533  0.3000 
40 8 28 0.0636 0.2000 0.9530 0.3000 
41 6 28 0.0169 0.0599   0.3000 
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APPENDIX B 
Thailand daily load profile (12:00 p.m. of every day in 2018) 

 
Table B.1 Thailand daily load profile 

Day Load (p.u.) Day Load (p.u.) Day Load (p.u.) 

1 0.4373 28 0.6981 55 0.7893 
2 0.4799 29 0.7219 56 0.7613 
3 0.6392 30 0.6439 57 0.7279 
4 0.7168 31 0.7363 58 0.6243 
5 0.7456 32 0.7651 59 0.7191 
6 0.7623 33 0.7459 60 0.7282 
7 0.7558 34 0.7406 61 0.7453 
8 0.7282 35 0.7506 62 0.7667 
9 0.6491 36 0.7036 63 0.7928 
10 0.7381 37 0.5520 64 0.7722 
11 0.7737 38 0.5669 65 0.6714 
12 0.7821 39 0.6333 66 0.8288 
13 0.7939 40 0.6685 67 0.8466 
14 0.7869 41 0.7071 68 0.8448 
15 0.7561 42 0.7333 69 0.8483 
16 0.6743 43 0.7438 70 0.8583 
17 0.7644 44 0.6466 71 0.8085 
18 0.8059 45 0.7527 72 0.7085 
19 0.7995 46 0.7913 73 0.8594 
20 0.7974 47 0.7884 74 0.8607 
21 0.8022 48 0.7845 75 0.8689 
22 0.7736 49 0.7921 76 0.8649 
23 0.6317 50 0.7635 77 0.8577 
24 0.6274 51 0.6586 78 0.8229 
25 0.6334 52 0.6720 79 0.7003 
26 0.6394 53 0.7833 80 0.8623 
27 0.6493 54 0.8205 81 0.8729 
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Table B.1 Thailand daily load profile (Continued) 

Day Load (p.u.) Day Load (p.u.) Day Load (p.u.) 
82 0.8761 115 0.9120 148 0.8250 
83 0.8736 116 0.9364 149 0.6925 
84 0.8704 117 0.9445 150 0.8323 
85 0.7858 118 0.9454 151 0.8396 
86 0.6687 119 0.9131 152 0.8299 
87 0.8093 120 0.8549 153 0.8415 
88 0.8486 121 0.6174 154 0.8428 
89 0.8504 122 0.7377 155 0.7802 
90 0.8555 123 0.9219 156 0.6983 
91 0.8375 124 0.9407 157 0.8437 
92 0.8095 125 0.8824 158 0.8601 
93 0.7064 126 0.8683 159 0.8314 
94 0.8602 127 0.8634 160 0.8477 
95 0.8800 128 0.7590 161 0.8552 
96 0.8340 129 0.8962 162 0.8199 
97 0.9003 130 0.9083 163 0.6861 
98 0.8847 131 0.9430 164 0.8484 
99 0.8323 132 0.9416 165 0.8599 
100 0.7351 133 0.9236 166 0.8554 
101 0.8083 134 0.8564 167 0.8277 
102 0.7657 135 0.7555 168 0.8103 
103 0.5470 136 0.8897 169 0.7646 
104 0.5372 137 0.8646 170 0.6827 
105 0.5538 138 0.8482 171 0.8454 
106 0.6004 139 0.8762 172 0.8060 
107 0.6499 140 0.7831 173 0.8157 
108 0.8872 141 0.7908 174 0.8297 
109 0.9115 142 0.7258 175 0.8179 
110 0.9194 143 0.8754 176 0.7829 
111 0.9133 144 0.8704 177 0.6731 
112 0.9200 145 0.8687 178 0.8137 
113 0.8854 146 0.8532 179 0.8132 
114 0.7682 147 0.8606 180 0.8155 
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Table B.1 Thailand daily load profile (Continued) 

Day Load (p.u.) Day Load (p.u.) Day Load (p.u.) 
181 0.8124 214 0.8366 247 0.6953 
182 0.8030 215 0.8348 248 0.8463 
183 0.7678 216 0.8413 249 0.8547 
184 0.6696 217 0.8327 250 0.8387 
185 0.8173 218 0.7936 251 0.8418 
186 0.8281 219 0.6400 252 0.8330 
187 0.7983 220 0.8164 253 0.7980 
188 0.7960 221 0.8471 254 0.6737 
189 0.7824 222 0.8300 255 0.8027 
190 0.7729 223 0.8347 256 0.8134 
191 0.6413 224 0.6179 257 0.8289 
192 0.8072 225 0.6998 258 0.8351 
193 0.8277 226 0.6683 259 0.8200 
194 0.8195 227 0.8384 260 0.7946 
195 0.8135 228 0.8297 261 0.6842 
196 0.8183 229 0.8330 262 0.8242 
197 0.7877 230 0.8360 263 0.8167 
198 0.6539 231 0.8334 264 0.8114 
199 0.7214 232 0.8184 265 0.8051 
200 0.7003 233 0.6878 266 0.7792 
201 0.7357 234 0.8458 267 0.7710 
202 0.8008 235 0.8657 268 0.6749 
203 0.8112 236 0.8422 269 0.8151 
204 0.7908 237 0.8310 270 0.8247 
205 0.6719 238 0.8291 271 0.8210 
206 0.7967 239 0.8083 272 0.8150 
207 0.8138 240 0.6758 273 0.8097 
208 0.8058 241 0.8126 274 0.7707 
209 0.7803 242 0.8206 275 0.6745 
210 0.7841 243 0.8275 276 0.8081 
211 0.7691 244 0.8298 277 0.8173 
212 0.6650 245 0.8263 278 0.8110 
213 0.8268 246 0.8087 279 0.7970 
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Table B.1 Thailand daily load profile (Continued) 

Day Load (p.u.) Day Load (p.u.) Day Load (p.u.) 
280 0.8089 309 0.7384 338 0.5943 
281 0.7720 310 0.6254 339 0.5319 
282 0.6654 311 0.7974 340 0.7418 
283 0.8086 312 0.7886 341 0.7398 
284 0.8388 313 0.8024 342 0.7330 
285 0.8363 314 0.8083 343 0.7298 
286 0.8145 315 0.7920 344 0.7009 
287 0.8080 316 0.7658 345 0.5881 
288 0.7829 317 0.6628 346 0.6973 
289 0.6588 318 0.8197 347 0.7603 
290 0.7768 319 0.8418 348 0.7665 
291 0.8072 320 0.8203 349 0.7689 
292 0.8147 321 0.8111 350 0.7331 
293 0.8276 322 0.8104 351 0.6646 
294 0.8219 323 0.7828 352 0.5737 
295 0.7576 324 0.6633 353 0.7123 
296 0.6207 325 0.8155 354 0.7304 
297 0.6900 326 0.8119 355 0.7450 
298 0.8011 327 0.8093 356 0.7482 
299 0.7630 328 0.8076 357 0.7511 
300 0.8054 329 0.7965 358 0.7286 
301 0.7930 330 0.7815 359 0.6111 
302 0.7428 331 0.6219 360 0.7437 
303 0.6126 332 0.7683 361 0.7132 
304 0.7625 333 0.7606 362 0.6288 
305 0.7668 334 0.7602 363 0.5557 
306 0.7785 335 0.7271 364 0.4786 
307 0.7532 336 0.7344 365 0.4233 
308 0.7483 337 0.7142   
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APPENDIX C 
Thailand solar irradiance data (12:00 p.m. of every day in 2021) 

 

Table C.1 Thailand solar irradiance data 

Day Load (p.u.) Day Load (p.u.) Day Load (p.u.) 

1 0.8348 28 0.8205 55 0.9262 
2 0.8701 29 0.8415 56 0.8966 
3 0.8703 30 0.7885 57 0.9931 
4 0.8624 31 0.8883 58 0.9807 
5 0.7752 32 0.8907 59 0.9522 
6 0.8669 33 0.9190 60 0.9399 
7 0.8536 34 0.9077 61 0.8966 
8 0.7841 35 0.9127 62 0.6430 
9 0.8893 36 0.9089 63 0.8681 
10 0.8924 37 0.8684 64 0.9433 
11 0.8527 38 0.9116 65 1.0000 
12 0.8836 39 0.8259 66 0.9609 
13 0.9090 40 0.7219 67 0.8277 
14 0.9106 41 0.9169 68 0.7493 
15 0.8801 42 0.9850 69 0.8316 
16 0.8590 43 0.9707 70 0.8881 
17 0.7905 44 0.9433 71 0.8540 
18 0.8809 45 0.9200 72 0.8252 
19 0.8494 46 0.9420 73 0.7846 
20 0.8806 47 0.8755 74 0.8126 
21 0.7394 48 0.7562 75 0.7998 
22 0.8534 49 0.9229 76 0.7900 
23 0.8634 50 0.9582 77 0.7497 
24 0.8280 51 0.9703 78 0.8798 
25 0.8359 52 0.9330 79 0.8845 
26 0.7835 53 0.9593 80 0.8764 
27 0.7533 54 0.9347 81 0.4163 
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Table C.1 Thailand solar irradiance data (Continued) 

Day Load (p.u.) Day Load (p.u.) Day Load (p.u.) 
82 0.9508 115 0.7641 148 0.5257 
83 0.9602 116 0.7378 149 0.9330 
84 0.8245 117 0.6925 150 0.8938 
85 0.8143 118 0.5369 151 0.9614 
86 0.9056 119 0.6376 152 0.9762 
87 0.9414 120 0.4696 153 0.9420 
88 0.9588 121 0.6326 154 0.9640 
89 0.7997 122 0.9120 155 0.8913 
90 0.9689 123 0.9043 156 0.8567 
91 0.8624 124 0.9184 157 0.8874 
92 0.9824 125 0.8349 158 0.6306 
93 0.7975 126 0.5863 159 0.7524 
94 0.0934 127 0.9073 160 0.6647 
95 0.1469 128 0.7363 161 0.5987 
96 0.1492 129 0.9155 162 0.4355 
97 0.6782 130 0.9370 163 0.7417 
98 0.8222 131 0.8463 164 0.4980 
99 0.8937 132 0.9173 165 0.6161 
100 0.8179 133 0.9500 166 0.5160 
101 0.7594 134 0.9444 167 0.7443 
102 0.7332 135 0.8631 168 0.6886 
103 0.8384 136 0.8770 169 0.8477 
104 0.6127 137 0.9002 170 0.9786 
105 0.9895 138 0.7715 171 0.9362 
106 0.8747 139 0.9129 172 0.9577 
107 0.8573 140 0.8289 173 0.9479 
108 0.8938 141 0.9270 174 0.8833 
109 0.8607 142 0.9636 175 0.8708 
110 0.8259 143 0.9733 176 0.8453 
111 0.8327 144 0.7766 177 0.8870 
112 0.8707 145 0.6580 178 0.9712 
113 0.8156 146 0.7960 179 0.7833 
114 0.8256 147 0.7918 180 0.8554 
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Table C.1 Thailand solar irradiance data (Continued) 

Day Load (p.u.) Day Load (p.u.) Day Load (p.u.) 
181 0.8693 214 0.7310 247 0.7513 
182 0.9250 215 0.6771 248 0.6833 
183 0.9599 216 0.8219 249 0.7813 
184 0.9850 217 0.8260 250 0.5225 
185 0.9731 218 0.8098 251 0.7814 
186 0.9535 219 0.7898 252 0.6893 
187 0.8506 220 0.9008 253 0.6755 
188 0.7531 221 0.9658 254 0.5158 
189 0.6611 222 0.9368 255 0.8227 
190 0.6722 223 0.7177 256 0.6250 
191 0.6669 224 0.7860 257 0.5624 
192 0.2722 225 0.8299 258 0.6255 
193 0.8863 226 0.5621 259 0.6433 
194 0.8813 227 0.4940 260 0.8170 
195 0.3892 228 0.7695 261 0.9226 
196 0.6202 229 0.9526 262 0.4326 
197 0.7420 230 0.9943 263 0.5163 
198 0.9117 231 0.9054 264 0.6743 
199 0.6956 232 0.8884 265 0.7276 
200 0.5688 233 0.4580 266 0.7733 
201 0.7985 234 0.7901 267 0.6924 
202 0.6367 235 0.9686 268 0.3186 
203 0.6246 236 0.9767 269 0.5307 
204 0.5466 237 0.9080 270 0.7957 
205 0.4769 238 0.5568 271 0.7858 
206 0.4265 239 0.5296 272 0.9154 
207 0.6194 240 0.4000 273 0.8656 
208 0.8202 241 0.7229 274 0.9161 
209 0.7287 242 0.8340 275 0.7831 
210 0.8407 243 0.7002 276 0.8028 
211 0.8326 244 0.8196 277 0.8490 
212 0.7167 245 0.8107 278 0.7800 
213 0.7248 246 0.5948 279 0.6548 
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Table C.1 Thailand solar irradiance data (Continued) 

Day Load (p.u.) Day Load (p.u.) Day Load (p.u.) 
280 0.7526 309 0.7741 338 0.8621 
281 0.7783 310 0.7353 339 0.7880 
282 0.5187 311 0.7569 340 0.8191 
283 0.8537 312 0.5366 341 0.8723 
284 0.7061 313 0.7193 342 0.8704 
285 0.7107 314 0.7225 343 0.7469 
286 0.7317 315 0.8600 344 0.8514 
287 0.6892 316 0.6838 345 0.8740 
288 0.5145 317 0.4193 346 0.8556 
289 0.8512 318 0.6055 347 0.8064 
290 0.3149 319 0.7326 348 0.8555 
291 0.4736 320 0.6194 349 0.8360 
292 0.6713 321 0.6912 350 0.8618 
293 0.7502 322 0.5998 351 0.7488 
294 0.8037 323 0.7797 352 0.8484 
295 0.6368 324 0.7400 353 0.6354 
296 0.5740 325 0.7343 354 0.8573 
297 0.8569 326 0.7811 355 0.8014 
298 0.8726 327 0.4762 356 0.8238 
299 0.8904 328 0.6825 357 0.8237 
300 0.8862 329 0.7863 358 0.7713 
301 0.3318 330 0.7588 359 0.7716 
302 0.5781 331 0.8379 360 0.7806 
303 0.6869 332 0.8889 361 0.8255 
304 0.7038 333 0.7660 362 0.8768 
305 0.8288 334 0.3426 363 0.7919 
306 0.7219 335 0.4832 364 0.7454 
307 0.7692 336 0.5269 365 0.7843 
308 0.7804 337 0.8412   
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APPENDIX D 
Thailand wind speed data (12:00 p.m. of every day in 2021) 

 

Table D.1 Thailand wind speed data 

Day Load (p.u.) Day Load (p.u.) Day Load (p.u.) 

1 0.6373 28 0.0140 55 0.3361 
2 0.3782 29 0.4776 56 0.1303 
3 0.2255 30 0.1513 57 0.0020 
4 0.4398 31 0.1401 58 0.0140 
5 0.2647 32 0.1176 59 0.4594 
6 0.2899 33 0.1891 60 0.3431 
7 0.1681 34 0.2941 61 0.2717 
8 0.5448 35 0.4860 62 0.5196 
9 0.5000 36 0.1933 63 0.1289 
10 0.3291 37 0.2157 64 0.0896 
11 0.6331 38 0.0020 65 0.0322 
12 0.8193 39 0.1345 66 0.2101 
13 0.2367 40 0.1849 67 0.0168 
14 0.0020 41 0.1891 68 0.0020 
15 0.0020 42 0.0020 69 0.0020 
16 0.0020 43 0.0020 70 0.0020 
17 0.3193 44 0.0020 71 0.0020 
18 0.6499 45 0.0350 72 0.0924 
19 0.1275 46 0.3375 73 0.0798 
20 0.0020 47 0.3039 74 0.2773 
21 0.0020 48 0.2507 75 0.3599 
22 0.0020 49 0.5826 76 0.3277 
23 0.0020 50 0.6176 77 0.0238 
24 0.0490 51 0.2157 78 0.2465 
25 0.0020 52 0.0020 79 0.3754 
26 0.0020 53 0.0020 80 0.1359 
27 0.0938 54 0.0252 81 0.6008 
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Table D.1 Thailand wind speed data (Continued) 

Day Load (p.u.) Day Load (p.u.) Day Load (p.u.) 
82 0.2605 115 0.3992 148 0.2703 
83 0.0020 116 0.0020 149 0.4132 
84 0.2549 117 0.0020 150 0.4104 
85 0.1261 118 0.1751 151 0.3263 
86 0.3081 119 0.0020 152 0.3445 
87 0.3431 120 0.0020 153 0.0784 
88 0.2815 121 0.0020 154 0.0252 
89 0.2003 122 0.0020 155 0.0504 
90 0.3221 123 0.0020 156 0.2717 
91 0.1975 124 0.0020 157 0.4678 
92 0.2689 125 0.0020 158 0.6289 
93 0.1569 126 0.0020 159 0.6106 
94 0.4076 127 0.2003 160 0.5266 
95 0.0070 128 0.0020 161 0.4020 
96 0.0020 129 0.0020 162 0.6513 
97 0.0020 130 0.0020 163 0.4062 
98 0.0020 131 0.1303 164 0.6429 
99 0.0020 132 0.0476 165 0.6947 
100 0.0742 133 0.1429 166 0.5042 
101 0.0020 134 0.0994 167 0.5140 
102 0.0020 135 0.1597 168 0.2381 
103 0.0020 136 0.3824 169 0.1134 
104 0.0644 137 0.0266 170 0.0154 
105 0.0020 138 0.1737 171 0.3613 
106 0.0020 139 0.0020 172 0.3697 
107 0.0020 140 0.0020 173 0.2675 
108 0.0020 141 0.0020 174 0.3978 
109 0.0020 142 0.3725 175 0.4958 
110 0.0020 143 0.4244 176 0.2479 
111 0.0020 144 0.2101 177 0.3179 
112 0.0020 145 0.1008 178 0.4398 
113 0.0560 146 0.1022 179 0.3221 
114 0.0020 147 0.1905 180 0.1485 

 



104 

Table D.1 Thailand wind speed data (Continued) 

Day Load (p.u.) Day Load (p.u.) Day Load (p.u.) 
181 0.2535 214 0.5980 247 0.4090 
182 0.2367 215 0.5504 248 0.5700 
183 0.0224 216 0.6289 249 0.1695 
184 0.2409 217 0.5882 250 0.7255 
185 0.0700 218 0.5084 251 0.2885 
186 0.0020 219 0.4524 252 0.1485 
187 0.1723 220 0.2241 253 0.3768 
188 0.1064 221 0.1863 254 0.3557 
189 0.2157 222 0.1947 255 0.5378 
190 0.1583 223 0.4594 256 0.7045 
191 0.0056 224 0.5056 257 0.4062 
192 0.6569 225 0.4384 258 0.0020 
193 0.2185 226 0.4412 259 0.4076 
194 0.0020 227 0.7451 260 0.1331 
195 0.0020 228 0.1261 261 0.0020 
196 0.0020 229 0.0020 262 0.0020 
197 0.2591 230 0.0020 263 0.0420 
198 0.4258 231 0.0020 264 0.3908 
199 0.6499 232 0.0020 265 0.2703 
200 1.0000 233 0.2563 266 0.0020 
201 0.7409 234 0.1555 267 0.2199 
202 0.8347 235 0.2479 268 0.1737 
203 0.5504 236 0.2507 269 0.2171 
204 0.4650 237 0.2437 270 0.0020 
205 0.7927 238 0.1303 271 0.0020 
206 0.7479 239 0.3053 272 0.0020 
207 0.6779 240 0.4468 273 0.0020 
208 0.5798 241 0.0336 274 0.1611 
209 0.5336 242 0.0504 275 0.0560 
210 0.5098 243 0.0020 276 0.0840 
211 0.4048 244 0.0020 277 0.0020 
212 0.6303 245 0.0020 278 0.2101 
213 0.6162 246 0.6555 279 0.0980 
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Table D.1 Thailand wind speed data (Continued) 

Day Load (p.u.) Day Load (p.u.) Day Load (p.u.) 
280 0.0020 309 0.0020 338 0.4566 
281 0.1695 310 0.0168 339 0.4622 
282 0.3950 311 0.0020 340 0.4384 
283 0.4076 312 0.7325 341 0.2619 
284 0.3796 313 0.5056 342 0.2577 
285 0.1989 314 0.2185 343 0.4454 
286 0.2871 315 0.2479 344 0.4230 
287 0.2857 316 0.3305 345 0.2297 
288 0.7143 317 0.6261 346 0.4174 
289 0.1919 318 0.5350 347 0.7199 
290 0.6162 319 0.3739 348 0.1499 
291 0.0364 320 0.3768 349 0.1401 
292 0.0020 321 0.2997 350 0.0364 
293 0.0020 322 0.6008 351 0.4090 
294 0.0020 323 0.1134 352 0.6499 
295 0.0020 324 0.0020 353 0.5266 
296 0.2437 325 0.0924 354 0.1555 
297 0.3417 326 0.3319 355 0.0070 
298 0.4090 327 0.5154 356 0.0020 
299 0.1709 328 0.4818 357 0.0020 
300 0.3557 329 0.4482 358 0.0020 
301 0.1737 330 0.3137 359 0.1933 
302 0.1148 331 0.4230 360 0.2815 
303 0.1485 332 0.4566 361 0.5056 
304 0.0020 333 0.6331 362 0.4636 
305 0.0518 334 0.8810 363 0.5490 
306 0.0020 335 0.7241 364 0.6723 
307 0.0686 336 0.5798 365 0.5140 
308 0.0020 337 0.5028   
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APPENDIX E 
Line flow results data  

 
Table E.1 Line flow results data of the IEEE 30-bus test system for TSCM  

(Table 3.2) 

From 
Bus 

To 
Bus 

Forward Power Flow Power Loss MVA Flow MVA Limit 

MW MVAR MW MVAR MVA MVA 

1 2 118.5000 -15.6100 2.2500 0.4300 119.5200 130.0000 
1 3 58.9900 -2.5600 1.3000 0.4800 59.0500 130.0000 
2 1 -116.2400 16.0400 2.2500 0.4300 117.3500 130.0000 
2 4 33.9200 -4.6000 0.5600 -2.6100 34.2300 65.0000 
2 5 63.7500 0.1000 1.6200 1.9900 63.7500 130.0000 
2 6 45.5400 -1.5200 1.0200 -1.2400 45.5700 65.0000 
3 1 -57.6900 3.0400 1.3000 0.4800 57.7700 130.0000 
3 4 55.2900 -4.2400 0.3500 0.0200 55.4600 130.0000 
4 2 -33.3600 2.0000 0.5600 -2.6100 33.4200 65.0000 
4 3 -54.9500 4.2600 0.3500 0.0200 55.1100 130.0000 
4 6 51.8900 12.1000 0.2900 -0.0100 53.2800 90.0000 
4 12 28.8200 -19.9500 0.0000 3.2900 35.0500 130.0000 
5 2 -62.1200 1.8900 1.6200 1.9900 62.1500 130.0000 
5 7 -10.7800 8.1800 0.0800 -2.0800 13.5300 70.0000 
6 2 -44.5200 0.2800 1.0200 -1.2400 44.5200 65.0000 
6 4 -51.5900 -12.1100 0.2900 -0.0100 52.9900 90.0000 
6 7 33.9300 -0.4400 0.2700 -1.0800 33.9400 130.0000 
6 8 11.2400 -14.0900 0.0300 -0.9100 18.0300 32.0000 
6 9 22.2900 33.8300 0.0000 2.6200 40.5100 130.0000 
6 10 13.4500 -5.3800 0.0000 1.1400 14.4900 65.0000 
6 28 15.2000 -2.0900 0.0300 -1.3500 15.3400 32.0000 
7 5 10.8600 -10.2600 0.0800 -2.0800 14.9400 70.0000 
7 6 -33.6600 -0.6400 0.2700 -1.0800 33.6700 130.0000 
8 6 -11.2100 13.1800 0.0300 -0.9100 17.3100 32.0000 
8 28 2.2600 -0.1000 0.0100 -4.8500 2.2600 32.0000 
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Table E.1 Line flow results data of the IEEE 30-bus test system for TSCM  
(Table 3.2) (Continued) 

From 
Bus 

To 
Bus 

Forward Power Flow Power Loss MVA Flow MVA Limit 

MW MVAR MW MVAR MVA MVA 

9 6 -22.2800 -31.2000 0.0000 2.6200 38.3400 130.0000 
9 10 34.1200 36.2300 0.0000 2.3400 49.7700 65.0000 
9 11 -11.8400 -5.0300 0.0000 0.3000 12.8600 65.0000 
10 6 -13.4500 6.5200 0.0000 1.1400 14.9500 65.0000 
10 9 -34.1200 -33.8900 0.0000 2.3400 48.0900 65.0000 
10 17 6.8900 8.9900 0.0400 0.1000 11.3300 32.0000 
10 20 10.1300 5.9300 0.1200 0.2600 11.7400 32.0000 
10 21 16.6000 8.9800 0.1100 0.2500 18.8800 32.0000 
10 22 8.1500 3.9200 0.0500 0.1100 9.0400 32.0000 
11 9 11.8400 5.3200 0.0000 0.3000 12.9800 65.0000 
12 4 -28.8200 23.2400 0.0000 3.2900 37.0300 130.0000 
12 13 -12.0000 -32.8000 0.0000 1.6000 34.9300 65.0000 
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Table E.2 Line flow results of the modified IEEE 30-bus test system for TSCM 
(Table 4.1) 

From 
Bus 

To 
Bus 

Forward Power Flow Power Loss MVA Flow MVA Limit 

MW MVAR MW MVAR MVA MVA 

1 2 118.0100 -16.3100 2.2400 0.3800 119.1300 130.0000 
1 3 59.0400 -2.0400 1.3000 0.4900 59.0800 130.0000 
2 1 -115.7700 16.6900 2.2400 0.3800 116.9700 130.0000 
2 4 34.2400 -3.7500 0.5700 -2.5800 34.4400 65.0000 
2 5 63.3300 0.1600 1.6000 1.9000 63.3300 130.0000 
2 6 45.2000 -5.0800 1.0100 -1.3100 45.4800 65.0000 
3 1 -57.7400 2.5300 1.3000 0.4900 57.7900 130.0000 
3 4 55.3400 -3.7300 0.3500 0.0300 55.4600 130.0000 
4 2 -33.6700 1.1700 0.5700 -2.5800 33.6900 65.0000 
4 3 -54.9900 3.7600 0.3500 0.0300 55.1200 130.0000 
4 6 48.7500 -6.5900 0.2500 -0.1700 49.2000 90.0000 
4 12 32.3100 0.0600 0.0000 2.4500 32.3100 130.0000 
5 2 -61.7200 1.7400 1.6000 1.9000 61.7500 130.0000 
5 7 -11.1700 5.0300 0.0700 -2.1300 12.2500 70.0000 
6 2 -44.1900 3.7800 1.0100 -1.3100 44.3500 65.0000 
6 4 -48.5100 6.4200 0.2500 -0.1700 48.9300 90.0000 
6 7 34.3100 2.6600 0.2800 -1.0800 34.4200 130.0000 
6 8 11.1800 1.6200 0.0100 -0.9800 11.3000 32.0000 
6 9 18.4900 -12.7200 0.0000 1.0500 22.4400 130.0000 
6 10 13.0700 -1.4600 0.0000 0.9200 13.1500 65.0000 
6 28 15.6500 -0.3000 0.0400 -1.3600 15.6500 32.0000 
7 5 11.2400 -7.1600 0.0700 -2.1300 13.3200 70.0000 
7 6 -34.0400 -3.7400 0.2800 -1.0800 34.2400 130.0000 
8 6 -11.1600 -2.6100 0.0100 -0.9800 11.4600 32.0000 
8 28 2.3000 -2.8500 0.0000 -4.8800 3.6600 32.0000 
9 6 -18.4900 13.7800 0.0000 1.0500 23.0500 130.0000 
9 10 30.4400 -3.4400 0.0000 0.9800 30.6400 65.0000 
9 11 -11.9500 -10.3400 0.0000 0.4900 15.8000 65.0000 
10 6 -13.0700 2.3800 0.0000 0.9200 13.2800 65.0000 
10 9 -30.4400 4.4200 0.0000 0.9800 30.7600 65.0000 
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Table E.2 Line flow results of the modified IEEE 30-bus test system for TSCM 
(Table 4.1) (Continued) 

From 
Bus 

To 
Bus 

Forward Power Flow Power Loss MVA Flow MVA Limit 

MW MVAR MW MVAR MVA MVA 

10 17 5.3600 -2.1100 0.0100 0.0300 5.7600 32.0000 
10 20 9.0100 0.6300 0.0700 0.1600 9.0400 32.0000 
10 21 15.8000 -0.1300 0.0800 0.1800 15.8000 32.0000 
10 22 7.5500 -0.1900 0.0400 0.0800 7.5500 32.0000 
11 9 11.9500 10.8300 0.0000 0.4900 16.1300 65.0000 
12 4 -32.3100 2.3900 0.0000 2.4500 32.4000 130.0000 
12 13 -12.0000 28.4500 0.0000 1.2200 30.8700 65.0000 
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Table E.3 Line flow results of the modified IEEE 30-bus test system for APLM 
(Table 4.1) 

From 
Bus 

To 
Bus 

Forward Power Flow Power Loss MVA Flow MVA Limit 

MW MVAR MW MVAR MVA MVA 

1 2 27.5600 -7.5700 0.1200 -6.0000 28.5800 130.0000 
1 3 23.9100 -4.0300 0.2100 -4.0300 24.2500 130.0000 
2 1 -27.4300 1.5700 0.1200 -6.0000 27.4800 130.0000 
2 4 20.2100 -4.5400 0.2000 -3.8100 20.7200 65.0000 
2 5 39.5500 -0.8700 0.6100 -2.3800 39.5500 130.0000 
2 6 25.9700 -1.2700 0.3300 -3.4600 26.0100 65.0000 
3 1 -23.7000 0.0000 0.2100 -4.0300 23.7000 130.0000 
3 4 21.3000 -1.2000 0.0500 -0.8600 21.3300 130.0000 
4 2 -20.0200 0.7300 0.2000 -3.8100 20.0300 65.0000 
4 3 -21.2500 0.3400 0.0500 -0.8600 21.2500 130.0000 
4 6 25.8900 13.8100 0.0900 -0.7600 29.3400 90.0000 
4 12 7.7800 -16.4900 0.0000 0.8600 18.2300 130.0000 
5 2 -38.9300 -1.5100 0.6100 -2.3800 38.9600 130.0000 
5 7 -5.2700 5.9300 0.0300 -2.2900 7.9300 70.0000 
6 2 -25.6500 -2.1900 0.3300 -3.4600 25.7400 65.0000 
6 4 -25.8000 -14.5700 0.0900 -0.7600 29.6300 90.0000 
6 7 28.2800 1.2700 0.1800 -1.4200 28.3100 130.0000 
6 8 -1.2700 -9.6600 0.0100 -1.0300 9.7500 32.0000 
6 9 4.6600 29.0600 0.0000 1.4600 29.4300 130.0000 
6 10 8.3000 -1.6700 0.0000 0.3700 8.4600 65.0000 
6 28 11.4800 -2.2300 0.0200 -1.4600 11.7000 32.0000 
7 5 5.3000 -8.2200 0.0300 -2.2900 9.7800 70.0000 
7 6 -28.1000 -2.6800 0.1800 -1.4200 28.2300 130.0000 
8 6 1.2800 8.6300 0.0100 -1.0300 8.7300 32.0000 
8 28 3.7200 -1.1800 0.0100 -5.0100 3.9000 32.0000 
9 6 -4.6600 -27.6000 0.0000 1.4600 27.9900 130.0000 
9 10 34.6600 14.0000 0.0000 1.3700 37.3800 65.0000 
9 11 -30.0000 13.6000 0.0000 2.0200 32.9400 65.0000 
10 6 -8.3000 2.0500 0.0000 0.3700 8.5500 65.0000 
10 9 -34.6600 -12.6300 0.0000 1.3700 36.8900 65.0000 
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Table E.3 Line flow results of the modified IEEE 30-bus test system for APLM 
(Table 4.1) (Continued) 

From 
Bus 

To 
Bus 

Forward Power Flow Power Loss MVA Flow MVA Limit 

MW MVAR MW MVAR MVA MVA 

10 17 3.8200 4.2400 0.0100 0.0300 5.7000 32.0000 
10 20 8.5000 4.1500 0.0800 0.1700 9.4600 32.0000 
10 21 16.6900 1.6700 0.0900 0.1900 16.7800 32.0000 
10 22 8.1400 0.9500 0.0400 0.0900 8.2000 32.0000 
11 9 30.0000 -11.5800 0.0000 2.0200 32.1600 65.0000 
12 4 -7.7800 17.3500 0.0000 0.8600 19.0100 130.0000 
12 13 -40.0000 -15.5700 0.0000 2.4100 42.9200 65.0000 
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Table E.4 Line flow results of the modified IEEE 30-bus test system for VMDM 
(Table 4.1) 

From 
Bus 

To 
Bus 

Forward Power Flow Power Loss MVA Flow MVA Limit 

MW MVAR MW MVAR MVA MVA 

1 2 85.7600 -91.7200 2.9100 3.1800 125.5700 130.0000 
1 3 46.4500 -8.8500 0.9900 -0.0600 47.2900 130.0000 
2 1 -82.8500 94.9000 2.9100 3.1800 125.9800 130.0000 
2 4 30.9700 14.1900 0.6400 -1.8700 34.0600 65.0000 
2 5 67.1900 -1.9900 1.9600 3.8200 67.2200 130.0000 
2 6 43.0000 8.7100 1.0500 -0.7100 43.8700 65.0000 
3 1 -45.4700 8.7900 0.9900 -0.0600 46.3100 130.0000 
3 4 43.0700 -9.9900 0.2600 -0.1000 44.2100 130.0000 
4 2 -30.3200 -16.0600 0.6400 -1.8700 34.3200 65.0000 
4 3 -42.8100 9.8900 0.2600 -0.1000 43.9400 130.0000 
4 6 51.4600 -21.9800 0.3700 0.3900 55.9500 90.0000 
4 12 14.0800 26.5500 0.0000 2.1100 30.0500 130.0000 
5 2 -65.2200 5.8100 1.9600 3.8200 65.4800 130.0000 
5 7 -13.9800 20.4500 0.2900 -1.3400 24.7700 70.0000 
6 2 -41.9400 -9.4300 1.0500 -0.7100 42.9900 65.0000 
6 4 -51.0900 22.3700 0.3700 0.3900 55.7700 90.0000 
6 7 37.4700 -11.3600 0.4000 -0.4700 39.1500 130.0000 
6 8 20.5600 -1.8600 0.0500 -0.7200 20.6400 32.0000 
6 9 9.0400 -17.4600 0.0000 0.9700 19.6600 130.0000 
6 10 9.8700 17.6700 0.0000 2.0100 20.2400 65.0000 
6 28 16.0900 0.0600 0.0400 -1.1500 16.0900 32.0000 
7 5 14.2700 -21.7900 0.2900 -1.3400 26.0400 70.0000 
7 6 -37.0700 10.8900 0.4000 -0.4700 38.6300 130.0000 
8 6 -20.5100 1.1300 0.0500 -0.7200 20.5400 32.0000 
8 28 0.5100 -1.6700 0.0000 -4.2700 1.7500 32.0000 
9 6 -9.0400 18.4300 0.0000 0.9700 20.5200 130.0000 
9 10 26.3200 -19.0200 0.0000 1.2800 32.4800 65.0000 
9 11 -17.2900 0.6000 0.0000 0.6900 17.3000 65.0000 
10 6 -9.8700 -15.6500 0.0000 2.0100 18.5100 65.0000 
10 9 -26.3200 20.3100 0.0000 1.2800 33.2500 65.0000 
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Table E.4 Line flow results of the modified IEEE 30-bus test system for VMDM 
(Table 4.1) (Continued) 

From 
Bus 

To 
Bus 

Forward Power Flow Power Loss MVA Flow 
MVA 
Limit 

MW MVAR MW MVAR MVA MVA 

10 17 1.2100 -0.7500 0.0000 0.0000 1.4200 32.0000 
10 20 6.8700 2.3900 0.0500 0.1200 7.2800 32.0000 
10 21 15.1900 -3.6700 0.0900 0.1900 15.6300 32.0000 
10 22 7.1200 -2.3100 0.0400 0.0900 7.4900 32.0000 
11 9 17.2900 0.0900 0.0000 0.6900 17.2900 65.0000 
12 4 -14.0800 -24.4400 0.0000 2.1100 28.2100 130.0000 
12 13 -39.3500 24.3100 0.0000 3.1000 46.2500 65.0000 
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Table E.5 Line flow results of the modified IEEE 30-bus test system for MO 
(Table 4.1) 

From 
Bus 

To 
Bus 

Forward Power Flow Power Loss MVA Flow MVA Limit 

MW MVAR MW MVAR MVA MVA 

1 2 72.8100 -10.0200 0.9800 -2.5200 73.5000 130.0000 
1 3 38.4200 -3.7800 0.6400 -1.5900 38.6000 130.0000 
2 1 -71.8300 7.5000 0.9800 -2.5200 72.2200 130.0000 
2 4 23.2100 -5.3500 0.3100 -2.8200 23.8200 65.0000 
2 5 50.4500 -0.3100 1.1700 0.7200 50.4500 130.0000 
2 6 31.0500 -1.2100 0.5500 -2.1200 31.0700 65.0000 
3 1 -37.7800 2.1900 0.6400 -1.5900 37.8400 130.0000 
3 4 35.3800 -3.3900 0.1600 -0.3900 35.5400 130.0000 
4 2 -22.9000 2.5200 0.3100 -2.8200 23.0400 65.0000 
4 3 -35.2200 3.0000 0.1600 -0.3900 35.3400 130.0000 
4 6 35.1600 17.1800 0.1800 -0.2700 39.1300 90.0000 
4 12 15.3600 -24.3100 0.0000 2.3900 28.7500 130.0000 
5 2 -49.2700 1.0300 1.1700 0.7200 49.2900 130.0000 
5 7 -10.8000 7.8700 0.0900 -1.7600 13.3700 70.0000 
6 2 -30.5000 -0.9100 0.5500 -2.1200 30.5200 65.0000 
6 4 -34.9800 -17.4500 0.1800 -0.2700 39.0900 90.0000 
6 7 34.0100 0.5600 0.3100 -0.7100 34.0100 130.0000 
6 8 -1.0000 -10.9300 0.0100 -0.8500 10.9800 32.0000 
6 9 9.7800 31.9700 0.0000 1.9000 33.4300 130.0000 
6 10 10.2600 -2.3000 0.0000 0.6000 10.5100 65.0000 
6 28 12.4400 -0.9300 0.0300 -1.1900 12.4700 32.0000 
7 5 10.9000 -9.6300 0.0900 -1.7600 14.5400 70.0000 
7 6 -33.7000 -1.2700 0.3100 -0.7100 33.7200 130.0000 
8 6 1.0100 10.0800 0.0100 -0.8500 10.1300 32.0000 
8 28 3.9800 -0.1700 0.0100 -4.2100 3.9800 32.0000 
9 6 -9.7800 -30.0700 0.0000 1.9000 31.6200 130.0000 
9 10 36.3600 18.1400 0.0000 1.6600 40.6300 65.0000 
9 11 -26.5800 11.9300 0.0000 1.6100 29.1300 65.0000 
10 6 -10.2600 2.9000 0.0000 0.6000 10.6600 65.0000 
10 9 -36.3600 -16.4800 0.0000 1.6600 39.9200 65.0000 
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Table E.5 Line flow results of the modified IEEE 30-bus test system for MO 
(Table 4.1) (Continued) 

From 
Bus 

To 
Bus 

Forward Power Flow Power Loss MVA Flow MVA Limit 

MW MVAR MW MVAR MVA MVA 

10 17 5.9200 6.9300 0.0300 0.0700 9.1100 32.0000 
10 20 9.7200 5.0300 0.1100 0.2400 10.9500 32.0000 
10 21 16.9000 2.2000 0.1000 0.2100 17.0400 32.0000 
10 22 8.2800 1.4700 0.0500 0.1000 8.4000 32.0000 
11 9 26.5800 -10.3200 0.0000 1.6100 28.5100 65.0000 
12 4 -15.3600 26.7000 0.0000 2.3900 30.8000 130.0000 
12 13 -27.5600 -24.0600 0.0000 1.8500 36.5900 65.0000 
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