
A MODIFIED WHALE OPTIMIZATION ALGORITHM FOR

IMPROVING DATA BALANCE BASED ON UNDERSAMPLING

TECHNIQUES

JAKKRIT POLROB

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Applied Mathematics

Suranaree University of Technology

Academic Year 2021

ขั้นตอนวิธีการหาค่าเหมาะที่สุดแบบวาฬแปลงสำหรับปรับปรุงสมดุลข้อมูล

อิงกลวิธีการเลือกตัวอย่างลด

นายจักรกฤษณ์ พลรบ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต

สาขาวิชาคณิตศาสตร์ประยุกต์

มหาวิทยาลัยเทคโนโลยีสุรนารี

ปีการศึกษา 2564

CamScanner

https://digital-camscanner.onelink.me/P3GL/g26ffx3k

CamScanner

https://digital-camscanner.onelink.me/P3GL/g26ffx3k

CamScanner

https://digital-camscanner.onelink.me/P3GL/g26ffx3k

ACKNOWLEDGEMENTS

First of all, I would like to thank all advisors who helped and advised on com­

pleting this thesis. My thesis advisor is Asst. Prof. Benjawan Rodjanadid, who helped me

with everything, whether how to presentation, how to write a good paper, and always

listened to my new ideas, I’m grateful for her support. Next, my first co­advisor is Asst.

Prof. Jessada tanthanuch, who always suggests how to write a thesis form and support

the study, I would not have done this thesis without him. The other co­advisor is Assoc.

Prof. Eckart Schulz, who helped me how to write the correct English language and spent

much of his time editing my thesis, I’m so grateful for his help. I appreciate all teachers

in mathematics at the Institute of Science, Suranaree University of Technology (SUT), for

teaching a lot of knowledge. I am very glad to have friends to study on the way together.

Finally, I am grateful for acknowledging the receipt of the Kittibandit scholarship

from Suranaree University of Technology for my master’s degree study. And finally, really

thank you very much to everyone who made me successful in writing my thesis.

Jakkrit Polrob

CONTENTS

Page

ABSTRACT IN THAI . I

ABSTRACT IN ENGLISH . II

ACKNOWLEDGEMENTS . III

CONTENTS . IV

LIST OF TABLES . VII

LIST OF FIGURES . IX

CHAPTER

I INTRODUCTION . 1

1.1 Research objective . 2

1.2 Scope and limitations . 2

1.3 Research procedure . 3

1.4 Expected result . 3

II LITERATURE REVIEW . 4

2.1 Classification Problem in Imbalanced Data 4

2.2 Imbalance Data Techniques . 6

2.2.1 Oversampling Methods . 6

2.2.2 Undersampling Methods 6

Random Undersampling 6

Cluster centroid . 7

Near–Miss . 8

2.2.3 Hybrid Methods . 9

2.3 Whale Optimization Algorithm . 9

2.3.1 The mathematical model 10

2.4 Binary Whale Optimization Algorithm 13

2.5 Machine Learning . 14

V

CONTENTS (Continued)

Page

2.5.1 Model for Classification . 15

Support Vector Machine 15

Decision Tree . 17

Random Forest . 19

K­Nearest Neighbors . 20

2.6 Performance Metrics . 21

2.6.1 Confusion Matrix . 21

2.6.2 Mathew’s Coefficient . 23

2.6.3 Cohen’s Kappa Coefficient 24

2.6.4 Receiver operating characteristic curve (ROC Curve) 24

2.6.5 Precision­Recall curve (PR Curve) 26

2.6.6 K­fold Cross­Validation . 27

2.6.7 Standard competition ranking (”1224” ranking) 27

2.7 Related Researches . 28

III RESEARCH METHODOLOGY . 32

3.1 Tools . 32

3.2 Datasets . 32

3.3 Range of Optimized Parameter . 34

3.4 WBWOA 1NN Algorithm . 35

3.5 WBWOA KNN Algorithm . 36

3.6 Model Evaluation . 36

3.7 Work procedure . 37

IV RESULTS AND DISCUSSION . 39

4.1 Results . 39

4.2 Discussion . 40

V CONCLUSION . 45

VI

CONTENTS (Continued)

Page

REFERENCES . 48

APPENDICES

APPENDIX A REPORT OF PERFORMANCE MEASUREMENTS 54

APPENDIX B REPORT OF RANKING SCORE 64

APPENDIX C REPORT OF OPTIMIZE PARAMETERS 74

APPENDIX D REPORT OF FITNESS VALUES 80

APPENDIX E CODE OF WBWOA 1NN ALGORITHM 87

APPENDIX F CODE OF WBWOA KNN ALGORITHM 94

APPENDIX G CODE FOR PARAMETER OPTIMIZATION 102

CURRICULUM VITAE . 112

LIST OF TABLES

Table Page

3.1 Detail of datasets. 33

3.2 Training datasets. 33

3.3 Testing datasets. 34

3.4 Range of parameters to be optimized 34

4.1 Average ranking score of each undersampling method in the deci­

sion tree model. 40

4.2 Average ranking score of each undersampling method in the random

forest model. 41

4.3 Average ranking score of each undersampling method in the support

vector machine model. 42

4.4 Average ranking score of 3 classification models, using the best un­

dersampling method for each model. 43

4.5 Average performance of 3 classification models, using the best un­

dersampling method for each model. 44

A.1 The various performance measurements with the decision tree model. 55

A.2 The various performance measurements with the random forest model. 58

A.3 The various performance measurements with the support vector

machine model. 61

B.1 Ranking scores for the decision tree model. 65

B.2 Ranking scores for the random forest model. 68

B.3 Ranking scores for the support vector machine model. 71

C.1 Report of optimal parameters for the decision tree model. 75

C.2 Report of optimal parameters for the random forest model. 76

C.3 Report of optimal parameters for the support vector machine model. 77

C.4 Report of maximize F1 score for the decision tree model. 78

VIII

LIST OF TABLES (Continued)

Figure Page

C.5 Report of maximize F1 score for the random forest model. 78

C.6 Report of maximize F1 score for the support vector machine model. 79

D.1 Fitness values of WBWOA 1NN algorithm. 81

D.2 Fitness values of WBWOA KNN algorithm. 84

LIST OF FIGURES

Figure Page

2.1 Example of a two­class problem (Fernández et al., 2018). 5

2.2 Bubble­net feeding of humpback whales. 9

2.3 Flowchart of Whale Optimization Algorithm. 13

2.4 The margin of a hyperplane. 16

2.5 The components of a Decision Tree. 18

2.6 Majority vote of Random Forest. 19

2.7 KNN algorithm example. 21

2.8 Confusion matrix. 22

2.9 ROC Curve. 25

2.10 Performance of Model (left: Bad, middle: Good, right: Perfect). 25

2.11 PR Curve. 26

2.12 K­fold Cross­validation. 27

3.1 Outline of the workflow. 38

E.1 Code for importing library for the prepossessing work. 88

E.2 Code for creating function of performance metrics. 88

E.3 Code for creating function for splitting majority and minority tables. . 89

E.4 Code for creating function for fitness function. 89

E.5 Code for creating function for graph fitness. 90

E.6 Code for complement function. 90

E.7 Code for creating function for WBWOA 1NN. 91

E.8 Code for creating function for WBWOA 1NN (Continued1). 92

E.9 Code for creating function for WBWOA 1NN (Continued2). 93

E.10 Code for run the WBWOA 1NN algorithm. 93

F.1 Code for importing library for the prepossessing work. 95

F.2 Code for creating function of performance metrics. 95

X

LIST OF FIGURES (Continued)

Figure Page

F.3 Code for creating function for splitting majority and minority tables. . 96

F.4 Code for creating function for fitness function. 96

F.5 Code for creating function for graph fitness. 97

F.6 Code for complement function. 97

F.7 Code for creating function for WBWOA KNN. 98

F.8 Code for creating function for WBWOA KNN (Continued1). 99

F.9 Code for creating function for WBWOA KNN (Continued2). 100

F.10 Code for creating function for WBWOA KNN (Continued3). 100

F.11 Code for running the process. 101

G.1 Code for importing library. 103

G.2 Code for importing library (Continued). 103

G.3 Code for ceating function for show the best parameter. 104

G.4 Code for creating function for objective value of model. 104

G.5 Code for creating function for objective value of model (Continued). 105

G.6 Code for creating function for select models. 106

G.7 Code for ploting graph. 107

G.8 Code for setting name of table. 108

G.9 Code for setting folder. 109

G.10 Code for running process work. 110

G.11 Code for running process work (Continued). 111

CHAPTER I

INTRODUCTION

Data imbalance on a classification problem means that there is a disproportionate

number of samples for each class. This situation can be encountered in many fields and

applications, such as cancer diagnosis, where the number of cases of such disease is few

in the entire population (Fotouhi, 2019), fraud detection in card transactions where the

number of legitimate transactions is higher than the number of defrauders (Mqadi, 2021),

classification of diabetic patients for whom the disease is rare compared to the total

population (Kesornsit, 2018), and many others.

One of the most common problems with imbalanced data is that it may render a

predictive model using conventional machine learning algorithms to become inaccurate

and biased. This happens because machine learning algorithms are often designed to

improve accuracy by reducing errors. Thus, the algorithm may maximize accuracy for

elements of the majority, neglecting elements of the minority class.

Resampling techniques represent methods that can rebalance the data. Once the

data is balanced, one can use this new data set to create a machine learning model. It

will result in better performance by correctly predicting elements of the minority classes

and reducing bias. Resampling techniques can be typically categorized into three groups:

undersampling methods, oversampling methods, and hybrid methods (Fernández et al.,

2018). One of the effective methods is undersampling, as it can reduce the size of majority

classes to the corresponding size of the minority classes, even though one may lose some

beneficial information. However In this way, it reduces the processing time of the machine

learning model and can reduce overfitting.

At present, numerous nature­inspired algorithms have been applied to imbal­

anced data problems such as ant colony optimization algorithms (Yu, Ni, and Zhao, 2013),

evolutionary algorithms (López, Triguero, Carmona, García, and Herrera, 2014), genetic al­

gorithms (Kim, Jo, and Shin, 2016), and adaptive swarm balancing algorithms (Li et al.,

2

2017). Recently, another two nature­inspired algorithms have become popular and have

been applied to many fields of work, namely the whale optimization algorithm (Mirjalili,

and Lewis, 2016) and the binary whale optimization algorithm (Kumar and Kumar, 2020).

Examples of the application of these two algorithms are the feature selection problem

(Mafarja and Mirjalili, 2017), electrical engineer problem (Kumar and Kumar, 2020), and

parameter optimization problem, which can be applied to these tasks effectively. These

algorithms are extremely interesting if applied to the imbalanced data problem.

Therefore, in this work, we present a novel algorithm that uses a combination

of whale and binary whale optimization algorithms based for undersampling. We evalu­

ate the performance of the proposed algorithm by comparing it with some of the most

popular and widely used other techniques, which are Random Undersampling (Mishra,

2017), ClusterCentroid (imbalancedlearn, 2022), and Near­Miss (Mani and Zhang, 2003).

There are various in prediction and classification methods, such as K­Nearest Neighbors

(K­NN) (Aha, Kibler, and Albert, 1991), Support Vector Machine (SVM) (Cortes et al., 1995),

Decision Tree (Breiman, Friedman, Olshen, and Stone, 1984), and Random Forest. We

will employ the latter three methods to evaluate the performance of our undersampling

method. Several performance metrics, such as Accuracy, Sensitivity, G­mean, F­measure,

Area under the curves of Receiver operating characteristic (AUROC), and Cohen’s Kappa

Statistics (Kappa), etc. will be used for this evaluation.

1.1 Research objective

To develop a novel technique for solving imbalanced data problems based on

under­sampling using whale and binary whale optimization algorithms.

1.2 Scope and limitations

1. The datasets are selected from the Knowledge Extraction based on Evolutionary

Learning (KEEL) and Imbalanced­learn repositories.

2. Using whale and binary whale algorithms to solve the imbalanced data problem.

3

3. The techniques for solving the classification problem in this study consist of the

Support Vector Machine, Decision Tree, Random Forest, and K­nearest neighbors.

4. We use the Python programming language version 3.7.5, to develop the proposed

algorithms.

1.3 Research procedure

The research work proceed as follows:

1. Study classification problems with imbalanced data.

2. Study data balancing techniques.

3. Study the whale and binary whale optimization algorithms.

4. Study classification algorithms in data mining and performance metrics for imbal­

anced data.

5. Create an algorithm to solve the problem of imbalanced data.

6. Analyze and construct the model for each algorithm.

7. Compare the performance of the algorithms that have been created with other

algorithms.

1.4 Expected result

Our new algorithm is developed from a combination of the whale and binary

whale optimization algorithms. It can effectively solve the problem of imbalanced data.

CHAPTER II

LITERATURE REVIEW

This section presents the knowledge of basic mathematics and machine learning

related to imbalanced data problems. In particular, it reviews the main idea of the whale

and binary whale optimization algorithms used in this study.

2.1 Classification Problem in Imbalanced Data

In classification tasks, one may encounter situations where the target class label is

skew distributed across various classes. Such conditions are termed as imbalanced target

classes. Modeling an imbalanced dataset is a major challenge faced by data scientists, as

due to the presence of an imbalance in the data the model becomes biased towards the

majority class prediction. Hence, handling the imbalance in the dataset is essential before

model training. There are various things to keep in mind while working with imbalanced

data.

In two­class problems, the minority class is usually referred to as the positive

class, whereas the majority class is considered to be the negative one. The conventional

way of referring to the degree of imbalance of two­class problems is the imbalance ratio

(IR) (Orriols­Puig and Bernadó­Mansilla, 2009). The IR is defined as the number of negative

class examples divided by the number of positive class examples and can be used to sort

different datasets depending on their IR. One must take into account that the IR does not

always give a good estimation of the difficulty of the dataset.

Figure 2.1 shows an example of a dataset of two­class problems with an imbal­

anced ratio of 100. However, if we model this data with a standard classifier, it can cause

poor prediction of the minority class, because standard classifiers tend to be highly bi­

ased in their predictions; they aim at high overall accuracy. For example, from Figure

2.1, we might think that we are faced with a medical application where we should differ­

5

Figure 2.1 Example of a two­class problem (Fernández et al., 2018).

entiate between benign and malignant tumors. It uses two different features that were

measured after the biopsy. In this case, the correct identification of malignant tumors

was more important than benign tumors, because the consequences of an undetected

malignant tumor can be fatal. Usually, the number of people with malignant tumors in

real life is much lower than of those with benign tumors. The direct modeling of this data

set could potentially predict malignant tumors as benign tumors, which could result in

delayed treatment and even death (Fernández et al., 2018).

Accuracy is no longer a proper measure in the imbalance scenario because it does

not distinguish between the numbers of correctly classified examples of different classes.

Hence, it may lead to erroneous conclusions that are inaccurate if it classifies all examples

as negatives (majority classes). Therefore, more informative measures in this context are

required to assess the quality of the models, for instance, geometric mean, F­measure,

precision, recall, etc. These metrics will be discussed later.

6

2.2 Imbalance Data Techniques

This section will discuss various techniques to handle class imbalance when train­

ing a robust and well­fit machine learning model.

2.2.1 Oversampling Methods

Oversampling methods duplicate samples in the minority class or synthesize new

samples from the samples in the minority class. This is also called upsampling. Oversam­

pling is also divided into two types: Random Oversampling and Informative Oversampling

(Sonak and Patankar, 2015). Random Oversampling is the method that balances the

class distribution by replicating randomly chosen minority class samples. On the other

hand, the Informative Oversampling method synthetically generates minority class sam­

ples based on a pre­specified criterion (Ramyachitra and Manikandan, 2014).

2.2.2 Undersampling Methods

Undersampling is a frequently used and efficient method for balancing data. This

method uses a subset of the majority class to train the classifier. In undersampling, one

deletes some samples of the majority class. Undersampling methods are also divided

into Random Undersampling and Informative Undersampling. Random Undersampling

is simple, it randomly eliminates samples from the majority class till the data set gets

balanced. The Informative Undersampling method selects only the required majority

class samples based on a pre­specified selection criterion to balance the data set (Sonak

and Patankar, 2015).

Random Undersampling

Random undersampling randomly selectes examples from the majority class and

deletes them from the training dataset. This method will keep the information of the

minority class but will reduce the size of the majority class, until class balance. However,

if vast quantities of data discarded, this can be highly problematic, as the loss of such

7

data can make the decision boundary between minority and majority instances harder to

learn, resulting in a loss in classification performance (He and Ma, 2013).

Cluster centroid

This is another method of undersampling the majority class by replacing a cluster

of majority samples with the cluster centroid of a K­means algorithm. This algorithm

separates the majority class into K clusters, and replaces the majority class with the

centroids of these clusters.

The K­means algorithm or K­means clustering is one of the simplest and most

popular unsupervised machine learning algorithms. To process the learning data, the K­

means algorithm in data mining starts with a first group of randomly selected centroids,

which are used as the beginning points for every cluster, and then performs iterative

(repetitive) calculations to optimize the positions of the centroids. Given a set of obser­

vations {x1, x2, x3, ..., xn}, where xi ∈ Rd, the K­means algorithm aims to cluster the n

observations into K (! n) sets S = {S1, S2, S3, ..., SK} in which each cluster has a

centroid ck, where ck ∈ Rd. An objective function for this clustering can be created by

finding the minimum value of the total distance of the samples and the centroid of each

cluster ck follows:

J =
n∑

i=1

K∑

k=1

rik‖xi − ck‖2, (2.1)

where rik ∈ {0, 1} is a variable that indicates the membership of the i­th sample in the

k­th cluster. That is,

rik =






1, if k = argmin
j

‖xi − cj‖2,

0, if k $= argmin
j

‖xi − cj‖2.
(2.2)

This means that the sum of the values rik is 1 or
∑K

k=1 rik = 1 for each i = 1, ..., n.

An optimal ck can be obtained by setting the partial derivative of J concerning

ck is 0 as follows:

8

∂J

∂ck
= 2

n∑

i=1

rik(xi − ck) = 0,

n∑

i=1

rikck =
n∑

i=1

rikxi,

ck
n∑

i=1

rik =
n∑

i=1

rikxi,

ck =
∑n

i=1 rikxi∑n
i=1 rik

.

(2.3)

It can be seen that the divisor or
∑n

i=1 rik is the total number of samples assigned to the

k­th cluster, and ck is the mean of all samples assigned to the k­th cluster.

Near–Miss

Near­miss is an algorithm that can help in balancing an imbalanced dataset. It

can be grouped under undersampling algorithms and is an efficient way to balance the

data. The algorithm does this by looking at the class distribution and randomly eliminat­

ing samples from the majority class depending on their distance from elements of the

minority class (Madhukar, 2020).

This algorithm mainly uses distance finding. The most common and easiest way

to find distances is the Euclidean distance, which is defined as follows:

dist(x, y) =

√√√√
n∑

i=1

(xi − yi)2, (2.4)

where x = (x1, x2, x3, ..., xn) and y = (y1, y2, y3, ..., yn)

There are 3 types of near­miss algorithms:

• Version 1: For each sample from the majority class, find the three closest samples

in the minority class and compute the average distance from these three. Then sort the

elements of the majority class by this average distance, and choose the N samples of

smallest average distance as the new majority class. Here, N is the size of the minority

class.

• Version 2: Similar to version 1, but find the three farthest samples from the

minority class and compute the average distance from these three.

9

• Version 3: For each element of the minority class, find the K closest element of

the majority class and compute the average distance, (fixed K), using only the majority

samples and choose the N samples of the largest average distance as the new majority

class (Mani and Zhang, 2003).

2.2.3 Hybrid Methods

The disadvantages of undersampling and oversampling are data loss and over­

fitting, respectively. Therefore, a hybrid method has been developed combining under­

sampling and oversampling for resolving the previously mentioned problem (He and Ma,

2013).

2.3 Whale Optimization Algorithm

The Whale Optimization Algorithm (WOA) (Mirjalili and Lewis, 2016) is a new meta­

heuristic optimization algorithm which mimics the foraging of humpback whales. The

whales hunt schools of krill or small fishes close to the surface by swimming around

them within a shrinking circle and creating distinctive bubbles along a circle or ‘9’­shaped

path (see Figure 2.2).

Figure 2.2 Bubble­net feeding of humpback whales.

10

The hunting consists of two phases, which may alternate. In the first phase, the

exploration phase, they randomly search for prey. In the second phase, the exploitation

phase, they circle around or close in on the prey in a spiralling motion. The circling and

spiralling motions may alternate. As the whales approach their prey, the first phase, the

exploration phase become less and less frequent.

The following subsections discuss the mathematics of each phase in our model

in detail. Not all implementations of the algorithm are exactly as described, there can

also be simplifications or modifications.

2.3.1 The mathematical model

Consider a function f(x) defined on a bounded subsetD of Rd, called the fitness

function. The goal is to find a maximizer (or minimizer) x0 of f(x). One begins with a

predetermined number of points x1, ..., xm in D which represent the positions of the

participating whales, more generally called search agents. Through an iterative process,

these positions are updated in a way so that they approach the maximizer x0. MaxIter

denotes the total number of iterations allowed, which is the stopping criterion.

As the m whales operate independently of another, we give the description for

an individual whale. To be consistent with the notation in (Mirjalili and Lewis, 2016), let

"Xj(t) denote the position of the j­th whale at the t­th iteration. That is, "Xj(0) = xj (j =

1, ..., n). "X∗(t) will indicate the best position obtained so far, i.e. the position derived

from all m whales since the beginning until the current iteration that gives the largest

value of the fitness function.

During the exploitation phase of the given whale, the switch between circling

and spiralling is determined by random variable p = p(t, j). The switch between the

exploitation phase and the exploration phase is being determined by another random

variable A = A(t, j). The manner in which the circling phase, the spiralling phase and

the exploration phase are stitched together can be seen from equation (2.12) below.

We now describe the progession from the t­th iteration to the t+1­th iteration.

Iteration step initialization. First we establish some variables that change with each iter­

11

ation. Set

a = a(t) = 2

(
1− t

MaxIter

)
. (2.5)

This value decreases linearly from 2 to 0 with each iteration. Next let p = p(t, j) and

r = r(t, j) be two uniformly distributed random variables in [0,1]. Set

A = A(t, j) = a(2r − 1) and C = C(t, j) = 2r.

These are two uniformly distributed random variables with values in the interval

[−a(t), a(t)], respectively [0, 2].

Exploitation Phase – circle motion. To hunt a prey, humpback whales first encircle it.

Equations (2.6) and (2.7) can be used to mathematically model this behaviour,

"D = "D(t, j) = |C "X∗(t)− "Xj(t)|, (2.6)

"Xj(t+ 1) = "X∗(t)− A "D, (2.7)

where | · | denotes the elementwise absolute value.

Equation (2.7) shows that the search agents (whales) update their positions to

move around or come closer to the position of the so far best known solution (prey), as

controlled by the values of A and C . The shinking­encircling behaviour is achieved by

the decreasing value of the parameter a.

Exploitation Phase – bubble­net attacking spiralling motion. To simulate spiral­shaped

motion, the above is modified to

"D′ = "D
′
(t, j) = | "X∗(t)− "Xj(t)|, (2.8)

"Xj(t+ 1) = "X∗(t) + "D′ebl cos(2πl), (2.9)

where l = l(t, j), l is a uniformly distributed random number in [−1, 1], and b is a

constant defining the shape of the spiral.

Exploration Phase. Instead of updating the positions of the search agents according to

the so far best known position, a random search is performed. First one choses any of

12

the other whales’ position "Xrand by random and sets

"D′′ = "D
′′
(t, j) = |C "Xrand(t)− "Xj(t)|, (2.10)

"Xj(t+ 1) = "Xrand(t)− A "D′′ . (2.11)

Stitching the phase together. The update of the position of the search agent now follows

the rule

"Xj(t+ 1) =






Shrinking encircling (equation (2.7)) if p < 0.5 and |A| < 1;

bubble­net attacking (equation (2.9)) if p ≥ 0.5;

exploration phase (equation (2.11)) if p < 0.5 and |A| ≥ 1.

(2.12)

Exploration will no longer take place when more than half the maximal iterations

have passed, as then |A| < 1. We observe that all operations in equations (2.6)–(2.11)

are componentwise.

Figure 2.3 shows the workflow of the WOA algorithm. It may be seen that WOA

creates a random, initial population, and evaluates it using a fitness function once the

optimization process starts. After finding the best solution, the algorithm repeatedly exe­

cutes the following steps until the end criterion is satisfied. Firstly, the main coefficients

are updated. Secondly, a random value is generated. Based on this random value, the

algorithm updates the position of a solution using either equations (2.7), (2.11) or (2.9).

Thirdly, the solutions are prevented from going outside the search landscape. Finally, the

algorithm returns the best solution obtained as an approximation of the global optimum.

13

Figure 2.3 Flowchart of Whale Optimization Algorithm.

2.4 Binary Whale Optimization Algorithm

The binary whale optimization algorithm (BWOA) (Kumar and Kumar, 2020) was

developed from the whale optimization algorithm (WOA) to be able to find solutions

14

with only binary vectors. That is, the domain of the fitness function is no longer a subset

of Rd but a space X of binary vectors,

X = {0, 1}d =
d∏

i=1

{0, 1}.

The fact that the vector components are only 0 and 1 has many applications, such as

feature selection (Hussien, Hassanien, Houssein, Bhattacharyya and Amin, 2019) or unit

commitment (Kumar and Kumar, 2020). The updating of a search agent’s position in (2.7),

(2.9) and (2.11) changes now to the toggling of individual bits. The toggling is decided on

by first changing the distances "D, "D
′ , and "D

′′ to elements in [0, 1] through a sigmoid

transfer function, and then comparing them with a random number. To be precise, the

transfer function is

g(s) =
1

1 + e−10(s−0.5)
.

Note that as s increases from ­2 to 2, then g(s) increases from 1
1+e25 ≈ 0 to 1

1+e−15 ≈ 1.

Let "Xj(t, i) denote the i­th component of "Xj(t). This component is now up­

dated as follows: Let r = rj(t, i) be a random variable uniformly distributed in [0, 1].

Then

"Xj(t+ 1, i) =






1 ­ "Xj(t, i), if r ≤ g(A "D0(i));

"Xj(t, i), else;

where

"D0 =






"D if p < 0.5 and |A| < 1;

"D
′ if p ≥ 0.5;

"D
′′ if p < 0.5 and |A| ≥ 1.

(2.13)

2.5 Machine Learning

Machine learning (ML) is the operation of a computer system that uses the data

for learning by itself with the aim to detect relations within the data by computer. It uses

programmed algorithms that receive and analyze input data to predict output values

within an acceptable range. As new data is fed to these algorithms, they learn and

optimize their operations to improve performance, developing ‘intelligence’ over time.

15

ML is separated into 4 categories which are supervised learning, unsupervised learning,

semi­supervised, and reinforcement.

Supervised Learning is a popular method in machine learning. The operator pro­

vides the machine learning algorithm with a known dataset that includes desired inputs

and outputs, and the algorithm must find a method to determine how to arrive at those

inputs and outputs. While the operator knows the correct answers to the problem, the

algorithm identifies patterns in data, learns from observations, and makes predictions.

Incorrect predictions are corrected by the operator and this process continues until the

algorithm achieves a high level of accuracy/performance. Supervised learning can solve

regression, classification, and forecasting problems (Wakefield, 2022).

2.5.1 Model for Classification

In this section, the models for classification, which will all be supervised learning

models, are discussed: Support Vector Machine, Decision Tree, Random Forest, and K­

Nearest Neighbors.

Support Vector Machine

Support Vector Machine (SVM) is a discriminative classifier formally defined by a

separating hyperplane. In other words, given labeled training data, the algorithm outputs

an optimal hyperplane which categorizes new examples. It is a method for the classifi­

cation of both linear and nonlinear data. If the data can not separated by a hyperplane,

then one maps it into another vector space of large dimension where it can be separated.

This leads to a kernel function, representing the inner product in the large vector space.

To explain the SVM, let’s first look at the simplest case of two a class prob­

lems where the classes are linearly separable. Let the training data set D be given as

(x1, y1), (x2, y2), (x3, y3), ..., (xl, yl), where xi ∈ Rn is the vector attribute of training

dataset with associated class labels, yi for i = 1, 2, 3, , ..., l. Each yi can take one of

two values, either 1 or −1. If all the examples in D can be separated exactly by the

hyperplane w · x+ b = 0 and the distance from the nearest sample point of ecah class

to the hyperplane is the maximum, we state that the data samples can be separated by

16

the optimal hyperplane, which is also called the maximum margin hyperplane as shown

in (Figure 2.4) (He and Ma, 2013).

Figure 2.4 The margin of a hyperplane.

The problem of the optimal classification hyperplane is transformed into the fol­

lowing optimization problem by

min
1

2
‖w‖2 + C

l∑

i=1

ξi;

yi(w · x+ b)− 1 + ξi ≥ 0;

ξi ≥ 0, = 1, 2, 3, ..., l,

in which C is the penalty parameter, which controls the degree of penalty for misclas­

sification samples. In addition, the greater the value of C , the greater the penalty for

misclassification. The corresponding Lagrangian function is

L(w, b, ξ,α) =
1

2
‖w‖2+C

l∑

i=1

ξi−
l∑

i=1

αi(yi(w ·ϕ(xi)+b)−1+ξi)−
l∑

i=1

βiξi, (2.14)

where αi, βi are Lagrangian multipliers and αi > 0, βi > 0. We can obtain the following

17

dual problem by

min
1

2

l∑

i=1

l∑

j=1

αiαjyiyjk(xi, xj)−
l∑

i=1

αi;

s.t.
l∑

i=1

αiyi = 0;

0 ≤ αi ≤ C, i = 1, 2, ..., l, w ∈ Rn, b ∈ R,

where k(xi, xj) is the kernel function (Xie, Liang, Dong, Tan, and Zhang, 2019).

Decision Tree

Decision Tree is supervised learning suitable for solving regression and classification

problems. In 1984, a group of statisticians published the book Classification and Regression

Trees (CART) (Breiman et al., 1984), which described how a binary decision trees work. It

can produce either classification or regression trees, depending on whether the dependent

variable is a numeric or a category, respectively. It uses the Gini index and twoing criteria

as an impurity measure for selecting attributes. In 1986, Iterative Dichiotomister (ID3)

was proposed by Quinlan (Quinlan, 1986), which uses the entropy and information gain

to choose the attribute in each node. In 1993, C4.5 was developed by Quinlan again

(Quinlan, 1993), which is an extension from ID3 and became a benchmark to which newer

supervised learning algorithms are frequently compared. Since a decision tree can handle

noisy data and many independent variables using the If­Else rule, a decision tree is easy

to interpret.

The components of a decision tree are nodes and branches. A branch represents

the outcome of the node or the values of the attributes. The node on the top is called

the root node, there is only one such root node, and there is a unique path from the root

node to any other node. The remaining nodes are called the internal nodes, except for

the leaf nodes, which represent the classes or the output of the model (Sá et al., 2011)

shown in Figure 2.5.

From all of the above, it can be seen that there are different versions of the deci­

sion trees and each form will also use various splitting criteria. There are many measures

of splitting that can be used to decide the best way to split the node. The splitting criteria

18

Figure 2.5 The components of a Decision Tree.

for the decision tree are as follows: Gini index, twoing criteria, entropy, information gain,

and gain ratio (Singh and Gupta, 2014). However, in this study of decision trees, we be

interested in the Gini index as the only splitting criterion.

Consider a multi­class having set D given by (x1, C1), (x2, C2), (x3, C3), ..., (xl,

Cl), where xi ∈ Rn is the vector attributes and Ci the class label. Suppose there are q

classes, Ci ∈ {1, ..., q}. Let dj be the number of data samples in class j (j = 1, ..., q)

The nodes in the tree are constructed in the following order; Consider any attribute

A. If A has k different values, then split the sample set by attribute A into k subset

A1, A2, A3, ..., Ak. If dij is the number of samples in Ai whose class is j, the Gini impurity

is

Gini impurity (Ai) = 1−
n∑

j=1

p2j = 1−
n∑

j=1

(
dij
|Ai|

)2

(2.15)

where pj is the probability of class j. The Gini index measures the frequency at which

any element of the dataset will be mislabeled when it is randomly labeled. In two class

problems, the maximum value of the Gini impurity is 0.5 when the probability of two

classes is the same (shown in equation (2.16)). Furthermore, its minimum value is 0 as

shown in equation (2.17). It can occur when the node is pure, which means that all the

contained components in the node are of one unique class. Therefore, this node can no

19

longer be split (Aznar, 2020):

Gini impuritymax = 1− (0.52 + 0.52) = 0.5, (2.16)

Gini impuritymin = 1− (12) = 0. (2.17)

The Gini index is the weighted sum of Gini impurities based on the corresponding

fraction of the category in the attribute. The formula is

Gini index (A) =
k∑

i=1

|Ai|× Gini impurity (Ai)
|A1|+ |A2|+ |A3|+ · · ·+ |Ak|

. (2.18)

The attribute A that has the lowest index value, is chosen as the next node in the tree.

Random Forest

Random forest is an ensemble learning method for regression, classification, and

other tasks that operates by creating multiple decision trees at training time. For classi­

fication tasks, the output of class prediction will choose the class with the most votes

(Majority Vote) and becomes our model’s prediction (Wikipedia, 2022) (see figure 2.6).

Figure 2.6 Majority vote of Random Forest.

20

K­Nearest Neighbors

The K­Nearest Neighbors (KNN) algorithm is a supervised learning algorithm and

a non­parametric classification algorithm. It is known for its simplicity and effectiveness

(Taunk, De, Verma, and Swetapadma, 2019).

For a new instance, predictions are made by searching the entire training set for the

K closest neighbors and summarizing the output variable for those K cases. The factors

that affect the performance of KNN are the value of K , the distance metric chosen, and

the normalization of the parameters. To understand the detailed working of the algorithm,

the steps are as follows:

Given the training dataset: x1, x2, x3, ..., xl where xi = (x(i)
1 , x(i)

2 , x(i)
3 , ..., x(i)

n), l is

the number of training data, n is number of features of each data sample.

Step1: Store the training set. Normalize and store the training data set.

Step2: For each new unlabeled data instance y = (y1, y2, y3, ..., yn),

2.1 Calculate the distance from all training data points using the formula:

dist(xj, y) =

(
n∑

i=1

|x(j)
i − yi|p

)1/p

. (2.19)

Equation (2.19) is an equation in general form for finding distance,

which is called Minkowski distance. Minkowski distance is typically

used with p being 1 or 2, which correspond to the Manhattan distance

and the Euclidean distance, respectively. However, the most popular

distance used in the KNN method is the Euclidean distance.

2.2 Find the K ­ nearest neighbors

2.3 Assign the class containing the maximum number of the K­nearest

neighbors. The result of the classification is sensitive to the value of

K . The input variable K decides the number of neighbors that must

be considered. The value of K affects the algorithm as using the K

value we can build the boundaries of each class (Taunk et al, 2019).

21

Figure 2.7 shows a conceptual example of the KNN algorithm. From the figure, it

can be seen that the yellow circle is the new data point. If K = 3, then this yellow circle

will be labeled as a blue triangle because among the 3 closest neighbors, there are two

blue triangles but only one red circle. Similarly, if K = 5, then this yellow circle will be

labeled as a red circle.

Figure 2.7 KNN algorithm example.

2.6 Performance Metrics

In this section, the performance measurement of the classification models is dis­

cussed. Various performance metrics will be considered, as follows.

2.6.1 Confusion Matrix

A confusion matrix is a table that visualizes and summarizes the performance of

a classification algorithm (Fernández et al., 2018). A confusion matrix is shown in Figure

2.8.

The entries in the confusion matrix are defined as follows:

1. True positive (TP) is the number of elements in the positive class that are correctly

predicted as positive;

2. True negative (TN) is the number of elements in the negative class that are cor­

rectly predicted as negative;

22

Figure 2.8 Confusion matrix.

3. False positive (FP) is the number of elements in the negative class that are wrongly

predicted as positive;

4. False negative (FN) is the number of elements in the positive class that are wrongly

predicted as negative.

Common performance metrics of a classification algorithm are accuracy, precision,

recall, and F1 score, which are calculated on the basis of the above­stated TP , TN , FP ,

and FN .

Accuracy

Accuracy is the ratio of correctly classified samples. It is calculated from the ratio

of the correct predicted number to the total number,

Accuracy =
TP + TN

TP + TN + FP + FN
. (2.20)

Precision

Precision is the ratio of correct predictions for positive to the total number of

positive predictions only,

Precision =
TP

TP + FP
. (2.21)

Recall

23

Recall, also called sensitivity, is defined as the ratio of the total number of cor­

rectly classified positive examples divided by the total number of positive examples,

Recall (or Sensitivity) =
TP

TP + FN
. (2.22)

Specificity

Specificity is similar to Recall but focuses only on negative classes. Specificity is

defined as the ratio of the total number of correctly classified negative samples divided

by the total number of negative samples,

Specificity =
TN

TN + FP
. (2.23)

F1 score

F1 score or F measure is also a measure of the test’s accuracy. It is defined as

a weighted mean of precision and recall. It has its maximum value at 1 and worst at 0

(Fernández et al., 2018),

F1 score =
2× (Precision×Recall)

Precision+Recall
. (2.24)

G­mean

The Geometric Mean (G­Mean) is a metric that measures the balance between

classification performances on both the majority and minority classes. A low G­Mean is

an indication of poor performance in the classification of the positive cases even if the

negative cases are correctly classified as such. This measure is important in the avoidance

of overfitting the negative class and underfitting the positive class (Akosa, 2017),

G­mean =
√

Sensitivity × Specificity. (2.25)

2.6.2 Mathew’s Coefficient

The Matthew’s correlation coefficient (MCC) is least influenced by imbalanced

data. It is a correlation coefficient between the observed and predicted classifications.

The value ranges from ­1 to +1 with a value of +1 representing a perfect prediction, 0 as

no better than a random prediction, and ­1 the worst possible prediction. The calculation

24

formula is shown in Equation (2.26) (Chicco and Jurman, 2020),

MCC =
(TN × TP)− (FP × FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (2.26)

2.6.3 Cohen’s Kappa Coefficient

Cohen’s kappa is a metric often used to assess the agreement between two raters.

It can also be used to assess the performance of a classification model. The calculation

formula is shown in Equation (2.27) (Cohen, 1960),

k =
pa − pe
1− pe

= 1− 1− pa
1− pe

. (2.27)

where pa is the relative observed agreement among raters shown in Equation (2.28) and

pe is the hypothetical probability of chance agreement shown in equation (2.29),

pa =
TP + TN

TP + TN + FP + FN
, (2.28)

(which is accuracy), and

pe =
(TN + FP)(TN + FN) + (FN + TP)(FP + TP)

(TP + TN + FP + FN)2
. (2.29)

In a similar fashion to the MCC, kappa takes on values from ­1 to +1, with a value

of 1 indicating perfect concordance of the model prediction and the actual classes. A

value of −1 indicates total disagreement between prediction and the actual classes, and

a value of 0 meaning there is no agreement between the actual and classified classes

(Akosa, 2017).

2.6.4 Receiver operating characteristic curve (ROC Curve)

A ROC curve (receiver operating characteristic curve) is a graph showing the per­

formance of a classification model at all classification thresholds. A ROC graph is a plot of

False Positive Rate (FPR) on the x­axis, and True Positive Rate (TPR) on the y­axis shown

in Figure 2.9 (Fawcett, 2006).

True Positive Rate (TPR) is defined as follows:

True Positive Rate (TPR or Sensitivity) =
TP

TP + FN
; (2.30)

25

Figure 2.9 ROC Curve.

False Positive Rate (FPR) is defined as follows:

False Positive Rate (FPR) =
FP

FP + TN
; (2.31)

A good classifier should reach as close to the top left corner as possible. This

corner corresponds to perfect classification. The upward diagonal indicates random per­

formance. Ideally, all points in the ROC curve should lie above this diagonal, as points

below the diagonal indicate performance worse than random. The lower­right corner

corresponds to a classifier that always predicts the wrong class. The lower­left corner

(origin) corresponds to always predicting the negative class, while the top right corner

corresponds to always predicting the positive class. Figure 2.10 shows the different levels

of model performance shown through a ROC graph.

Figure 2.10 Performance of Model (left: Bad, middle: Good, right: Perfect).

However, if we look at the performance of the model through the graph with the

naked eye, it can be inconvenient to measure it. Therefore, there is one way to quantify

26

how well the classification model does at classifying data is to calculate the area under

the ROC curve.

The value for Area Under the ROC Curve (AUROC) ranges from 0 to 1. A model that

has an AUROC of 1 is able to perfectly classify observations into classes while a model

that has an AUROC of 0.5 does no better than a model that performs random guessing.

2.6.5 Precision­Recall curve (PR Curve)

The precision­recall curve shows the tradeoff between precision and recall for

different thresholds. A high area under the curve represents both high recall and high

precision, where high precision relates to a low false positive rate, and high recall relates

to a low false negative rate. High scores for both show that the classifier is returning

accurate results (high precision), as well as returning a majority of all positive results (high

recall). The process of drawing the PR Curve is similar to ROC Curve but uses in the x­axis

the recall, and precision in the y­axis is shown in Figure 2.11. PR curves are often used in

information retrieval, and focus only on the positive class (scikit­learn, 2022).

Figure 2.11 PR Curve.

The interpretation of the PR Curve is slightly different from the ROC Curve. Good

classifiers should be as close as possible to the top right, as this corner represents the

best trade­off between precision and recall. The baseline of the PR Curve is determined

by the ratio of positive examples in the dataset. The value for Area Under the PR Curve

27

(AUPRC) ranges from 0 to 1 (Sofaer, Hoeting and Jarnevich, 2019).

2.6.6 K­fold Cross­Validation

K­fold Cross­validation is a very popular technique for machine learning models.

The workflow is to divide the sample data into k partitions (or folds), then use k − 1 of

the partitions for training and the k­th for testing. After that, this procedure is repeated

k − 1 times, rotating the test set. The expected performance metrics (accuracy, recall,

precision, or other appropriate metrics) are determined based on the results across the

iterations.

Figure 2.12 K­fold Cross­validation.

2.6.7 Standard competition ranking (”1224” ranking)

In competition ranking, items that compare equally receive the same ranking num­

ber, and then a gap is left in the ranking numbers. The number of ranking numbers that

are left out in this gap is one less than the number of items that are compared equally.

Equivalently, each item’s ranking number is one plus the number of items ranked above

it. This ranking strategy is frequently adopted for competitions, as it means that if two (or

more) competitors tie for a position in the ranking, the position of all those ranked below

them is unaffected (i.e., a competitor only comes second if exactly one person scores

28

better than them, third if exactly two people score better than them, fourth if exactly

three people score better than them, etc.) (Wikipedia, 2021). Therefore, in this thesis,

standard competition rankings are used to compare the efficiency of each algorithm, and

determine which is the most efficient.

To compare the performance of different resampling methods, we use the ranking

of resampling methods on each dataset and compute the average rank of each resampling

method Rj as follows (Huang, Zhao, Zhu, Chen, and Broucke, 2020):

Rj =
1

m

m∑

i=1

rij, (2.32)

where m is the total number of datasets, rij is the rank of the j­th resampling method

on the i­th dataset.

2.7 Related Researches

Mafarja and Mirjalili (2017) presented two hybridization models used to design

different feature selection techniques based on Whale Optimization Algorithm (WOA). In

the first model, a simulated Annealing (SA) algorithm is embedded in the WOA algorithm,

while it is used to improve the best solution found after each iteration of WOA algorithm

in the second model. The performance of the proposed approaches is evaluated on

18 standard benchmark datasets from the UCI repository and compared with three well­

known wrapper feature selection methods in the literature. The experimental results

confirm the efficiency of the proposed approaches in improving the classification accuracy

compared to other wrapper­base algorithms, which ensures the ability of WOA algorithm in

searching the feature space and selecting the most informative attributes for classification

tasks.

Hussien, Hassanien, Houssein, Bhattacharyya and Amin (2019) present a novel

binary version of the Whale Optimization Algorithm (BWOA), to select the optimal feature

subset for dimensionality reduction and classification problems. The new approach is

based on a sigmoid transfer function (S­shape). By dealing with the feature selection

problem, a free position of the whale must be transformed to the corresponding binary

29

solutions. KNN classifier is applied to ensure the selected features are the relevant ones.

A set of criteria are used to evaluate and compare the proposed BWOA­S with the native

one over 11 different datasets. The results showed that the new algorithm has a significant

performance in finding the optimal feature.

Kumar and Kumar (2020) modified the WOA to the BWOA, by binarizing the solu­

tion vectors and using a sigmoidal transfer function is to update the position of whales.

The performance of the proposed algorithm is evaluated on 29 benchmark functions.

Furthermore, an unpaired t­test is carried out to illustrate its statistical significance. The

experimental results depict that the proposed algorithm outperforms others in respect of

benchmark test functions. The proposed approach is applied to an electrical engineering

problem, a real­life application, named ‘‘unit commitment.’’ Experimental results reveal

that the proposed approach is superior to other algorithms in terms of lower production

costs.

Sayed, Darwish, and Hassanien (2020) presented a hybrid intelligence model that

uses cluster analysis algorithms with bio­inspired algorithms as feature selection for ana­

lyzing clinical breast cancer data. A binary version of both moth flame optimization and

WOA is proposed. Two evaluation criteria are adopted to evaluate the proposed algo­

rithms: clustering­based measurements and statistics­based measurements. The experi­

mental results positively demonstrate the capability of the proposed bio­inspired feature

selection algorithms to produce both meaningful data partitions and significant feature

subsets.

Hussien, Hassanien, Houssein, Amin, and Azar (2020) improved the original version

of the WOA for handling binary optimization problems. For this purpose, two transfer

functions (S­shaped and V­shaped) are presented to map a continuous search space to

a binary one. To illustrate the functionality and performance of the proposed BWOA, its

results when applied on 22 benchmark functions, 3 engineering optimization problems,

and a real­world traveling salesman problem are found. Furthermore, the proposed BWOA

is compared with five well­known metaheuristic algorithms. The experimental results

show its superiority in comparison with other state­of­the­art metaheuristics in terms of

accuracy and speed.

30

Yu, Ni and Zhao (2013) proposed ACOSampling which is a novel undersampling

method based on the idea of ant colony optimization (ACO) to address this problem. First,

the original training data set is randomly and repeatedly divided into two groups: training

data set and validation data set. Then, for each partition, ACOSampling is performed to

find the subset of the corresponding optimal majority class examples. They evaluated the

method on four benchmarks skewed DNA microarray datasets by support vector machine

(SVM) classifier, showing that the proposed method outperforms many other sampling

approaches, which indicates its superiority. The fitness function used in ACOsampling is:

fitness = (α× F measure) + (β ×G mean) + (γ × AUC),

where α + β + γ = 1

López, Triguero, Carmona, García and Herrera (2014) proposed the usage of the

Iterative Instance Adjustment for Imbalanced Domains (IPADE­ID) algorithm. It is an evo­

lutionary framework, which uses an instance generation technique, designed to face the

existing imbalance modifying the original training set. The method iteratively learns the ap­

propriate number of examples that represent the classes and their particular positioning.

The learning process contains three key operations in its design: a customized initializa­

tion procedure, an evolutionary optimization of the positioning of the examples, and a

selection of the most representative examples for each class. An experimental analysis

is carried out with a wide range of highly imbalanced datasets over the proposal and

recognized solutions to the problem. The results obtained, which have been contrasted

through nonparametric statistical tests, show that their proposal outperforms previously

proposed methods. The fitness fuction used in IPADE­ID corresponding fitness value is

measured as the AUCRC.

Kim, Jo and Shin (2016) suggested an optimization approach of cluster­based un­

dersampling to select appropriate instances. This approach can solve the data imbalance

problem. They examined the effectiveness of a hybrid method using a clustering tech­

nique and genetic algorithms based on the artificial neural networks model to balance the

proportion between the minority class and the majority class. The proposed method is

successfully applied to the bankruptcy prediction problem using financial data for which

31

the proportion of small and medium­sized bankruptcy firms in the manufacturing industry

is extremely small compared to that of non­bankruptcy firms. They use the G­Mean as

the fitness function in GA for data balancing.

Li et al. (2017) presented Adaptive Swarm Balancing Algorithms, which lead to

significant efficiency and effectiveness improvements on large datasets. They also find it

more consistent with the practice of the typical large imbalanced medical datasets. The

proposed methods lead to more credible performances of the classifier and shorten the

run time compared to the brute­force method. The fitness function of this work involves

accuracy and kappa.

CHAPTER III

RESEARCH METHODOLOGY

In this study, we created two versions of the proposed undersam pling method:

in the first version is fixed­ parameter K = 1 which we called WBWOA 1NN, and the

second version can adjustable parameter K we called WBWOA KNN. In this section, we

will explain the methodology of this thesis. Its content includes the tools, datasets, the

WBWOA 1NN algorithm, the WBWOA KNN algorithm, and the work procedures.

3.1 Tools

The computer program used in this research is the Python language version 3.7.5 to

develop the algorithms by using the library sklearn, pandas, matplotlib, imblearn, optuna,

and numpy packages.

This research used a laptop, CPU version i5­9300H 2.40GHz, 16 GB memory oper­

ating system Windows 11 Home 64 bit.

3.2 Datasets

We have selected 10 datasets from KEEL and imbalanced­learn that represent a

variety of imbalance ratios, as detailed in Table 3.1, in order to compare our proposed

undersampling method with the random undersampling, cluster centroid, and near­miss

methods.

In this research, we split each data set into two sets, the training and the testing

datasets, at a ratio of 80 : 20. After splitting both, the training and the testing set still had

a similar imbalance ratio as the original datasets. The details of the training and testing

datasets are shown in Tables 3.2 and 3.3, respectively.

33

Table 3.1 Detail of datasets.

Dataset name Attributes Size Minority size Majority size IR

glass1 9 214 76 138 1.82

iris0 4 150 50 100 2.00

glass­0­1­2­3_vs_4­5­6 9 214 51 163 3.20

ecoli2 7 336 52 284 5.46

ecoli 7 336 35 301 8.60

abalone 10 4177 391 3786 9.68

libras_move 90 360 24 336 14.00

solar_flare_m0 32 1389 68 1321 19.43

yeast_m2 8 1484 51 1433 28.10

mammography 6 11183 260 10923 42.01

Table 3.2 Training datasets.

Dataset name Attributes Size Minority size Majority size IR

glass1 9 171 61 110 1.80

iris0 4 120 40 80 2.00

glass­0­1­2­3_vs_4­5­6 9 171 41 130 3.17

ecoli2 7 268 41 227 5.54

ecoli 7 268 28 240 8.57

abalone 10 3341 313 3028 9.67

libras_move 90 288 19 269 14.16

solar_flare_m0 32 1111 54 1057 19.57

yeast_m2 8 1187 41 1146 27.95

mammography 6 8946 208 8738 42.01

34

Table 3.3 Testing datasets.

Dataset name Attributes Size Minority size Majority size IR

glass1 9 43 15 28 1.87

iris0 4 30 10 20 2.00

glass­0­1­2­3_vs_4­5­6 9 43 10 33 3.30

ecoli2 7 68 11 57 5.18

ecoli 7 68 7 61 8.71

abalone 10 836 78 758 9.72

libras_move 90 72 5 67 13.40

solar_flare_m0 32 278 14 264 18.86

yeast_m2 8 297 10 287 28.70

mammography 6 2237 52 2185 42.02

3.3 Range of Optimized Parameter

The ranges of the parameters to be optimized in each of the 3 classifiers, the

support vector machine, decision tree, and random forest are shown in Table 3.4.

Table 3.4 Range of parameters to be optimized

Model Parameter Type/Interval

Decision tree

criterion Gini index

max_depth [1, 100]

min_samples_split [2, 100]

Random forest

criterion Gini index

n_estimators [2, 500]

max_depth [1, 500]

Support vector machine

kernel radial basis function (rbf)

C [1, 70]

gamma [1× 10−6, 1]

35

3.4 WBWOA 1NN Algorithm

We now describe the proposed WBWOA 1NN algorithm in mathematical terms.

Let D be a given dataset. Split D into the majority class D− and the minority class D+,

and let d and n+ denote the number of samples in each class: d = |D−| and n+ = |D+|.

When the data is highly unbalanced, then d " n+.

The objective of our undersampling algorithm is to find a subset D−
red of the

majority class D− with |D−
red| ≈ |D+| while at the same time giving best performance

for a chosen classifier, when D−
red ∪D+ is the training data.

The performance metric which we choose is of the form

f = f(A) := (1− F1 score)2+(1− AUROC)2+(1− sensitivity)2+β(n−−n+)2 (3.1)

where A ⊆ D− is a given subset of the majority class, n− = n−(A) = |A| is the number

of samples in A, β is a non­negative parameter, and F1 score, sensitivity and AUROC

are obtained through 10­fold cross­validation of the chosen classifier using the dataset

A∪D+. The parameter β influences how well the two datasets should be balanced. In

this manner we obtain a function

f : 2D
− → [0,∞)

defined on the power set 2D− of D− which is to be minimized.

Observe that after fixing a labeling of the samples in the majority class, D− =

{x1, . . . , xd}, then there is a natural bijection

Φ : X → 2D
−

define X is

X := {0, 1}d

given by

Φ("X) = {xi ∈ D− : "X(i) = 1} (i = 1, ..., d)

That is, every binary vector "X of length d uniqely determines a subset of the majority

class according to the vector components which are equal to one. Composition thus

36

gives a function

f ◦ Φ : X → [0,∞)

to be minimized. Since the domain of this function is a space of binary vectors, the BWOA

is a natural candidate for finding a minimizer of f ◦Φ as fitness function, in particular, since

this algorithm has shown to be fairly efficient in applications. Furterhermore, in order to

keep computation time low, we choose the K­nearest­neighbors method with K = 1 as

a simple classifier.

3.5 WBWOA KNN Algorithm

This is a modification to the WBWOA 1NN algorithm. The difference is that instead

of the one­nearest neighbor classifier now a K­nearest neighbor classifier is used where K

itself is a parameter to be optimized. The parameter K is also chosen by the WOA. The

optimal K value is an integer in the interval of 1 to 30, while the WOA deals with real

numbers. Therefore, before applying a K­nearest neighbor algorithm, the value of K in

the WOA must change to an integer. Therefore, the fitness function also depends on K ,

f = f(A,K) := (1−F1 score)2+(1−AUROC)2+(1−sensitivity)2+β(n−−n+)2 (3.2)

where K is a given parameter of K­nearest neighbor. We thus obtain a function

f : 2D
− × {1, ..., 30} → [0,∞)

Composition thus gives a function

f ◦ (Φ, rd) : X × [1, 30] → [0,∞)

to be minimized, where rd denotes the rounding to an integer function.

3.6 Model Evaluation

To evaluate the performance of the various classification for models we used the

following 9 performance metrics: Accuracy, F1 score, G­ mean, Area under the ROC curve

(AUROC), Area Under the PR Curve (AUPRC), Sensitivity, Precision, Mathew’s Coefficient

(MCC), and Cohen’s Kappa Coefficient (kappa).

37

3.7 Work procedure

All tests proceeded as follows:

1. First split the given data set into the training and testing datasets at a ratio of 80 : 20.

2. Next split the training data set further into minority class D+ and majority class

D−.

3. Obtain a reduced majority class D−
red using any of the five undersampling methods,

while the minority class remains D+.

(a) In case of the WBWOA 1NN, we find a minimizing binary vector "X∗ of f ◦ Φ

and the new reduced majority class is then D−
red = {xi ∈ D− : "X∗(i) = 1}.

(b) In case of the WBWOA KNN, we find a minimizing vector "X∗ =

(x1, x2, x3, ...xd,K) of f ◦ (Φ, rd). The BWOA is used to update the po­

sition x1, x2, x3, ...xd, and the new reduced majority class is then D−
red =

{xi ∈ D− : "X∗(i) = 1} (i = 1, ..., d). The WOA is used to update the

position of K, and the new parameter K ∈ {1, ..., 30}.

We used 20 whales (search agents) and 1000 iterations. We also choose β = 100

to obtain balanced datasets. The criterion to stopping process of WBOA 1NN and

WBOA KNN are

• If the fitness value is zero.

• If the best fitness value remains unchanged for 350 iterations.

• If the 1000 iterations have been completed maximum iteration.

4. Train decision tree, support vector machine, and random forest models with D−
red∪

D+ as data, using 10­fold validation for parameter optimization, and F1 score as

performance metric.

5. Evaluate performance using the testing data. An outline of the workflow is shown

in Figure 3.1

38

Figure 3.1 Outline of the workflow.

CHAPTER IV

RESULTS AND DISCUSSION

In this section, we would present the performance of 5 different undersampling

methods. We test the performance of undersampling methods by ten datasets. We use

three models to measure their performance: decision tree, random forest, and support

vector machine. There are 9 performance metrics listed: Accuracy, F1 score, G­ mean, Area

under the ROC curve (AUROC), Area Under the PR Curve (AUPRC), Sensitivity, Precision,

Mathew’s Coefficient (MCC), and Cohen’s Kappa Coefficient (kappa). However, we also

test the original dataset without using any undersampling methods. In the discussion

section, we will carefully discuss the performance of undersampling.

4.1 Results

The results of finding the best subsets of the majority class samples for WBWOA

1NN and WBWOA KNN can be expressed in terms of fitness values. If fitness values are

closer to zero, it means that the subset is a good representation of the majority class

samples. The fitness values and fitness graphs can be found in Appendix D.

The performance measurements of the decision tree, random forest, and support

vector machine models using the testing data are displayed in Table A.1, Table A.2, and

Table A.3, respectively and can be found in the Appendix A.

The ranking score results of the decision tree, random forest, and support vector

machine models are shown in Table B.1, Table B.2, and Table B.3, respectively and can

be found in Appendix B. This ranking score is based on standard competition ranking.

Furthermore, the optimized parameter of each model and the best F1 score of

each model are shown in Appendix C.

40

4.2 Discussion

To simplify the analysis, we will first use the ranking score of tables B.1­B.3 (ap­

pendix B) to calculate the average ranking score. The average ranking scores by under­

sampling method for each, the decision tree, random forest, and support vector machine,

are shown in tables 4.1, 4.2, and 4.3, respectively.

Remark: The symbols ***, **, and * that appear in tables 4.1­4.3 mean that the ranking

score comes first place, second place, and third place, respectively.

Table 4.1 Average ranking score of each undersampling method in the decision tree

model.

Metric

Undersampling Method

None Cluster Near­Miss RUS WBWOA WBWOA
centriod 1NN KNN

Accuracy 1.3∗∗∗ 3.9 4.4 3.0∗∗ 3.2∗ 3.0∗∗

F1 score 3.2 3.5 4.4 2.4∗∗∗ 2.5∗∗ 2.9∗

G­mean 4.0 3.1 4.7 2.3∗∗ 2.0∗∗∗ 3.0∗

AUROC 3.1∗ 3.2 4.8 2.7∗∗ 2.1∗∗∗ 3.4

AUPRC 3.2∗ 3.4 3.9 3.2∗ 2.7∗∗∗ 2.9∗∗

Sensitivity 4.5 2.3∗ 2.5 2.2∗∗ 2.0∗∗∗ 2.3∗

Precision 1.2∗∗∗ 3.9 4.7 3.1∗ 3.0∗∗ 3.2

MCC 3.2∗∗ 3.4 4.4 2.4∗∗∗ 2.4∗∗∗ 3.3∗

kappa 2.2∗∗∗ 3.6 4.6 2.7∗ 2.6∗∗ 3.4

Table 4.1 shows that the WBWOA 1NN undersampling method, under the per­

formance metrics G­mean, AUROC, AUPRC, MCC, and sensitivity, has the best (lowest)

ranking. Although precision and kappa are not the best rankings, they are still better than

the ranking of the random undersampling method. The F1 score and accuracy metrics of

random undersampling and the WBWOA 1NN are not much different because they have

nearly ranking scores. However, accuracy is usually high in imbalanced datasets, which

causes precision also to be high, they are inappropriate metrics. It is therefore not that

41

surprising accuracy and precision have decreased after undersampling.

Therefore, the WBWOA 1NN undersampling method obtains excellent perfor­

mance when constructing the decision tree model compared with random undersam­

pling, cluster centroid, near­miss, and WBWOA KNN undersampling methods.

Table 4.2 Average ranking score of each undersampling method in the random forest

model.

Metric

Undersampling Method

None Cluster Near­Miss RUS WBWOA WBWOA
centriod 1NN KNN

Accuracy 1.2∗∗∗ 3.5 5.2 2.8∗ 3.3 2.5∗∗

F1 score 2.2∗∗∗ 3.2 5.2 2.8∗ 3.2 2.5∗∗

G­mean 4.7 2.9 4.8 2.0∗∗ 2.8∗ 1.9∗∗∗

AUROC 2.9∗∗ 3.3 4.5 2.5∗∗∗ 2.9∗∗ 3.2∗

AUPRC 2.2∗∗∗ 3.6 4.7 2.8∗∗ 2.8∗∗ 3.4∗

Sensitivity 5.2 2.6∗ 2.3∗∗ 2.3∗∗ 2.3∗∗ 1.6∗∗∗

Precision 1.2∗∗∗ 3.6 5.4 2.7∗∗ 3.4 2.8∗

MCC 2.0∗∗∗ 3.2 5.1 2.8∗ 3.4 2.6∗∗

kappa 2.0∗∗∗ 3.1 5.2 2.8∗ 3.4 2.6∗∗

The results of table 4.2 show not using any undersampling technique gains ex­

cellent results in several performance metrics like accuracy, F1 score, AUPRC, precision,

MCC, and kappa. However, if we did not use any technique for imbalanced data, the

model would be unable to classify minority class samples at all, causing a high (poor)

ranking score in sensitivity and G­mean. Thus, we will only compare the performance of

the undersampling methods. Observing the results of the average ranking score found

that WBWOA KNN obtains excellent performance more often than random undersam­

pling, i.e. accuracy, F1 score, G­mean, sensitivity, MCC, and kappa. Although AUROC and

AUPRC scores of random undersampling are better than of WBWOA KNN, we also select

the WBWOA KNN undersampling method for the random forest model.

42

Therefore, the WBWOA KNN undersampling method obtains excellent overall per­

formance when constructing the random forest model compared with random undersam­

pling, cluster centroid, near­miss, and WBWOA 1NN undersampling methods.

Table 4.3 Average ranking score of each undersampling method in the support vector

machine model.

Metric

Undersampling Method

None Cluster Near­Miss RUS WBWOA WBWOA
centriod 1NN KNN

Accuracy 1.5∗∗∗ 3.7 5.1 2.5∗∗ 2.7∗ 3.4

F1 score 2.7∗∗ 3.4 4.9 2.7∗∗ 2.4∗∗∗ 3.0∗

G­mean 4.0 3.1 4.8 2.6∗ 2.1∗∗∗ 2.5∗∗

AUROC 4.0 3.4 4.9 1.7∗∗∗ 2.1∗∗ 2.9∗

AUPRC 2.5∗∗∗ 3.5 4.7 2.5∗∗∗ 2.7∗∗ 3.3∗

Sensitivity 4.4 2.1∗ 2.5 2.2 1.5∗∗∗ 2.0∗∗

Precision 2.5∗∗∗ 3.4∗ 5.0 2.5∗∗∗ 2.5∗∗∗ 3.2∗∗

MCC 2.6∗∗ 3.3 5.0 2.7∗ 2.4∗∗∗ 3.1

kappa 2.4∗∗∗ 3.4 5.0 2.8∗∗ 2.4∗∗∗ 3.1∗

The results of table 4.3 show that the WBWOA 1NN undersampling method, under

the performance metrics F1 score, G­mean, sensitivity, precision, MCC, and kappa metrics,

has the best ranking. The accuracy, AUROC, and AUPRC metrics of random undersampling

and the WBWOA 1NN are not considerably different because of close ranking scores.

Therefore, for the support vector machine model, WBWOA 1NN undersampling

method provides excellent performance when compared with random undersampling,

cluster centroid, near­miss, and WBWOA KNN undersampling methods.

The results from tables 4.1, 4.2, and 4.3 show that each classification model has

a different best undersampling method. Next, we will analyze which classification model

could give the highest performance when using the best­suited undersampling method

for that model. The best undersampling methods for decision tree, random forest, and

43

support vector machine are WBWOA 1NN, WBWOA KNN, and WBWOA 1NN, respectively.

Table 4.4 lists the average ranking scores for each model. We can see that the random for­

est model with WBWOA KNN undersampling method has the highest overall performance,

followed by the support vector machine model with WBWOA 1NN undersampling, and

the last one is the decision tree model with WBWOA 1NN undersampling.

Table 4.4 Average ranking score of 3 classification models, using the best undersampling

method for each model.

Measurement WBWOA 1NN WBWOA KNN WBWOA 1NN
(decision tree) (random forest) (SVM)

Accuracy 2.1 1.6 1.8

F1 score 2.3 1.5 1.8

G­mean 2.4 1.5 1.7

AUROC 2.7 1.5 1.5

AUPRC 2.0 1.9 1.8

Sensitivity 2.2 1.4 1.2

Precision 2.1 1.6 1.9

MCC 2.2 1.6 1.8

kappa 2.2 1.6 1.8

Even though the WBWOA KNN algorithm combined with random forest has the

highest average ranking score, when averaging all nine performance metrics as shown

in Table 4.5, we found that the WBWOA 1NN algorithm combined with support vector

machine had a higher average performance metrics score than WBWOA KNN algorithm

combined with random forest for all the metrics. This is because the metric value of

the WBWOA 1NN algorithm may be higher than the WBWOA KNN algorithm in some mea­

surements. However, if measured from the average ranking score of the WBWOA KNN

algorithm by random forest is still the best overall performant undersampling method.

44

Table 4.5 Average performance of 3 classification models, using the best undersampling

method for each model.

Measurement WBWOA 1NN WBWOA KNN WBWOA 1NN
(decision tree) (random forest) (SVM)

Accuracy 0.8113 0.8387 0.8504

F1 score 0.5140 0.5783 0.5960

G­mean 0.8419 0.8794 0.8908

AUROC 0.8667 0.9212 0.9312

AUPRC 0.6385 0.6457 0.6499

Sensitivity 0.8776 0.9399 0.9499

Precision 0.4323 0.4703 0.4927

MCC 0.5039 0.5705 0.5958

kappa 0.4430 0.5123 0.5391

In addition, although the algorithm that we have developed has excellent overall

performance, its effective implementation may require consideration of the suitability of

the dataset. In fact, this algorithm is compute­intensive and may require long computation

time for large datasets.

CHAPTER V

CONCLUSION

This thesis has studied how to solve imbalanced data problems based on the

undersampling method. We developed a novel undersampling method that applied the

whale and the binary whale optimization algorithms to cooperate with the K­nearest

neighbor algorithm. In this study, we created two versions of the proposed undersam­

pling method: in the first version is fixed­parameter K = 1 which we called WBWOA

1NN, and the second version can adjustable parameter K we called WBWOA KNN. We

selected ten datasets from the KEEL and imbalanced­learn repositories to evaluate the

performance of the proposed algorithm. These datasets have varying imbalance ratios

ranging from 1.82 to 42.01, and have binary classes. We choose other undersampling

methods to compare with our proposed undersampling method namely the random un­

dersampling, cluster centroid, and near­miss methods. When data had been balanced by

several undersampling methods, it was used to traine a decision tree, random forest, and

support vector machine model using 10­fold validation for parameter optimization, and

using the F1 score as the performance metric. And it was tested for performance with

a testing dataset with nine performance metrics: accuracy, F1 score, G­mean, AUROC,

AUPRC, sensitivity, precision, MCC, and kappa.

The results of this thesis found that the WBWOA KNN algorithm applied to the

random forest model has the highest overall performance, followed by the WBWOA 1NN

by support vector machine model, and the last one is WBWOA 1NN by a decision tree

model. The efficiency average measurement results of WBWOA KNN by random forest

were as follows: Accuracy = 0.8387, F1 score = 0.5783, G­mean = 0.8794, AUROC = 0.9212,

AUPRC = 0.6457, Sensitivity = 0.9399, Precision = 0.4703, MCC = 0.5705, and Kappa =

0.5123. This shows that our proposed undersampling method, is effective in dealing with

an imbalanced data problem. The highlight of the proposed undersampling method is its

high sensitivity, which is suitable for predicting the minority classes. However, its effective

46

implementation may require consideration of the suitability of the dataset, and trial and

error is also an important process for analyzing data.

In the future, the proposed undersampling method can be further developed in

many ways. For example, one may develop a parallel process between undersampling

and feature selection, the second adapt to a hybrid approach between the undersampling

and oversampling methods. Finally, we hope this thesis will be useful to reseachers.

REFERENCES

REFERENCES

Aha, D. W., Kibler, D., and Albert, M. K. (1991). Instance­based learning algorithms. Machine

Learning, 6(1), 37­66.

Akosa, J. (2017). Predictive accuracy: A misleading performance measure for highly im­

balanced data. Paper presented at the Proceedings of the SAS Global Forum.

Aznar, P. (2020, 02/12/2020). Decision Trees : Gini vs Entropy. https://quantdare.com/de

cision­trees­gini­vs­entropy/

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and re­

gression trees. Belmont, CA: Wadsworth. International Group, 432, 151­166.

Chicco, D., and Jurman, G. (2020). The advantages of the Matthews correlation coefficient

(MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics,

21(1), 1­13.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psycho­

logical Measurement, 20(1), 37­46.

Cortes, C., and Vapnik, V. (1995). Support­vector networks. Machine Learning, 20(3), 273­

297.

Deng, N., Tian, Y., and Zhang, C. (2012). Support Vector Machines: Optimization Based

Theory, Algorithms, and Extensions: CRC press.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8),

861­874.

Fernández, A., García, S., Galar, M., Prati, R. C., Krawczyk, B., and Herrera, F. (2018). Learning

from Imbalanced Data Sets (Vol. 10): Springer.

Fotouhi, S., Asadi, S., and Kattan, M. W. (2019). A comprehensive data level analysis for

cancer diagnosis on imbalanced data. Journal of Biomedical Informatics, 90, 103089.

49

García, S., Fernández, A., Luengo, J., and Herrera, F. (2010). Advanced nonparametric tests

for multiple comparisons in the design of experiments in computational intelligence

and data mining: Experimental analysis of power. Information Sciences, 180(10),

2044­2064.

He, H., and Ma, Y. (2013). Imbalanced learning: Foundations, Algorithms, and Applica­

tions.

Huang, L., Zhao, J., Zhu, B., Chen, H., and Broucke, S. V. (2020). An experimental investiga­

tion of calibration techniques for imbalanced data. IEEE Access, 8, 127343­127352.

Hussien, A. G., Hassanien, A. E., Houssein, E. H., Amin, M., and Azar, A. T. (2020). New

binary whale optimization algorithm for discrete optimization problems. Engineering

Optimization, 52(6), 945­959.

Hussien, A. G., Hassanien, A. E., Houssein, E. H., Bhattacharyya, S., and Amin, M. (2019). S­

shaped binary whale optimization algorithm for feature selection. In Recent Trends

in Signal and Image Processing (pp. 79­87): Springer.

imbalancedlearn. (2020). fetch_datasets.

https://imbalanced­learn.org/stable/references/generated/imblearn.datasets.fetch_

datasets.html

imbalancedlearn. (2022). ClusterCentroids.

https://imbalanced­learn.org/stable/references/generated/imblearn.under_sampling

.ClusterCentroids.html

KEEL. Imbalanced data sets. http://www.keel.es/

Kesornsit, W., Lorchirachoonkul, V., and Jitthavech, J. (2018). Imbalanced data problem

solving in classification of diabetes patients. Khon Kaen University Research Journal,

18(3), 11­21.

Kim, H.­J., Jo, N.­O., and Shin, K.­S. (2016). Optimization of cluster­based evolutionary

50

undersampling for the artificial neural networks in corporate bankruptcy prediction.

Expert Systems with Applications, 59, 226­234.

Kumar, V., and Kumar, D. (2020). Binary whale optimization algorithm and its application to

unit commitment problem. Neural Computing and Applications, 32(7), 2095­2123.

Li, J., Liu, L.­s., Fong, S., Wong, R. K., Mohammed, S., Fiaidhi, J., . . . Wong, K. K. (2017). Adap­

tive swarm balancing algorithms for rare­event prediction in imbalanced healthcare

data. PloS One, 12(7), e0180830.

López, V., Triguero, I., Carmona, C. J., García, S., and Herrera, F. (2014). Addressing imbal­

anced classification with instance generation techniques: IPADE­ID. Neurocomputing,

126, 15­28.

Madhukar, B. (2020). Using Near­Miss Algorithm For Imbalanced Datasets.

https://analyticsindiamag.com/using­near­miss­algorithm­for­imbalanced­datasets/

Mafarja, M. M., and Mirjalili, S. (2017). Hybrid whale optimization algorithm with simulated

annealing for feature selection. Neurocomputing, 260, 302­312.

Mani, I., and Zhang, I. (2003). kNN approach to unbalanced data distributions: a case

study involving information extraction. Paper presented at the Proceedings of work­

shop on learning from imbalanced datasets.

Mirjalili, S., and Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering

Software, 95, 51­67.

Mishra, S. (2017). Handling imbalanced data: SMOTE vs. random undersampling. Interna­

tional Journal of Managing Information Technology, 4(8), 317­320.

Mqadi, N. M., Naicker, N., and Adeliyi, T. (2021). Solving Misclassification of the Credit Card

Imbalance Problem Using Near Miss. Mathematical Problems in Engineering, 2021.

Orriols­Puig, A., and Bernadó­Mansilla, E. (2009). Evolutionary rule­based systems for im­

balanced data sets. Soft Computing, 13(3), 213­225.

51

Quinlan, J. (1986). Indroduction of Decision Trees Machine Learning. Boston (NL): Kluwer

Acad. Publ, 1(86­106), 650.

Quinlan, J. R. (1993). C4. 5: Programs for Machine Learning: Morgan Kaufmann Publishers

Inc.

Ramyachitra, D., and Manikandan, P. (2014). Imbalanced dataset classification and solu­

tions: a review. International Journal of Computing and Business Research (IJCBR),

5(4), 1­29.

Sá, A., Almeida, A., Rocha, B., Mota, M., Souza, J., and Dentel, L. (2011). Lightning forecast

using data mining techniques on hourly evolution of the convective available poten­

tial energy. Paper presented at the Brazilian Congress on Computational Intelligence,

Fortaleza, November.

Sayed, G. I., Darwish, A., and Hassanien, A. E. (2020). Binary whale optimization algorithm

and binary moth flame optimization with clustering algorithms for clinical breast

cancer diagnoses. Journal of Classification, 37(1), 66­96.

scikit­learn. (2022). Precision­Recall. https://scikit­learn.org/stable/auto­

examples/model_selection/plot_precision_recall.html

Singh, S., and Gupta, P. (2014). Comparative study ID3, cart and C4. 5 decision tree algo­

rithm: a survey. International Journal of Advanced Information Science and Tech­

nology (IJAIST), 27(27), 97­103.

Sofaer, H. R., Hoeting, J. A., and Jarnevich, C. S. (2019). The area under the precision­

recall curve as a performance metric for rare binary events. Methods in Ecology and

Evolution, 10(4), 565­577.

Sonak, A., and Patankar, R. (2015). A survey on methods to handle imbalance dataset.

International Journal of Computer Science and Mobile Computing, 4(11), 338­343.

Taunk, K., De, S., Verma, S., and Swetapadma, A. (2019). A brief review of nearest neighbor

52

algorithm for learning and classification. Paper presented at the 2019 International

Conference on Intelligent Computing and Control Systems (ICCS).

Wakefield, K. (2022). A guide to the types of machine learning algorithms and their ap­

plications. https://www.sas.com/en_gb/insights/articles/analytics/machine­learning­

algorithms.html

Wikipedia. (2021). Ranking. https://en.wikipedia.org/wiki/Ranking

Wikipedia. (2022). Random forest. https://en.wikipedia.org/wiki/Random_forest

Yu, H., Ni, J., and Zhao, J. (2013). ACOSampling: An ant colony optimization­based under­

sampling method for classifying imbalanced DNA microarray data. Neurocomputing,

101, 309­318.

APPENDICES

APPENDIX A

REPORT OF PERFORMANCE MEASUREMENTS

55

Table A.1 The various performance measurements with the decision tree model.

Begin of Table

Dataset name Metric

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

glass1

Accuracy 0.7674 0.7442 0.5349 0.7209 0.8372 0.6977

F1 score 0.6154 0.6667 0.5652 0.6842 0.7407 0.6667

G­mean 0.6901 0.7416 0.5563 0.7464 0.7868 0.7254

AUROC 0.7881 0.7655 0.6357 0.7512 0.7976 0.7369

AUPRC 0.7294 0.6937 0.6292 0.5070 0.8081 0.7274

Sensitivity 0.5333 0.7333 0.8667 0.8667 0.6667 0.8667

Precision 0.7273 0.6111 0.4194 0.5652 0.8333 0.5417

MCC 0.4655 0.4669 0.2378 0.4869 0.6325 0.4547

kappa 0.4543 0.4619 0.1794 0.4534 0.6242 0.4159

iris0

Accuracy 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F1 score 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

G­mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

AUROC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

AUPRC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Sensitivity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Precision 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

MCC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

kappa 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

glass­0­1­2­3_vs_4­5­6

Accuracy 0.8605 0.8372 0.8372 0.8605 0.8372 0.8605

F1 score 0.7273 0.6667 0.6957 0.7273 0.6957 0.7273

G­mean 0.8385 0.7843 0.8239 0.8385 0.8239 0.8385

AUROC 0.8394 0.8288 0.8242 0.8333 0.8242 0.8394

AUPRC 0.7566 0.7201 0.7309 0.7278 0.7309 0.7566

Sensitivity 0.8000 0.7000 0.8000 0.8000 0.8000 0.8000

Precision 0.6667 0.6364 0.6154 0.6667 0.6154 0.6667

MCC 0.6393 0.5604 0.5965 0.6393 0.5965 0.6393

kappa 0.6346 0.5593 0.5871 0.6346 0.5871 0.6346

ecoli2

Accuracy 0.9265 0.9412 0.6618 0.8676 0.9265 0.8235

F1 score 0.7619 0.8462 0.4651 0.7097 0.8148 0.6471

G­mean 0.8377 0.9643 0.7471 0.9177 0.9551 0.8885

AUROC 0.9609 0.9737 0.6013 0.9211 0.9561 0.8596

AUPRC 0.8338 0.8929 0.1566 0.7750 0.8438 0.2391

Sensitivity 0.7273 1.0000 0.9091 1.0000 1.0000 1.0000

Precision 0.8000 0.7333 0.3125 0.5500 0.6875 0.4783

MCC 0.7197 0.8258 0.3859 0.6806 0.7920 0.6145

kappa 0.7185 0.8108 0.2955 0.6331 0.7709 0.5482

56

Continuation of Table A.1

Dataset name Metric

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

Accuracy 0.9118 0.7941 0.9265 0.8824 0.8235 0.8676

F1 score 0.5714 0.5000 0.6667 0.6000 0.5385 0.5714

G­mean 0.7371 0.8778 0.8241 0.8711 0.8963 0.8630

AUROC 0.9262 0.8852 0.8080 0.9520 0.9016 0.8396

ecoli AUPRC 0.3576 0.6667 0.7551 0.7690 0.6842 0.6322

Sensitivity 0.5714 1.0000 0.7143 0.8571 1.0000 0.8571

Precision 0.5714 0.3333 0.6250 0.4615 0.3684 0.4286

MCC 0.5222 0.5068 0.6273 0.5737 0.5440 0.5456

kappa 0.5222 0.4087 0.6256 0.5382 0.4567 0.5032

abalone

Accuracy 0.8565 0.7081 0.1567 0.7033 0.7022 0.7069

F1 score 0.2308 0.3646 0.1132 0.3575 0.3532 0.3570

G­mean 0.4610 0.7861 0.2558 0.7783 0.7726 0.7756

AUROC 0.5771 0.8540 0.2290 0.8113 0.8571 0.8120

AUPRC 0.2618 0.3781 0.0933 0.5636 0.5266 0.5588

Sensitivity 0.2308 0.8974 0.5769 0.8846 0.8718 0.8718

Precision 0.2308 0.2288 0.0628 0.2240 0.2215 0.2244

MCC 0.1516 0.3539 ­0.2577 0.3433 0.3358 0.3399

kappa 0.1516 0.2536 ­0.0662 0.2451 0.2402 0.2449

libras_move

Accuracy 0.9583 0.5972 0.7500 0.7361 0.7778 0.8194

F1 score 0.7273 0.1714 0.3077 0.2963 0.3333 0.3810

G­mean 0.8810 0.5985 0.7727 0.7649 0.7880 0.8104

AUROC 0.8851 0.5985 0.7731 0.7657 0.7881 0.8104

AUPRC 0.7403 0.3639 0.5022 0.4979 0.5122 0.5319

Sensitivity 0.8000 0.6000 0.8000 0.8000 0.8000 0.8000

Precision 0.6667 0.1000 0.1905 0.1818 0.2105 0.2500

MCC 0.7084 0.1016 0.3055 0.2932 0.3323 0.3797

kappa 0.7049 0.0595 0.2202 0.2065 0.2510 0.3077

solar_flare_m0

Accuracy 0.9353 0.4065 0.3489 0.7806 0.6115 0.6259

F1 score 0.1000 0.1270 0.1084 0.2078 0.1563 0.1333

G­mean 0.2647 0.5726 0.5059 0.6726 0.6580 0.5994

AUROC 0.5764 0.6199 0.6673 0.7055 0.6692 0.6546

AUPRC 0.1129 0.4665 0.3503 0.3229 0.4084 0.3406

Sensitivity 0.0714 0.8571 0.7857 0.5714 0.7143 0.5714

Precision 0.1667 0.0686 0.0582 0.1270 0.0877 0.0755

MCC 0.0790 0.1086 0.0523 0.1897 0.1424 0.0901

kappa 0.0720 0.0372 0.0161 0.1366 0.0731 0.0487

Accuracy 0.9293 0.6734 0.6869 0.7037 0.6835 0.7340

F1 score 0.1600 0.1709 0.1622 0.1698 0.1754 0.1684

57

Continuation of Table A.1

Dataset name Metric

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

G­mean 0.4370 0.8136 0.7820 0.7919 0.8200 0.7651

AUROC 0.5774 0.8310 0.7645 0.8685 0.9206 0.7659

yeast_me2 AUPRC 0.1801 0.5467 0.2534 0.5094 0.3914 0.4504

Sensitivity 0.2000 1.0000 0.9000 0.9000 1.0000 0.8000

Precision 0.1333 0.0935 0.0891 0.0938 0.0962 0.0941

MCC 0.1274 0.2487 0.2206 0.2302 0.2543 0.2122

kappa 0.1246 0.1165 0.1075 0.1159 0.1215 0.1151

mammography

Accuracy 0.9844 0.4390 0.3317 0.9097 0.9137 0.8534

F1 score 0.6237 0.0752 0.0639 0.3176 0.3322 0.2264

G­mean 0.7447 0.6464 0.5569 0.9068 0.9183 0.8867

AUROC 0.8999 0.9074 0.6485 0.9494 0.9525 0.9013

AUPRC 0.6441 0.3890 0.5071 0.5554 0.4796 0.5243

Sensitivity 0.5577 0.9808 0.9808 0.9038 0.9231 0.9231

Precision 0.7073 0.0391 0.0330 0.1926 0.2025 0.1290

MCC 0.6203 0.1244 0.0968 0.3933 0.4096 0.3135

kappa 0.6158 0.0319 0.0198 0.2904 0.3057 0.1935

End of Table

58

Table A.2 The various performance measurements with the random forest model.

Begin of Table

Dataset name Metric

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

glass1

Accuracy 0.8372 0.8372 0.6279 0.7907 0.8140 0.7907

F1 score 0.7407 0.7586 0.6190 0.7273 0.7647 0.7429

G­mean 0.7868 0.8092 0.6583 0.7928 0.8252 0.8062

AUROC 0.8798 0.8917 0.7690 0.8798 0.8929 0.8607

AUPRC 0.7988 0.8109 0.6692 0.7416 0.8201 0.7505

Sensitivity 0.6667 0.7333 0.8667 0.8000 0.8667 0.8667

Precision 0.8333 0.7857 0.4815 0.6667 0.6842 0.6500

MCC 0.6325 0.6369 0.3615 0.5659 0.6261 0.5892

kappa 0.6242 0.6360 0.3092 0.5597 0.6143 0.5724

iris0

Accuracy 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F1s̃core 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

G­mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

AUROC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

AUPRC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Sensitivity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Precision 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

MCC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

kappa 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

glass­0­1­2­3_vs_4­5­6

Accuracy 0.8605 0.8605 0.8605 0.8837 0.8372 0.9070

F1 score 0.7273 0.7273 0.7500 0.7826 0.6957 0.8333

G­mean 0.8385 0.8385 0.8739 0.8893 0.8239 0.9374

AUROC 0.9606 0.9667 0.9621 0.9697 0.9636 0.9606

AUPRC 0.8900 0.9038 0.8987 0.9172 0.9073 0.8860

Sensitivity 0.8000 0.8000 0.9000 0.9000 0.8000 1.0000

Precision 0.6667 0.6667 0.6429 0.6923 0.6154 0.7143

MCC 0.6393 0.6393 0.6748 0.7164 0.5965 0.7923

kappa 0.6346 0.6346 0.6569 0.7051 0.5871 0.7713

ecoli2

Accuracy 0.9706 0.8382 0.7794 0.9412 0.8676 0.8971

F1 score 0.9000 0.6207 0.5946 0.8462 0.7097 0.7586

G­mean 0.9045 0.8301 0.8584 0.9643 0.9177 0.9366

AUROC 0.9968 0.9226 0.9841 0.9952 1.0000 0.9761

AUPRC 0.9854 0.7941 0.9257 0.9798 1.0000 0.8927

Sensitivity 0.8182 0.8182 1.0000 1.0000 1.0000 1.0000

Precision 1.0000 0.5000 0.4231 0.7333 0.5500 0.6111

MCC 0.8891 0.5511 0.5583 0.8258 0.6806 0.7322

kappa 0.8830 0.5254 0.4753 0.8108 0.6331 0.6980

59

Continuation of Table A.2

Dataset name Metric

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

Accuracy 0.9412 0.9118 0.5000 0.8529 0.7647 0.8235

F1 score 0.6667 0.7000 0.2609 0.5833 0.4667 0.5385

G­mean 0.7497 0.9495 0.6273 0.9144 0.8589 0.8963

AUROC 0.9684 0.9742 0.7588 0.9637 0.9403 0.9133

ecoli AUPRC 0.8150 0.7983 0.3138 0.5933 0.5588 0.3692

Sensitivity 0.5714 1.0000 0.8571 1.0000 1.0000 1.0000

Precision 0.8000 0.5385 0.1538 0.4118 0.3043 0.3684

MCCt 0.6462 0.6968 0.1943 0.5867 0.4738 0.5440

kappa 0.6354 0.6537 0.1046 0.5122 0.3667 0.4567

abalone

Accuracy 0.8720 0.6998 0.1256 0.7057 0.7069 0.7069

F1 score 0.2190 0.3613 0.0874 0.3594 0.3603 0.3603

G­mean 0.4256 0.7856 0.2036 0.7798 0.7805 0.7805

AUROC 0.6821 0.8793 0.1527 0.8750 0.8836 0.8807

AUPRC 0.2525 0.3617 0.0716 0.5143 0.5311 0.5184

Sensitivity 0.1923 0.9103 0.4487 0.8846 0.8846 0.8846

Precision 0.2542 0.2254 0.0484 0.2255 0.2262 0.2262

MCC 0.1525 0.3531 ­0.3904 0.3453 0.3464 0.3464

kappa 0.1507 0.2490 ­0.0975 0.2475 0.2487 0.2487

libras_move

Accuracy 0.9722 0.9306 0.6944 0.8889 0.8889 0.9722

F1 score 0.7500 0.6154 0.3125 0.5000 0.5000 0.8333

G­mean 0.7746 0.8673 0.8195 0.8464 0.8464 0.9850

AUROC 0.9866 0.9478 0.9164 0.9134 0.8910 0.9940

AUPRC 0.8717 0.8408 0.6033 0.7556 0.7497 0.9381

Sensitivity 0.6000 0.8000 1.0000 0.8000 0.8000 1.0000

Precision 1.0000 0.5000 0.1852 0.3636 0.3636 0.7143

MCC 0.7633 0.5988 0.3527 0.4914 0.4914 0.8324

kappa 0.7363 0.5794 0.2212 0.4472 0.4472 0.8186

solar_flare_m0

Accuracy 0.9496 0.4281 0.3705 0.6835 0.6115 0.6115

F1 score 0.3000 0.1405 0.1206 0.1852 0.1692 0.1692

G­mean 0.4603 0.6106 0.5436 0.6979 0.6879 0.6879

AUROC 0.6836 0.7091 0.7216 0.7482 0.7041 0.7508

AUPRC 0.2819 0.1120 0.1909 0.1623 0.1245 0.2216

Sensitivity 0.2143 0.9286 0.8571 0.7143 0.7857 0.7857

Precision 0.5000 0.0760 0.0649 0.1064 0.0948 0.0948

MCC 0.3054 0.1484 0.0936 0.1831 0.1721 0.1721

kappa 0.2782 0.0523 0.0298 0.1069 0.0872 0.0872

Accuracy 0.9697 0.7037 0.6936 0.7609 0.7609 0.7643

F1 score 0.3077 0.1538 0.1495 0.2198 0.2022 0.2045

60

Continuation of Table A.2

Dataset name Metric

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

G­mean 0.4464 0.7485 0.7429 0.8675 0.8249 0.8268

AUROC 0.9146 0.8577 0.8650 0.9324 0.9057 0.8972

yeast_me2 AUPRC 0.4901 0.3017 0.1508 0.3922 0.2656 0.1817

Sensitivity 0.2000 0.8000 0.8000 1.0000 0.9000 0.9000

Precision 0.6667 0.0851 0.0825 0.1235 0.1139 0.1154

MCC 0.3545 0.1940 0.1884 0.3048 0.2678 0.2704

kappa 0.2968 0.0990 0.0942 0.1700 0.1515 0.1541

mammography

Accuracy 0.9866 0.5834 0.3299 0.9204 0.9280 0.9142

F1 score 0.6341 0.0986 0.0637 0.3597 0.3784 0.3425

G­mean 0.7065 0.7503 0.5553 0.9403 0.9350 0.9370

AUROC 0.9827 0.6971 0.6915 0.9796 0.9770 0.9781

AUPRC 0.7657 0.1110 0.5002 0.7262 0.6823 0.6990

Sensitivity 0.5000 0.9808 0.9808 0.9615 0.9423 0.9615

Precision 0.8667 0.0519 0.0329 0.2212 0.2367 0.2083

MCC 0.6526 0.1684 0.0964 0.4405 0.4524 0.4258

kappa 0.6278 0.0570 0.0196 0.3346 0.3544 0.3163

End of Table

61

Table A.3 The various performance measurements with the support vector machine

model.

Begin of Table

Dataset name Metric

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

glass1

Accuracy 0.8140 0.6512 0.5581 0.7907 0.8837 0.7674

F1 score 0.7143 0.6154 0.5366 0.7429 0.8485 0.7222

G­mean 0.7715 0.6761 0.5835 0.8062 0.8944 0.7868

AUROC 0.8357 0.7500 0.7833 0.8810 0.9429 0.7952

AUPRC 0.8424 0.6341 0.7820 0.8212 0.9149 0.7173

Sensitivity 0.6667 0.8000 0.7333 0.8667 0.9333 0.8667

Precision 0.7692 0.5000 0.4231 0.6500 0.7778 0.6190

MCC 0.5806 0.3565 0.1926 0.5892 0.7637 0.5539

kappa 0.5774 0.3260 0.1689 0.5724 0.7554 0.5316

iris0

Accuracy 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F1 score 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

G­mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

AUROC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

AUPRC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Sensitivity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Precision 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

MCC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

kappa 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

glass­0­1­2­3_vs_4­5­6

Accuracy 0.8372 0.8372 0.8837 0.8837 0.8837 0.9070

F1 score 0.6667 0.6667 0.8000 0.7826 0.8000 0.8333

G­mean 0.7843 0.7843 0.9211 0.8893 0.9211 0.9374

AUROC 0.9273 0.9152 0.9545 0.9576 0.9333 0.9576

AUPRC 0.8362 0.8197 0.8761 0.8798 0.7376 0.8798

Sensitivity 0.7000 0.7000 1.0000 0.9000 1.0000 1.0000

Precision 0.6364 0.6364 0.6667 0.6923 0.6667 0.7143

MCC 0.5604 0.5604 0.7521 0.7164 0.7521 0.7923

kappa 0.5593 0.5593 0.7226 0.7051 0.7226 0.7713

ecoli2

Accuracy 0.9853 0.8676 0.7059 0.8676 0.9706 0.8529

F1 score 0.9565 0.7097 0.5238 0.7097 0.9167 0.6875

G­mean 0.9912 0.9177 0.8057 0.9177 0.9823 0.9081

AUROC 1.0000 0.9920 0.9537 0.9904 1.0000 0.9920

AUPRC 1.0000 0.9639 0.8395 0.9591 1.0000 0.9662

Sensitivity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Precision 0.9167 0.5500 0.3548 0.5500 0.8462 0.5238

MCC 0.9490 0.6806 0.4799 0.6806 0.9036 0.6572

62

Continuation of Table A.3

Dataset name Metric

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

kappa 0.9477 0.6331 0.3744 0.6331 0.8990 0.6033

Accuracy 0.9412 0.8382 0.7059 0.7941 0.7794 0.7647

F1 score 0.7500 0.5217 0.3750 0.4615 0.4444 0.4667

G­mean 0.9028 0.8465 0.7682 0.8213 0.8127 0.8589

AUROC 0.9321 0.8993 0.8478 0.9625 0.9555 0.9625

ecoli AUPRC 0.5679 0.7967 0.4195 0.8984 0.8583 0.8984

Sensitivity 0.8571 0.8571 0.8571 0.8571 0.8571 1.0000

Precision 0.6667 0.3750 0.2400 0.3158 0.3000 0.3043

MCC 0.7245 0.4966 0.3439 0.4362 0.4186 0.4738

kappa 0.7173 0.4418 0.2552 0.3662 0.3445 0.3667

abalone

Accuracy 0.9067 0.6675 0.1447 0.7380 0.7213 0.7033

F1 score 0.0000 0.3505 0.0822 0.3831 0.3916 0.3706

G­mean 0.0000 0.7827 0.2195 0.7946 0.8184 0.7974

AUROC 0.6220 0.8791 0.1626 0.8829 0.8763 0.8717

AUPRC 0.1234 0.3690 0.0533 0.3308 0.3238 0.3087

Sensitivity 0.0000 0.9615 0.4103 0.8718 0.9615 0.9359

Precision 0.0000 0.2143 0.0456 0.2455 0.2459 0.2310

MCC 0.0000 0.3530 ­0.3733 0.3683 0.3976 0.3691

kappa 0.0000 0.2335 ­0.1031 0.2780 0.2855 0.2598

libras_move

Accuracy 0.9861 0.9722 0.9306 0.9444 0.9583 0.9583

F1 score 0.8889 0.8333 0.6154 0.7143 0.7692 0.7692

G­mean 0.8944 0.9850 0.8673 0.9697 0.9774 0.9774

AUROC 0.9373 0.9881 0.8448 0.9910 0.9881 0.9851

AUPRC 0.8352 0.8348 0.7239 0.8931 0.8648 0.8463

Sensitivity 0.8000 1.0000 0.8000 1.0000 1.0000 1.0000

Precision 1.0000 0.7143 0.5000 0.5556 0.6250 0.6250

MCC 0.8878 0.8324 0.5988 0.7228 0.7727 0.7727

kappa 0.8816 0.8186 0.5794 0.6863 0.7477 0.7477

solar_flare_m0

Accuracy 0.9424 0.5647 0.3273 0.6583 0.5432 0.6187

F1 score 0.2000 0.1655 0.1137 0.1880 0.1477 0.1719

G­mean 0.3751 0.6861 0.5065 0.7155 0.6455 0.6922

AUROC 0.6130 0.6987 0.6427 0.7142 0.7077 0.6901

AUPRC 0.1270 0.1231 0.0825 0.1106 0.0976 0.0843

Sensitivity 0.1429 0.8571 0.8571 0.7857 0.7857 0.7857

Precision 0.3333 0.0916 0.0609 0.1068 0.0815 0.0965

MCC 0.1922 0.1780 0.0753 0.1980 0.1383 0.1759

kappa 0.1751 0.0820 0.0218 0.1090 0.0621 0.0903

Accuracy 0.9630 0.8215 0.8013 0.8653 0.8586 0.8316

63

Continuation of Table A.3

Dataset name Metric

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

F1 score 0.0000 0.2740 0.2338 0.3103 0.3226 0.2647

G­mean 0.0000 0.9030 0.8474 0.8819 0.9239 0.8639

AUROC 0.7892 0.9394 0.9185 0.9345 0.9380 0.9251

yeast_me2 AUPRC 0.2534 0.2465 0.2282 0.2133 0.2145 0.1876

Sensitivity 0.0000 1.0000 0.9000 0.9000 1.0000 0.9000

Precision 0.0000 0.1587 0.1343 0.1875 0.1923 0.1552

MCC ­0.0108 0.3597 0.3012 0.3744 0.4052 0.3318

kappa ­0.0062 0.2292 0.1861 0.2696 0.2820 0.2199

mammography

Accuracy 0.9866 0.6343 0.3344 0.9276 0.9048 0.8869

F1 score 0.6341 0.1070 0.0641 0.3864 0.3195 0.2792

G­mean 0.7065 0.7687 0.5593 0.9532 0.9320 0.9135

AUROC 0.9082 0.8363 0.6040 0.9768 0.9701 0.9607

AUPRC 0.7269 0.3978 0.0263 0.4821 0.4878 0.4549

Sensitivity 0.5000 0.9423 0.9808 0.9808 0.9615 0.9423

Precision 0.8667 0.0567 0.0331 0.2406 0.1916 0.1639

MCC 0.6526 0.1762 0.0975 0.4667 0.4060 0.3666

kappa 0.6278 0.0660 0.0200 0.3626 0.2920 0.2495

End of Table

APPENDIX B

REPORT OF RANKING SCORE

65

Table B.1 Ranking scores for the decision tree model.

Begin of Table

Dataset name Metric

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

glass1

Accuracy 2 3 6 4 1 5

F1 score 5 3 6 2 1 3

G­mean 5 3 6 2 1 4

AUROC 2 3 6 4 1 5

AUPRC 2 4 5 6 1 3

Sensitivity 6 4 1 1 5 1

Precision 2 3 6 4 1 5

MCC 4 3 6 2 1 5

kappa 3 2 6 4 1 5

iris0

Accuracy 1 1 1 1 1 1

F1 score 1 1 1 1 1 1

G­mean 1 1 1 1 1 1

AUROC 1 1 1 1 1 1

AUPRC 1 1 1 1 1 1

Sensitivity 1 1 1 1 1 1

Precision 1 1 1 1 1 1

MCC 1 1 1 1 1 1

kappa 1 1 1 1 1 1

glass­0­1­2­3_vs_4­5­6

Accuracy 1 4 4 1 4 1

F1 score 1 6 4 1 4 1

G­mean 1 6 4 1 4 1

AUROC 1 4 5 3 5 1

AUPRC 1 6 3 5 3 1

Sensitivity 1 6 1 1 1 1

Precision 1 4 5 1 5 1

MCC 1 6 4 1 4 1

kappa 1 6 4 1 4 1

ecoli2

Accuracy 2 1 6 4 2 5

F1 score 3 1 6 4 2 5

G­mean 5 1 6 3 2 4

AUROC 2 1 6 4 3 5

AUPRC 3 1 6 4 2 5

Sensitivity 6 1 5 1 1 1

Precision 1 2 6 4 3 5

MCC 3 1 6 4 2 5

kappa 3 1 6 4 2 5

66

Continuation of Table B.1

Dataset name Metric

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

Accuracy 2 6 1 3 5 4

F1 score 3 6 1 2 5 3

G­mean 6 2 5 3 1 4

AUROC 2 4 6 1 3 5

ecoli AUPRC 6 4 2 1 3 5

Sensitivity 6 1 5 3 1 3

Precision 2 6 1 3 5 4

MCC 5 6 1 2 4 3

kappa 3 6 1 2 5 4

abalone

Accuracy 1 2 6 4 5 3

F1 score 5 1 6 2 4 3

G­mean 5 1 6 2 4 3

AUROC 5 2 6 4 1 3

AUPRC 5 4 6 1 3 2

Sensitivity 6 1 5 2 3 3

Precision 1 2 6 4 5 3

MCC 5 1 6 2 4 3

kappa 5 1 6 2 4 3

libras_move

Accuracy 1 6 4 5 3 2

F1 score 1 6 4 5 3 2

G­mean 1 6 4 5 3 2

AUROC 1 6 4 5 3 2

AUPRC 1 6 4 5 3 2

Sensitivity 1 6 1 1 1 1

Precision 1 6 4 5 3 2

MCC 1 6 4 5 3 2

kappa 1 6 4 5 3 2

solar_flare_m0

Accuracy 1 5 6 2 4 3

F1 score 6 4 5 1 2 3

G­mean 6 4 5 1 2 3

AUROC 6 5 3 1 2 4

AUPRC 6 1 3 5 2 4

Sensitivity 6 1 2 4 3 4

Precision 1 5 6 2 3 4

MCC 5 3 6 1 2 4

kappa 3 5 6 1 2 4

Accuracy 1 6 4 3 5 2

F1 score 6 2 5 3 1 4

67

Continuation of Table B.1

Dataset name Metric

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

G­mean 6 2 4 3 1 5

AUROC 6 3 5 2 1 4

yeast_me2 AUPRC 6 1 5 2 4 3

Sensitivity 6 1 3 3 1 5

Precision 1 5 6 4 2 3

MCC 6 2 4 3 1 5

kappa 1 3 6 4 2 5

mammography

Accuracy 1 5 6 3 2 4

F1 score 1 5 6 3 2 4

G­mean 4 5 6 2 1 3

AUROC 5 3 6 2 1 4

AUPRC 1 6 4 2 5 3

Sensitivity 6 1 1 5 3 3

Precision 1 5 6 3 2 4

MCC 1 5 6 3 2 4

kappa 1 5 6 3 2 4

End of Table

68

Table B.2 Ranking scores for the random forest model.

Begin of Table

Dataset name Metric

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

glass1

Accuracy 1 1 6 4 3 4

F1 score 4 2 6 5 1 3

G­mean 5 2 6 4 1 3

AUROC 3 2 6 3 1 5

AUPRC 3 2 6 5 1 4

Sensitivity 6 5 1 4 1 1

Precision 1 2 6 4 3 5

MCC 2 1 6 5 3 4

kappa 2 1 6 5 3 4

iris0

Accuracy 1 1 1 1 1 1

F1 score 1 1 1 1 1 1

G­mean 1 1 1 1 1 1

AUROC 1 1 1 1 1 1

AUPRC 1 1 1 1 1 1

Sensitivity 1 1 1 1 1 1

Precision 1 1 1 1 1 1

MCC 1 1 1 1 1 1

kappa 1 1 1 1 1 1

glass­0­1­2­3_vs_4­5­6

Accuracy 3 3 3 2 6 1

F1 score 4 4 3 2 6 1

G­mean 4 4 3 2 6 1

AUROC 5 2 4 1 3 5

AUPRC 5 3 4 1 2 6

Sensitivity 4 4 2 2 4 1

Precision 3 3 5 2 6 1

MCC 4 4 3 2 6 1

kappa 4 4 3 2 6 1

ecoli2

Accuracy 1 5 6 2 4 3

F1 score 1 5 6 2 4 3

G­mean 4 6 5 1 3 2

AUROC 2 6 4 3 1 5

AUPRC 2 6 4 3 1 5

Sensitivity 5 5 1 1 1 1

Precision 1 5 6 2 4 3

MCC 1 6 5 2 4 3

kappa 1 5 6 2 4 3

69

Continuation of Table B.2

Dataset name Metric

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

Accuracy 1 2 6 3 5 4

F1 score 2 1 6 3 5 4

G­mean 5 1 6 2 4 3

AUROC 2 1 6 3 4 5

ecoli AUPRC 1 2 6 3 4 5

Sensitivity 6 1 5 1 1 1

Precision 1 2 6 3 5 4

MCC 2 1 6 3 5 4

kappa 2 1 6 3 5 4

abalone

Accuracy 1 5 6 4 2 2

F1 score 5 1 6 4 2 2

G­mean 5 1 6 4 2 2

AUROC 5 3 6 4 1 2

AUPRC 5 4 6 3 1 2

Sensitivity 6 1 5 2 2 2

Precision 1 5 6 4 2 2

MCC 5 1 6 4 2 2

kappa 5 1 6 4 2 2

libras_move

Accuracy 1 3 6 4 4 1

F1 score 2 3 6 4 4 1

G­mean 6 2 5 3 3 1

AUROC 2 3 4 5 6 1

AUPRC 2 3 6 4 5 1

Sensitivity 6 3 1 3 3 1

Precision 1 3 6 4 4 2

MCC 2 3 6 4 4 1

kappa 2 3 6 4 4 1

solar_flare_m0

Accuracy 1 5 6 2 3 3

F1 score 1 5 6 2 3 3

G­mean 6 4 5 1 2 2

AUROC 6 4 3 2 5 1

AUPRC 1 6 3 4 5 2

Sensitivity 6 1 2 5 3 3

Precision 1 5 6 2 3 3

MCC 1 5 6 2 3 3

kappa 1 5 6 2 3 3

Accuracy 1 5 6 3 3 2

F1 score 1 5 6 2 4 3

70

Continuation of Table B.2

Dataset name Metric

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

G­mean 6 4 5 1 3 2

AUROC 2 6 5 1 3 4

yeast_me2 AUPRC 1 3 6 2 4 5

Sensitivity 6 4 4 1 2 2

Precision 1 5 6 2 4 3

MCC 1 5 6 2 4 3

kappa 1 5 6 2 4 3

mammography

Accuracy 1 5 6 3 2 4

F1 score 1 5 6 3 2 4

G­mean 5 4 6 1 3 2

AUROC 1 5 6 2 4 3

AUPRC 1 6 5 2 4 3

Sensitivity 6 1 1 3 5 3

Precision 1 5 6 3 2 4

MCC 1 5 6 3 2 4

kappa 1 5 6 3 2 4

End of Table

71

Table B.3 Ranking scores for the support vector machine model.

Begin of Table

Dataset name Metric

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

glass1

Accuracy 2 5 6 3 1 4

F1 score 4 5 6 2 1 3

G­mean 4 5 6 2 1 3

AUROC 3 6 5 2 1 4

AUPRC 2 6 4 3 1 5

Sensitivity 6 4 5 2 1 2

Precision 2 5 6 3 1 4

MCC 3 5 6 2 1 4

kappa 2 5 6 3 1 4

iris0

Accuracy 1 1 1 1 1 1

F1 score 1 1 1 1 1 1

G­mean 1 1 1 1 1 1

AUROC 1 1 1 1 1 1

AUPRC 1 1 1 1 1 1

Sensitivity 1 1 1 1 1 1

Precision 1 1 1 1 1 1

MCC 1 1 1 1 1 1

kappa 1 1 1 1 1 1

glass­0­1­2­3_vs_4­5­6

Accuracy 5 5 2 2 2 1

F1 score 5 5 2 4 2 1

G­mean 5 5 2 4 2 1

AUROC 5 6 3 1 4 1

AUPRC 4 5 3 1 6 1

Sensitivity 5 5 1 4 1 1

Precision 5 5 3 2 3 1

MCC 5 5 2 4 2 1

kappa 5 5 2 4 2 1

ecoli2

Accuracy 1 3 6 3 2 5

F1 score 1 3 6 3 2 5

G­mean 1 3 6 3 2 5

AUROC 1 3 6 5 1 3

AUPRC 1 4 6 5 1 3

Sensitivity 1 1 1 1 1 1

Precision 1 3 6 3 2 5

MCC 1 3 6 3 2 5

kappa 1 3 6 3 2 5

72

Continuation of Table B.3

Dataset name Metric

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

Accuracy 1 2 6 3 4 5

F1 score 1 2 6 4 5 3

G­mean 1 3 6 4 5 2

AUROC 4 5 6 1 3 1

ecoli AUPRC 5 4 6 1 3 1

Sensitivity 2 2 2 2 2 1

Precision 1 2 6 3 5 4

MCC 1 2 6 4 5 3

kappa 1 2 6 4 5 3

abalone

Accuracy 1 5 6 2 3 4

F1 score 6 4 5 2 1 3

G­mean 6 4 5 3 1 2

AUROC 5 2 6 1 3 4

AUPRC 5 1 6 2 3 4

Sensitivity 6 1 5 4 1 3

Precision 6 4 5 2 1 3

MCC 5 4 6 3 1 2

kappa 5 4 6 2 1 3

libras_move

Accuracy 1 2 6 5 3 3

F1 score 1 2 6 5 3 3

G­mean 5 1 6 4 2 2

AUROC 5 2 6 1 2 4

AUPRC 4 5 6 1 2 3

Sensitivity 5 1 5 1 1 1

Precision 1 2 6 5 3 3

MCC 1 2 6 5 3 3

kappa 1 2 6 5 3 3

solar_flare_m0

Accuracy 1 4 6 2 5 3

F1 score 1 4 6 2 5 3

G­mean 6 3 5 1 4 2

AUROC 6 3 5 1 2 4

AUPRC 1 2 6 3 4 5

Sensitivity 6 1 1 3 3 3

Precision 1 4 6 2 5 3

MCC 2 3 6 1 5 4

kappa 1 4 6 2 5 3

Accuracy 1 5 6 2 3 4

F1 score 6 3 5 2 1 4

73

Continuation of Table B.3

Dataset name Metric

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

G­mean 6 2 5 3 1 4

AUROC 6 1 5 3 2 4

yeast_me2 AUPRC 1 2 3 5 4 6

Sensitivity 6 1 3 3 1 3

Precision 6 3 5 2 1 4

MCC 6 3 5 2 1 4

kappa 6 3 5 2 1 4

mammography

Accuracy 1 5 6 2 3 4

F1 score 1 5 6 2 3 4

G­mean 5 4 6 1 2 3

AUROC 4 5 6 1 2 3

AUPRC 1 5 6 3 2 4

Sensitivity 6 4 1 1 3 4

Precision 1 5 6 2 3 4

MCC 1 5 6 2 3 4

kappa 1 5 6 2 3 4

End of Table

APPENDIX C

REPORT OF OPTIMIZE PARAMETERS

75

Table C.1 Report of optimal parameters for the decision tree model.

Dataset name Parameter

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

glass1

criterion gini index gini index gini index gini index gini index gini index

max_depth 63 78 28 5 50 24

min_samples_split 74 40 51 5 2 2

iris0

criterion gini index gini index gini index gini index gini index gini index

max_depth 22 54 70 80 99 24

min_samples_split 68 24 45 55 29 54

glass­0­1­2­3_vs_4­5­6

criterion gini index gini index gini index gini index gini index gini index

max_depth 47 52 74 76 59 66

min_samples_split 8 10 65 37 39 6

ecoli2

criterion gini index gini index gini index gini index gini index gini index

max_depth 5 45 3 77 93 3

min_samples_split 29 31 3 49 3 23

ecoli

criterion gini index gini index gini index gini index gini index gini index

max_depth 47 32 8 47 55 22

min_samples_split 60 49 16 15 17 17

abalone

criterion gini index gini index gini index gini index gini index gini index

max_depth 57 68 27 2 4 2

min_samples_split 3 70 100 86 80 4

libras_move

criterion gini index gini index gini index gini index gini index gini index

max_depth 78 13 91 78 85 74

min_samples_split 4 31 9 22 13 11

solar_flare_m0

criterion gini index gini index gini index gini index gini index gini index

max_depth 74 35 4 62 67 30

min_samples_split 4 2 2 5 2 5

yeast_me2

criterion gini index gini index gini index gini index gini index gini index

max_depth 97 71 40 89 50 30

min_samples_split 2 2 35 13 37 2

mammography

criterion gini index gini index gini index gini index gini index gini index

max_depth 59 36 48 76 78 59

min_samples_split 33 43 55 7 33 5

76

Table C.2 Report of optimal parameters for the random forest model.

Dataset name Parameter

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

glass1

criterion gini index gini index gini index gini index gini index gini index

n_estimators 70 14 362 137 36 442

max_depth 20.33 157.27 102.86 37.83 17.32 12.50

iris0

criterion gini index gini index gini index gini index gini index gini index

n_estimators 373 106 98 217 449 143

max_depth 298.55 119.62 7.69 1.78 2.84 6.94

glass­0­1­2­3_vs_4­5­6

criterion gini index gini index gini index gini index gini index gini index

n_estimators 46 396 85 198 239 197

max_depth 109.61 49.87 421.21 210.20 116.79 4.60

ecoli2

criterion gini index gini index gini index gini index gini index gini index

n_estimators 375 3 403 261 81 28

max_depth 387.66 9.41 2.47 2.39 12.26 4.17

ecoli

criterion gini index gini index gini index gini index gini index gini index

n_estimators 165 203 428 181 214 118

max_depth 40.71 356.42 82.41 8.74 299.65 25.85

abalone

criterion gini index gini index gini index gini index gini index gini index

n_estimators 3 335 183 58 416 309

max_depth 34.81 4.02 5.18 2.69 2.07 2.98

libras_move

criterion gini index gini index gini index gini index gini index gini index

n_estimators 30 300 19 21 126 417

max_depth 10.52 361.57 7.06 23.73 44.96 457.79

solar_flare_m0

criterion gini index gini index gini index gini index gini index gini index

n_estimators 2 228 234 410 34 42

max_depth 10.64 70.89 226.90 4.59 129.97 42.93

yeast_me2

criterion gini index gini index gini index gini index gini index gini index

n_estimators 7 181 31 149 195 105

max_depth 132.72 45.42 6.22 33.10 72.83 72.14

mammography

criterion gini index gini index gini index gini index gini index gini index

n_estimators 49 484 320 115 263 186

max_depth 15.73 19.98 266.44 37.92 21.95 80.77

77

Table C.3 Report of optimal parameters for the support vector machine model.

Dataset name Parameter

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

glass1

C 45.00781 1.83155 14.31699 23.47540 34.93333 39.66526

kernel rbf rbf rbf rbf rbf rbf

gamma 0.70784 0.04841 0.91205 0.19230 0.36970 0.97996

iris0

C 43.25908 1.38988 11.87009 15.11733 2.26292 49.25986

kernel rbf rbf rbf rbf rbf rbf

gamma 0.00130 0.01871 0.00056 0.01661 0.20596 0.01910

glass­0­1­2­3_vs_4­5­6

C 6.95641 7.67253 3.78185 1.92010 21.96538 1.08254

kernel rbf rbf rbf rbf rbf rbf

gamma 0.02474 0.02416 0.07951 0.10213 0.29440 0.08892

ecoli2

C 34.41158 1.61272 4.66512 48.08350 19.85147 25.86596

kernel rbf rbf rbf rbf rbf rbf

gamma 0.90697 0.37697 0.04508 0.14903 0.88054 0.01718

ecoli

C 35.33428 27.80937 8.61512 19.09766 13.49229 20.74351

kernel rbf rbf rbf rbf rbf rbf

gamma 0.95417 0.58603 0.08665 0.18432 0.98430 0.73581

abalone

C 62.21637 48.58663 1.43683 52.47040 21.32463 61.82094

kernel rbf rbf rbf rbf rbf rbf

gamma 0.00002 0.35604 0.48739 0.98067 0.90163 0.70378

libras_move

C 68.41414 7.78533 26.94547 4.07597 6.19252 12.32828

kernel rbf rbf rbf rbf rbf rbf

gamma 0.03329 0.34089 0.04381 0.53077 0.16355 0.12579

solar_flare_m0

C 44.04344 32.83469 6.73459 1.01141 2.97452 46.47843

kernel rbf rbf rbf rbf rbf rbf

gamma 0.11902 0.14940 0.06824 0.21630 0.74315 0.55391

yeast_me2

C 38.82924 5.86669 40.32024 3.25104 3.31192 8.15110

kernel rbf rbf rbf rbf rbf rbf

gamma 0.84669 0.02614 0.01309 0.03772 0.19505 0.67308

mammography

C 39.73587 1.33356 1.05477 56.42831 3.97367 4.61503

kernel rbf rbf rbf rbf rbf rbf

gamma 0.15172 0.27988 0.19592 0.31152 0.55724 0.92099

78

Table C.4 Report of maximize F1 score for the decision tree model.

Dataset name

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

glass1 0.6065 0.7429 0.8302 0.6983 0.7570 0.8275

iris0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

glass­0­1­2­3_vs_4­5­6 0.9099 0.9149 0.9413 0.9381 0.9746 0.9546

ecoli2 0.7452 0.8090 0.8090 0.8163 0.8760 0.8534

ecoli 0.5176 0.8600 0.6062 0.9024 0.9800 0.9357

abalone 0.2981 0.8670 0.6505 0.8215 0.8262 0.8490

libras_move 0.6533 0.8600 0.8967 0.7367 0.8800 0.8167

solar_flare_m0 0.1464 0.8643 0.7187 0.7103 0.8297 0.7632

yeast_me2 0.3794 0.9131 0.7182 0.8963 0.9235 0.8592

mammography 0.6218 0.8510 0.9850 0.8562 0.8528 0.8593

Table C.5 Report of maximize F1 score for the random forest model.

Dataset name

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

glass1 0.7817 0.8001 0.8734 0.8256 0.7990 0.8226

iris0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

glass­0­1­2­3_vs_4­5­6 0.9496 0.9270 0.9667 0.9667 0.9889 0.9889

ecoli2 0.7940 0.8871 0.8770 0.8881 0.9238 0.9460

ecoli 0.6300 0.9064 0.6329 0.9371 0.9657 0.9800

abalone 0.2752 0.8818 0.6645 0.8237 0.8348 0.8571

libras_move 0.6000 0.9467 0.9133 0.9133 0.9467 0.9667

solar_flare_m0 0.1586 0.9422 0.7523 0.7247 0.8555 0.8504

yeast_me2 0.2783 0.9131 0.7395 0.8963 0.9635 0.9070

mammography 0.6658 0.9182 0.9850 0.9090 0.9067 0.9004

79

Table C.6 Report of maximize F1 score for the support vector machine model.

Dataset name

Undersampling Method

None
Cluster

Near­Miss RUS
WBWOA WBWOA

centroid 1NN KNN

glass1 0.7287 0.8058 0.8425 0.7959 0.8541 0.8671

iris0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

glass­0­1­2­3_vs_4­5­6 0.9385 0.9524 0.9667 0.9578 0.9889 0.9889

ecoli2 0.8820 0.8798 0.8820 0.9210 0.9317 0.9353

ecoli 0.6524 0.8967 0.7295 0.9371 0.9800 0.9800

abalone 0.0000 0.8753 0.6395 0.8119 0.8474 0.8596

libras_move 0.9000 0.9667 0.9000 0.9467 1.0000 1.0000

solar_flare_m0 0.0786 0.8975 0.7661 0.7801 0.8739 0.8776

yeast_me2 0.0400 0.8237 0.7774 0.8567 0.8427 0.8210

mammography 0.6720 0.8902 0.9850 0.9114 0.9056 0.9011

APPENDIX D

REPORT OF FITNESS VALUES

81

Table D.1 Fitness values of WBWOA 1NN algorithm.

Begin of table

No. Graphs
Fitness

value
K

1 0.004756 1

2 iris0 has fitness value equal to 0 at the first iteration. 0.000000 1

3 0.000623 1

4 0.015765 1

82

Continuation of Table D.1

No. Graphs
Fitness

value
K

5 0.001789 1

6 0.106982 1

7 0.000000 1

83

Continuation of Table D.1

No. Graphs
Fitness

value
K

8 0.113525 1

9 0.007418 1

10 0.045317 1

End of Table

84

Table D.2 Fitness values of WBWOA KNN algorithm.

Begin of table

No. Graphs
Fitness

value
K

1 0.002201 1

2 iris0 has fitness value equal to 0 at the first iteration. 0.000000 14

3 0.000623 1

4 0.005518 27

85

Continuation of Table D.2

No. Graphs
Fitness

value
K

5 0.001789 1

6 0.048363 22

7 0.000000 3

86

Continuation of Table D.2

No. Graphs
Fitness

value
K

8 0.081860 1

9 0.025287 3

10 0.032486 5

End of Table

APPENDIX E

CODE OF WBWOA 1NN ALGORITHM

88

Figure E.1 Code for importing library for the prepossessing work.

Figure E.2 Code for creating function of performance metrics.

89

Figure E.3 Code for creating function for splitting majority and minority tables.

Figure E.4 Code for creating function for fitness function.

90

Figure E.5 Code for creating function for graph fitness.

Figure E.6 Code for complement function.

91

Figure E.7 Code for creating function for WBWOA 1NN.

92

Figure E.8 Code for creating function for WBWOA 1NN (Continued1).

93

Figure E.9 Code for creating function for WBWOA 1NN (Continued2).

Figure E.10 Code for run the WBWOA 1NN algorithm.

APPENDIX F

CODE OF WBWOA KNN ALGORITHM

95

Figure F.1 Code for importing library for the prepossessing work.

Figure F.2 Code for creating function of performance metrics.

96

Figure F.3 Code for creating function for splitting majority and minority tables.

Figure F.4 Code for creating function for fitness function.

97

Figure F.5 Code for creating function for graph fitness.

Figure F.6 Code for complement function.

98

Figure F.7 Code for creating function for WBWOA KNN.

99

Figure F.8 Code for creating function for WBWOA KNN (Continued1).

100

Figure F.9 Code for creating function for WBWOA KNN (Continued2).

Figure F.10 Code for creating function for WBWOA KNN (Continued3).

101

Figure F.11 Code for running the process.

APPENDIX G

CODE FOR PARAMETER OPTIMIZATION

103

Figure G.1 Code for importing library.

Figure G.2 Code for importing library (Continued).

104

Figure G.3 Code for ceating function for show the best parameter.

Figure G.4 Code for creating function for objective value of model.

105

Figure G.5 Code for creating function for objective value of model (Continued).

106

Figure G.6 Code for creating function for select models.

107

Figure G.7 Code for ploting graph.

108

Figure G.8 Code for setting name of table.

109

Figure G.9 Code for setting folder.

110

Figure G.10 Code for running process work.

111

Figure G.11 Code for running process work (Continued).

CURRICULUM VITAE

NAME : Jakkrit Polrob GENDER : Male

EDUCATION BACKGROUND:

• Bachelor of Engineering (Aeronautical Engineering), Suranaree University of Tech­

nology, Thailand, 2020

SCHOLARSHIP:

• Kittibandit Scholarship of Suranaree University of Technology

CONFERENCE:

• Polrob, J., Rodjanadid B., Tanthanuch, J., and Schulz E. (2022) Binary Whale Op­

timization Algorithm for Improving Data Balance Based on Undersampling Tech­

niques., The 26th Annual Meeting in Mathematics 2022 (AMM 2022) and The 1st

International Annual Meeting in Mathematics 2022 May 18 ­ 20, 2022, Suranaree

University of Technology, Nakhon Ratchasima, May 18th, 2022 (40­57)

EXPERIENCE:

• Teaching assistant in Suranaree University of Technology, Mathematics in daily life

(Thai course) Term 1/2020 and Term 2/2020, Calculus I (Thai course) Term 2/2021,

Essential Calculus (Thai course) Term 2/2021, Statistical Methods (Thai course) Term

3/2021, Probability and Statistics (Thai course) Term 3/2021, and Calculus III (Thai

course) Term 3/2021

	Cover

	Approved

	Abstract

	Acknowledgement

	Content

	Chapter1

	Chapter2

	Chapter3

	Chapter4

	Chapter5

	Reference

	Appendix
	Biography

